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0. Introduction

Factorizable groups of homeomorphisms first arose when Hirsch consid-
ered Diffr0(X), the group of C r diffeomorphisms of a closed differentia-
ble manifold X, Cr isotopic to the identity [14]. It turns out that the

identity components in the groups of automorphisms of most geometric
structures on closed manifolds are factorizable (cf. [3,7,16,1,2,5]). Epstein
[4] showed generally that if G is a factorizable group of homeomorphisms
of a paracompact space X which acts transitively on a basis of open
neighborhoods of X, then [G, G ], the commutator subgroup of G, is

simple. This has proved to be a most fruitful beginning in the under-
standing of various groups of diffeomorphisms, leading to the deep
results of Thurston [ 15] and Mather [ 11,12], namely Diffr0(X) is simple
for X a connected closed manifold and 1  r  + 00, r ~ dim X + 1. In
this paper, we give a more complete characterization of the factorizable
groups. Our results assert that if G is a factorizable group of homeomor-

phisms of X without any fixed point, then [G, G], the commutator

subgroup of G, is perfect, i.e., is its own commutator subgroup. In fact,
[G, G] is the least subgroup in some sense even if it is not simple (cf.
Theorem 1.8). If G has a fixed point, both G and [G, G] can be not
perfect. As a corollary of this, we obtain a somewhat improved form of
Epstein’s simplicity theorem [4].

There are many groups of homeomorphisms that satisfy our assump-
tions without satisfying Epstein’s assumptions. Some examples are the
group of compactly supported diffeomorphisms preserving the leaves of a
foliation and isotopic to the identity through such diffeomorphisms; the
group of compactly supported diffeomorphisms preserving the fibers of a
fiber bundle isotopic to the identity through such diffeomorphisms; and
similarly for diffeomorphisms preserving a submanifold of dimension
greater than 0, or strata preserving diffeomorphisms of a stratafication
without any 0-dimensional strata. Therefore, these groups have perfect
commutator subgroups. However, we will not consider in this paper the
interesting problem: are these groups perfect themselves? My original
motivation in examining the commutator subgroups came from the

following theorem [8]: the commutator subgroups classify the manifolds
up to diffeomorphisms preserving the appropriate structures, e.g., each
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isomorphism 03C4:Diffrc0(X) ~ Diffrc0(Y) determines a C r diffeomorphism
h : X ~ Y, and Diffrc0(X) is its own commutator subgroup for r ~ dim Y
+ 1. In fact, 03C4(f) = hfh-1 for each/(= Diffrc0(X). Lastly, the results of
this paper have generalizations to groups of noncompactly supported
homeomorphisms [9].

1. The theorem

DEFINITION: The support of a homeomorphism h of X, denoted by
supp h, is the closure of {x ~ X| x =1= hx}.

DEFINITION: A group of homeomorphisms G of a space X is factorizable
if given g E G, then for each covering 62l of X by open sets, there exists
elements g1,...,gn~G and U1,...,Un~U such that g = gn...g1 and
supp gl ~ Ul for each i = 1,..., n .

THEOREM 1.1: Suppose X is a paracompact space and G is a factorizable
group of homeomorphisms of x. If G has no fixed point then [G, G], the
commutator subgroup of G, is perfect.

The proof consists of several propositions and lemmas. Suppose N is a
subgroup of G, we write N a G if N is a normal subgroup of G. Let
BN = {gU|nU~ U = Ø for some n ~ N, U ~ X open, g~G}, and 0?;N=
{gU|nU~ U = Ø for some n ~ N, U c X open, g ~ [G, G]). Write G(U)
for {g~G|supp g ~ U}. Let 03A0N = 03A0V~BN[G(V), G(V)], the subgroup
of G generated by [G(V), G(V)], and similarly

The following proposition shows what happens if we assume no extra
property on G. Write [a, b] for a-lb-1ab.

PROPOSITION 1.2: If N  G, then 03A0N  N. If N is normalized by [G, G],
i. e., gNg-1 c N for each g E [G, G], then 03A0N c N.

