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FACTORIZABLE GROUPS OF HOMEOMORPHISMS

Wensor Ling
0. Introduction

Factorizable groups of homeomorphisms first arose when Hirsch consid-
ered Diff{( X), the group of C” diffeomorphisms of a closed differentia-
ble manifold X, C” isotopic to the identity [14]. It turns out that the
identity components in the groups of automorphisms of most geometric
structures on closed manifolds are factorizable (cf. [3,7,16,1,2,5]). Epstein
[4] showed generally that if G is a factorizable group of homeomorphisms
of a paracompact space X which acts transitively on a basis of open
neighborhoods of X, then [G, G], the commutator subgroup of G, is
simple. This has proved to be a most fruitful beginning in the under-
standing of various groups of diffeomorphisms, leading to the deep
results of Thurston [15] and Mather [11,12], namely Diff[( X) is simple
for X a connected closed manifold and 1 <r< + o0, r=dim X+ 1. In
this paper, we give a more complete characterization of the factorizable
groups. Our results assert that if G is a factorizable group of homeomor-
phisms of X without any fixed point, then [G, G], the commutator
subgroup of G, is perfect, i.e., is its own commutator subgroup. In fact,
[G, G] is the least subgroup in some sense even if it is not simple (cf.
Theorem 1.8). If G has a fixed point, both G and [G, G] can be not
perfect. As a corollary of this, we obtain a somewhat improved form of
Epstein’s simplicity theorem [4].

There are many groups of homeomorphisms that satisfy our assump-
tions without satisfying Epstein’s assumptions. Some examples are the
group of compactly supported diffeomorphisms preserving the leaves of a
foliation and isotopic to the identity through such diffeomorphisms; the
group of compactly supported diffeomorphisms preserving the fibers of a
fiber bundle isotopic to the identity through such diffeomorphisms; and
similarly for diffeomorphisms preserving a submanifold of dimension
greater than 0, or strata preserving diffeomorphisms of a stratafication
without any O-dimensional strata. Therefore, these groups have perfect
commutator subgroups. However, we will not consider in this paper the
interesting problem: are these groups perfect themselves? My original
motivation in examining the commutator subgroups came from the
following theorem [8]: the commutator subgroups classify the manifolds
up to diffeomorphisms preserving the appropriate structures, e.g., each
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isomorphism 7: Diff/j( X) = Diff/,(Y) determines a C” diffeomorphism
h: X - Y, and Diff/,( X) is its own commutator subgroup for » # dim Y
+ 1. In fact, 7(f)=hfh ™' for each f <€ Diff/;( X). Lastly, the results of
this paper have generalizations to groups of noncompactly supported
homeomorphisms [9].

1. The theorem

DEfINITION: The support of a homeomorphism A4 of X, denoted by
supp h, is the closure of {x € X| x = hx).

DEFINITION: A group of homeomorphisms G of a space X is factorizable
if given g € G, then for each covering A of X by open sets, there exists
elements g,...,8,€G and U,,..., U, € such that g=g,...g, and
supp g, C U, foreachi=1,...,n.

THEOREM 1.1: Suppose X is a paracompact space and G is a factorizable
group of homeomorphisms of X. If G has no fixed point then [G, G, the
commutator subgroup of G, is perfect.

The proof consists of several propositions and lemmas. Suppose N is a
subgroup of G, we write N < G if N is a normal subgroup of G. Let
By ={gU|nUN U= for some n€ N, UC X open, g < G}, and P, =
{gU|nUN U= for some n€ N, UC X open, g €[G, G]). Write G(U)
for (g€ G|supp gC U). Let Iy =Il,cq, [G(V), G(V)], the subgroup
of G generated by [G(V'), G(V)], and similarly

I, = Vl% [le(v).¢(M)]. [¢(V), G(V)]].

The following proposition shows what happens if we assume no extra
property on G. Write [a, b] for a~'b~ 'ab.

PROPOSITION 1.2: If N < G, then 11, < N. If N is normalized by [G, G],
i.e., gNg~' C N for each g €[G, G), then T1,,C N.

PrOOF: Since both statements are alike, we proved only the first. It
suffices to show that [G(U), G(U)]C N for any U satisfying UNn nU=0
for some n € N. In fact, if g, h€ G(U), then supp n~'g"'nNsupp h C
n~'UNU=40,ie.,[n 'gn, h]= 1. Therefore, using the formula [ab, c]=

b~ '[a, c]b[b, c], the equality [n~'gn, h]=1, and [N, G]C N, we have

[g.h]=[n""g 'ng,h]=[[n,g],h] €N.
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If G is factorizable, then

LEMMA 1.3: If G is a factorizable group of homeomorphisms of the space X,
and O is a G-invariant covering of X by open sets, (i.e., GAU CAL,) then
[G, G]=11,cqlG(V), G(V)]

PrROOF: By definition, if G is factorizable, then G =T1,.4G(V) for any
covering QU of X. The lemma now follows from an induction using the
formula [ab, c]= b~ '[a, c]b[b, c].

The following Corollary will lead to the proof of Theorem 1.1.

COROLLARY 1.4: Suppose G is a factorizable group of homeomorphisms. If
N C G has no fixed point, then 11, =[G, G]. If in addition N < G, then
[G, G]< N.

ProOOF: This is because % is a G-invariant covering of X, since N moves
each point of X. The second statement now follows from 1.2 and 1.3.