PROOF: Since both statements are alike, we proved only the first. It
suffices to show that [G(U), G(U)] c N for any U satisfying U n nU=Ø
for some n E N. In fact, if g, h E G(U), then supp n - lg -1 n n supp h c
n -’ U n U = Ø, i.e., [n-1gn, h] = 1. Therefore, using the formula [ ab, c] =
b-1[a, c]b[b, c], the equality [ n - lgn , h ] = 1, and [ N, G] ~ N, we have
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If G is factorizable, then

LEMMA 1.3: If G is a factorizable group of homeomorphisms of the space X,
and 611 is aG-invariant covering of X by open sets, ( i. e., G6l1c U,) then
[G, G] = 03A0V~U[G(V), G(V)].

PROOF: By definition, if G is factorizable, then G = 03A0V~UG(V) for any
covering U of X. The lemma now follows from an induction using the
formula [ab, c] = b-1[a, c]b[b, c].

The following Corollary will lead to the proof of Theorem 1.1.

COROLLARY 1.4: Suppose G is a factorizable group of homeomorphisms. If
N c G has no fixed point, then IIN = [G, G]. If in addition N a G, then
[G, G]N.

PROOF: This is because 0DN is a G-invariant covering of X, since N moves
each point of X. The second statement now follows from 1.2 and 1.3.

By taking N = [[G, G], [G, G]] in Corollary 1.4, and since [[G, G],
[G, G]] has no fixed point as we shall prove later in 1.7, one sees that
[G, G] ~ [[G, G], [G, G]], i.e., [G, G] is perfect. This shows that Theorem
1.1 is true. But we will prove that [G, G] is the " least" such group in 1.7
and 1.8, a harder fact that yields the Epstein’s simplicity theorem.

The next lemma will eliminate some technicalities for commutators of

homeomorphisms on paracompact spaces. 

LEMMA 1.5: Suppose X is a paracompact space and V is a cover of X. Then
we can find a refinement % of V such that any two intersecting members of
6l1lie in a single member of V.

PROOF: Since X is paracompact, we may assume that V is locally finite.
Thus, a point x E X has an open neighborhood Wx which intersects only
finitely many members of V, namely, Vx1,..., and Vnx. The refinement 611
asked for in the lemma will come from shrinking the neighborhoods Wx,
and this in turn comes from shrinking the neighborhoods V1x,..., Vnx.

Since a paracompact space is normal, there is a refinement £ = {Ql| i
OE I ) of V= {Vl|i ~ I} such that Qi c v for all i E I. Moreover, normal-
ity furnishes a function f : X ~ [0, 1 for each i E I such that fl|-iQ = 1 and
fi 1 x - vi = 0. Let f l, ... , fn be the functions associated with the neighbor-
hoods Vx1,..., Vxn. Let Vjx(r) = f-1j(r, 1 ] for j = 1,..., n and r E (0, 1).
The neighborhoods V1x(r),..., Vnx(r) will yield the appropriate shrinking
of Wx.

Suppose r~fj(x) for each j = 1,...,n._Then x lies either in the
interior of vx ( r ) or is in the complement of Vix(r). Arrange the indices so
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that V1x(r),..., Vmx(r) contain x, while Vm+1x(r),..., Vnx(r) do not. Thus,
Vx = ~ ml=1Vlx(r) - ~ nl=m+1Vlx(r) is an open set containing x. Consider
U = {Ux|Ux = Wx r1 Vx, x ~ X}, we claim this has the property described
by the lemma.

In fact, let Ux and U y be two intersecting members of U. By the
foregoing construction, we have Ux~Vx=~mi=1Vlx(r) - ~nl=m+1Vlx(r)
and Uy c 1g c n pl=1Vly(t) for some p and t. It suffices to prove the claim
for t  r. Since Ux ~ Uy~Ø, so Ux ~ Vly(t)~Ø, hence Ux ~ Vly ~ 0. Now,
U, = Wx n Vx implies Wx ~ Vly~Ø. But Wx intersects exactly n members
in V, namely, hx’, ... , Vxn, which shows that Vly = Vjx for some j E {1,...,
n}. Therefore, Ux ~ Vjx(t) = Ux ~ Vly(t)~Ø. This together with the inclu-
sions Vjx(t)~Vjx(r) and Ux ~ ~ mi=1Vix(r) - ~ni=m+1Vlx(r) leads to the
conclusion Ux c Vjx(r) = Vjy(r) ~ Vly. Consequently, both Ux and Uy lie in
Vly, a member of V. This complètes the proof.
We will alter BN and BN slightly, the altered sets will be useful as

G-invariant coverings of X. Let eN be {U|nU~ U = Ø, some n c N, U
open}, so that GCN = 6J)N and [G, G]CN = BN. If X is paracompact, we
can find a refinement Q of eN by 1.5 so that the union of any two

intersecting members of GD lies in a member of CN. Alter 6jàN and BN by
letting BN = GQ and 6j), = [G, G]D. This does not change 1.2 through
1.4.

LEMMA 1.6: Suppose X is a paracompact space and N a G is a group of
homeomorphisms of X without fixed point. If G is factorizable, then

0D N = BN. In particular, il N a G.

PROOF: Suppose V ~ 0D.N, by the factorizability of G, there are elements
g 1, ... , gn ~ G and D 1, ... , Dn ~ D (a cover since N has no fixed point)
such that V = gn...g1U for some U~D, and supp g, c D, for each
i = 1,..., n. By the definition of Q either supp gi U U c W E C. or else
U c X - supp gl . In the first case niWl ~ W = Ø for some ni ~ N; this
means niU ~ X - supp gl .

Let U = g,... g1U, we claim there is some hl ~ g such that hlUi-1 1 c X
- 

supp gi. In fact, simply let h = ni(gi-1... g1)-1 1 or (gl - 1... g1)-1.
Consequently, [g-11, h1]|U = g1h-11h1|U = g1h-11h1|U = g1|U, so that

[g-1n, hn]...[g-1l, hl]...[g-11,h1]U=gn...g1U=V. Hence, BN = BN. Fi-
nally, since BN = BN is G-invariant and gG(V)g-1 = G(gV), 03A0N is a
normal subgroup of G.

Since IIN is a normal subgroup, we can apply 1.2 to this subgroup.
Theorem 1.1 now follows from the following.

THEOREM 1.7 : Suppose X is a paracompact space and G is a factorizable
group of homeomorphisms of X. If N is a subgroup of G normalized by
[G, G ] and without fixed point, then [ G, G ] c N.

PROOF : We may define B(03A0N) and 1-I - If N moves each point of X, so
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does 1-IN. Assuming this, we see B(03A0N) is a G-invariant covering for X.
Thus, [G, G] = 1-1 (-N) by 1.4. Moreover, since by 1.6, 03A0N a G, and N is
normalized by [G, G], 1.2 yields

It remains to show that IIN moves each point of X. The following will
suffice: at each point x of X, there is a neighborhood V~BN such that
[[G(V), G(V)], [G(V), G(V)]]x~x. Let us define V. Since N moves
each point, there is a neighborhood of x satisfying nV~ V = Ø for
some n E N. As an application of the factorizations in G, observe that by
letting V be the only open neighborhood containing x in a covering of X,
we see that there exists some hV~G(V) such that hVx ~ x. Thus, for
some neighborhood W of x in V, hVW~ W = Ø. Again, there is some
homeomorphism hW~ G ( W ) and an open neighborhood U of x in W
such that hWU~ U = Ø, yielding some hU~G(U) satisfying hUx~x.
Clearly,

This completes the proof.

PROOF of 1.1: Clearly [[G, G], [G, G]] is a normal subgroup of G.

Moreover, [[G, G], [G, G]] moves each point of X as we saw in the last
part of the proof of 1.7. Thus, 1.7 completes the proof.
We actually proved a stronger theorem in 1.7. This is similar to

Epstein’s theorem that under additional hypotheses, [G, G] is the least
subgroup of G normalized by [G, G].

THEOREM 1.8: Suppose X is a paracompact space and G is a factorizable
group of homeomorphisms of X. If G has no fixed point, then [G, G] is the
least subgroup of G, normalized by [G, G], which acts without any fixed
point.

Theorem 1.8 is the main result of this paper and represents much

improvement from Theorem 1.1. In fact, we saw in the remarks after
Corollary 1.4 how 1.1 easily follows from the very simple 1.2 and 1.3. As
a corollary of 1.8, we obtain a slightly improved form of Epstein’s
theorem [4].

THEOREM 1.9: Suppose X is a paracompact space with a basis of open
neighborhoods B. If G is a group of homeomorphisms of X that satisfies the
following two axioms:
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AXIOM 1: G acts transitively inclusively on 0D, i.e., given U, V E 0D, there is
some g E G such that gU c V;
AXIOM 2: G is factorizable for each covering U of X, where U c B. Then
[G, G], the commutator subgroup of G, is simple.

PROOF: It suffices to show that each subgroup N of G normalized by
[G, G ] has no fixed point provided that N ~ 1. Theorem 1.8 then com-
pletes the proof. To prove the above, we claim that for each U E 0D,
GU = [G, G]U. This follows from the proof of 1.6 because Axiom 1

implies the following statement in 1.6 is valid: there is some h, OE G such
that hlUi-1 c X - supp g,, in the notations of the proof of 1.6, so the
claim is true. Since N ~ 1, there is a neighborhood V ~ B such that
nV~ V = 0 for some n ~ N. By Axiom 1 and the equality GU = [ G, G]U,
each point x E X has a basis neighborhood W E 0D such that W c gh for
some g E [G, G ]. Therefore, gng-1(W) ~ W c gng-1(gV) ~ (gV) = g(nV
~ V) = Ø or Nx ~ x since gng-1 ~ N.

REMARK 1.10: The above theorem is better than Epstein’s theorem in
several ways. Firstly, we do not require as Epstein chose to: G0D c 0D (his
Axiom 1). Secondly, we do not require GB = B (his Axiom 2). In fact,
one does not know if G0D = 6JJ for X a topological 4-manifold and 0D the
collection of 4-balls, depending on the status of the annulus conjecture.
Lastly, our factorization axiom is simpler than Epstein’s, which has an
additional inequality attached, we quote [4]: "Let g E G, U~B and
U~B be a covering of X. Then there exists an integer n, elements

g1,...,gn~G and V1,..., Vn~B such that g = gngn-1...g1, supp gl ~ Vl
and supp g, U (gl-1 ... g1U) ~ X for 1  i  n."

2. The examples

We will first mention the known (and well-known) examples and then the
new examples. The first seven are examples for Epstein’s theorem [4] (cf.
also Theorem 1.9). All the manifolds in this section will be either closed
or open, and connected.

EXAMPLE 2.1: Let Xn be a differentiable manifold, 0D the collection of Cr
embedded n-balls, and G = Diffrc0(X), the group of Cr diffeomorphisms
of X compactly Cr isotopic to the identity (i.e., the isotopy has compact
support). The axioms of 1.8 are satisfied by the triple (G, X, 0D) [4].
Moreover, Diffrc0(X) is perfect by the result of Thurston [ 15] for r = 00
and Mather [ 11,12] for r~n+1. Therefore, Diffrc0(X) is simple for
r ~ n + 1.

EXAMPLE 2.2: Let Xn be a piecewise linear manifold, 0D the collection of
PL n-balls in X, and G = PLc0(X) defined just as in 2.1. Again, Theorem
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1.9 (cf. [7] for factorizations in G) implies PLco(X) has a simple
commutator subgroup. However, it is still unknown whether PLco(X) is
perfect, except when X = R or S’ [4]. 

EXAMPLE 2.3: Just as in 2.1 and 2.2, by 1.9 Topc0(X), the group of
homeomorphisms of a topological manifold X compactly isotopic to the
identity, has a simple commutator subgroup. In fact, Topc0(X) is

factorizable via the isotopy extension theorem [3], and an old result of
FIsher [6] asserts that Topc0(X) is simple.

EXAMPLE 2.4: Let X n be a smooth manifold of dimension greater then 2

equipped with a volume form w, i.e., w = d x ̂... A dxn locally. Con-
sider the group Diffc0(X, w ), of compactly supported volume preserving
diffeomorphisms of X isotopic to the identity through such diffeomor-
phisms. One can define the Calabi-Thurston-Weinstein homomorphism
V : Diffc0(X, 03C9) ~ Hn-1c(X, R)/0393 [16]. Then Thurston [16] showed that
ker V = [Diffc0(X, 03C9), Diffc0(X, 03C9)] is a perfect factorizable group if X
is closed. Therefore, by Theorem 1.8, the commutator subgroup of

Diffc0(X, w ) is simple. Diffc0(R ", 03C9) is also known to be simple if n &#x3E; 2,
and not simple if n = 2.

EXAMPLE 2.5: Let X2" be a smooth manifold of dimensional greater than
2 equipped with a symplectic f orm w, i.e., w = dxj A dx2 + ... + d X 2 n - 1
A dx2n locally. Consider the group Diffc0(X, 03C9), of compactly sup-
ported diffeomorphisms preserving w and isotopic to the identity through
such diffeomorphisms. One may again define the Calabi-Thurston-Wein-
stein homomorphism S: Diffc0(X, 03C9)~H1c(X, R)/0393 [1]. Then Banyaga
[ 1 ] showed for X closed, Ker S = [Diffc0(X, 03C9), Diffc0(X, 03C9)] is a perfect
factorizable group, so by 1.8, this commutator subgroup is a simple
group. If X is open, then Ker ( S ) is not always simple. Instead, the kernel
of the homomorphism R : Ker (S) ~ R /A, defined in [1], is simple.

EXAMPLE 2.6: Let X2n+1 be a smooth manifold, n à 1, equipped with a
contact form w, i.e., w = x1dx2 + ... + X2n-ldx2n + dx2n+1 locally. The
group Diffc0(X, 03C9), of compactly supported contact diffeomorphisms of
X preserving w up to a positive function and isotopic to the identity
through such diffeomorphisms, is factorizable because of a contact

isotopy extension theorem [10,2]. Since Axiom 1 of 1.9 is easily seen to be
true, Diffc0(X, w ) has a simple commutator subgroup [2]. It is not known
if Diffc0(X, w) is simple.

EXAMPLE 2.7: Let X be a compact manifold, m is a probability measure
without atom whose support is the whose manifold. The group of

homeomorphisms of X preserving m is locally contractible [5]. Thus, its
identity component is factorizable. Moreover, if dim X  3, the commu-
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tator subgroup of the identity component is simple (by 1.9), and its

abelianization is isomorphic to a quotient of H1(X, R) by a discrete
subgroup.
. The next six examples satisfy the hypotheses of Theorems 1.1 and 1.8,
but not Epstein’s axioms (as in 1.9). The conclusions of 1.8 are omitted
here.

EXAMPLE 2.8: Let X be a differentiable manifold with a foliation F and

Diffrc0(X, F), the group of leaf preserving C’ diffeomorphisms of X and
compactly Cr isotopic to the identity through such diffeomorphisms.
Then clearly Diffrc0(X, F) has no fixed point. It is also factorizable

(Lemma 2.8), so the perfectness of [Diffrc0(X, F), Diffrc0(X, F)] follows.

LEMMA 2.8: Given a covering U of X by open sets and f E Diffrc0(X, F) in
a small neighborhood N of the identity, then for N sufficiently small, there
are f l, ... , fn E Diffco (X, F) and U1,..., Un E U such that f = fn... f 1, supp
fl c U for each i = 1,..., n, and Í E NI for each i = 1, :.., n, where NI is a
preassigned neighborhood of the identity in Diffrc0(X, F).

PROOF: The proof is entirely analogous to the smooth case without a
foliation (cf. [14, 3.1]). For the sake of completeness, we include it here.
Let H : X I~X be a leaf preserving C r isotopy * such that Hl = f and
Ho = identity. Let Ul, ... , Un E U be a cover of the compact set ~t~I
supp H,, and {~i|i = 1,...,n} a partition of unity subordinate to the
cover {Ui|i = 1,..., n}. Define h t : X ~ X I by h1(x)=(x, ~l(x)), let

gl = H(hl + ... + hl) for i = 1,..., n, and go = identity. Then for f suffi-
ciently small, H can be very near the projection 03C0X: X X I ~ X, so that
gl E Diffrc0(X, F). Let fi = gig-1l-1 for each i = 1,..., n, then supp fl c Ul.
Therefore, fn...f1=(gng-1n-1)...(g2g-11)(g1g-10)=gn=H(hn+...+h1)
= Hl = f. Moreover, by assuming f small enough, fl can be made as small
as possible.

EXAMPLE 2.9: Let ff : X ~ B be a Cr fiber bundle and Diffrc0(X, 03C0), the
group of fiber preserving C" diffeomorphisms compactly fiber preserving
C r isotopic to the identity. This group acts without a fixed point.
Moreover, Lemma 2.8 adapts trivially to this case and shows Diffrc0(X, ’7T)
is factorizable. Therefore, Theorem 1.1 concludes [Diffrc0(X, 03C0),
Diffrc0(X, 7r)] is perfect.

EXAMPLE 2.10: As a generalization of 2.9, we can consider a C r map
between differentiable manifolds f : X - Y and Diffrc0( X, f ), the group
of cr diffeomorphisms that preserve inverses of points and compact C r

* We assume H is actually Cr, which is equivalent to the non-C’’ definition of an isotopy as
a path in Diff;o(X, F) with respect to the fine Cr topology.
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isotopic to the identity through such diffeomorphisms. Lemma 2.8 again
adapts trivially to this case and shows Diff " (X, f ) is factorizable. If

G = Diffrc0(X, f ) acts without any fixed point, then [G, G] is perfect by
1.1. We note that if f-’y is a single point for some y~y, then clearly G
has a fixed point f - ly.

EXAMPLE 2.11: Let X be a C’ manifold and Y a closed submanifold,
dim Y &#x3E; 0. Consider Diffrc0(X, Y) the group of compactly supported C r
diffeomorphisms preserving Y setwise and C’ isotopic to the identity
through such diffeomorphisms. Again, as in 2.8 and 2.9, Lemma 2.8
adapts to show Diffrc0(X, Y) is factorizable, so 1.1 shows Diffrc0(X, Y)
has a perfect commutator subgroup. Note that if Y is 0-dimensional or
immersed, Diffrc0(X, Y) may fix a point.

EXAMPLE 2.12: Let X be a C’ manifold and 5 a Cr stratification with
closed strata of dimension greater than zero for X. Consider Diffrc0(X, S)
the group of compactly supported strata preserving C’ diffeomorphisms
isotopic to the identity through such diffeomorphisms. Again, as in 2.11,
Lemma 2.8 and Theorem 1.1 apply to yield the perfectness of

[Diffrc0(X, S), Diffrc0(X, S)]. Note that if S has a 0-dimensional strata,
then Diffrc0(X, S) may fix a point.

EXAMPLE 2.13: The above examples may be combined. For example,
consider the groups of diffeomorphisms preserving both a foliation and a
differential form, or both a fiber bundle and a differential form, etc.

Then an isotopy extension theorem, where the appropriate structures are
preserved, will prove the identity components to be factorizable. The rest
follows immediately.

EXAMPLE 2.14: There is a simple example where a group leaves one point
fixed and thereby both the group and its commutator subgroup fail to be
perfect. Consider Diffrc0(Xn, x) = {h E Diffrc0(Xn)|x = hx}, where

Diffrc0(Xn) was defined in 2.1 and x ~ X. Taking the differential at x
gives a homomorphism d : Diffrc0(Xn, x) ~ GLn(R). This is actually onto
by a classical result of Palais [13]. Hence, the fact that GLn((R) and
[GLn(R), GLn(R)] are nonperfect for n large implies the same for

Diffrc0(Xn, x).
Lastly, we remark that for manifolds, a factorizable group is always

compactly supported. Therefore, a group of noncompactly supported
homeomorphisms calls for different techniques [9].
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