By taking N =[[G, G], [G, G]] in Corollary 1.4, and since [[G, G],
[G, G]] has no fixed point as we shall prove later in 1.7, one sees that
[G, G]C][G, G], [G, G]), i.e., [G, G] is perfect. This shows that Theorem
1.1 is true. But we will prove that [G, G] is the “least” such group in 1.7
and 1.8, a harder fact that yields the Epstein’s simplicity theorem.

The next lemma will eliminate some technicalities for commutators of
homeomorphisms on paracompact spaces.

LEMMA 1.5: Suppose X is a paracompact space and V'is a cover of X. Then
we can find a refinement QU of V such that any two intersecting members of
QU lie in a single member of V.

PROOF: Since X is paracompact, we may assume that Vis locally finite.
Thus, a point x € X has an open neighborhood W, which intersects only
finitely many members of Y, namely, V,..., and V;". The refinement QL
asked for in the lemma will come from shrinking the neighborhoods W,
and this in turn comes from shrinking the neighborhoods V,..., V.

Since a paracompact space is normal, there is a refinement 2 = {Q’|i
€ I) of V={(V"'|i €I) such that Q' c V' for all i € I. Moreover, normal-
ity furnishes a function f;: X — [0, 1] for each i € I such that f,|5i = 1 and
filx—vi=0. Let f,,...,f, be the functions associated with the neighbor-
hoods V,..., V. Let V/(r)=f"'(r, 1] for j=1,...,n and re (0, 1).
The neighborhoods V!(r),..., V."(r) will yield the appropriate shrinking
of W..

Suppose r=f(x) for each j=1,...,n. Then x lies either in the
interior of V/(r) or is in the complement of V/(r). Arrange the indices so
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that V)(r),..., V/"(r) contain x, while ¥"*'(r),..., V;"(r) do not. Thus,
V.=N™ Vi(r)y— U™, ., V!(r)is an open set containing x. Consider
U={(U|U,=W.NV, x € X), we claim this has the property described
by the lemma.

In fact, let U, and U, be two intersecting members of U By the

foregoing construction, we have U, C V.= N" Vi(r)— U™, . V(r)
and U,c V,c N’_V/(¢) for some p and ¢. It suffices to prove the claim
fort>r Smce U NU,*0,s0 U NV/(t)=0, hence U NV, = 0. Now,
U=wnV, implies W NV = {Z) But W._ intersects exactly n members
in V, namely, V!,..., V", Wthh shows that V! = V! for some j €{1,.
n}. Therefore, U ﬂ Viy=UnV)(t)=0. ThlS together with the 1nclu-
sions V/(t)C V/(r) and U,Cc N7 Vi(r)—U"_, . Vi(r) leads to the
conclusion U, C V/(r)=VJ(r)c V’ Consequently, both U, and U, lie in
V,, a member of V. This completes the proof. ’

We will alter %, and QBN slightly, the altered sets will be useful as
G-invariant coverings of X. Let €, be (U | nUNU=0, some n€N, U
open), so that GGy =B, and [G, G]@ . If X is paracompact, we
can find a refinement GD of @y by 1.5 so that the union of any two
intersecting members of D lies in a member of C,. Alter B, and B, by
letting B, = GD and B, =[G, G]9. This does not change 1.2 through
1.4.

LeEMMA 1.6: Suppose X is a paracompact space and N < G is a group of
homeomorphisms of X without fixed point. If G is factorizable, then
By =RBy. In particular, I1, < G.

PROOF: Suppose V € B, by the factorizability of G, there are elements
81---,8,€G and D,,...,D, €9 (a cover since N has no fixed point)
such that V=g, ..gU for some U, and supp g, C D, for each
i=1,...,n. By the definition of % either supp g; U UC W, €, or else
Uc X—supp g,. In the first case n,W,N W,=( for some n; € N; this
means n,U C X — supp g,.

Let U = g,...gU, we claim there is some s, € § such that h,U_, C X
—supp g;. In fact, simply let h,=n,(g,_,...g) "' or (g_;...g) "
Consequently, [g;", h\]ly = gihi ‘g1 'hily = g1h1 "hilu = &ilus so that
(g, ' h,)...1g " h,]...[87 ' h]U=g,...gU=V. Hence, B = B. Fi-
nally, since $, =P, is G-invariant and gG(V)g ' =G(gV), Il is a
normal subgroup of G.

Since IT,, is a normal subgroup, we can apply 1.2 to this subgroup.
Theorem 1.1 now follows from the following.

THEOREM 1.7: Suppose X is a paracompact space and G is a factorizable
group of homeomorphisms of X. If N is a subgroup of G normalized by
[G, G] and without fixed point, then [G, G]C N.

PROOF: We may define %(ﬁN) and Il 57 ). If N moves each point of X, so



[51 Factorizable groups of homeomorphisms 45

does TI,. Assuming this, we see B i, is a G-invariant covering for X.
Thus, [G, G]=1I 5, by 1.4. Moreover, since by 1.6, IT, < G, and N is
normalized by [G, G], 1.2 yields

[G,G]=T,cIlyCcN.

It remains to show that I, moves each point of X. The following will
suffice: at each point x of X, there is a neighborhood V € %, such that
[[GV), GV)], [G(V), G(V)]]x = x. Let us define V. Since N moves
each point, there is a neighborhood V of x satisfying nV N V=0 for
some n € N. As an application of the factorizations in G, observe that by
letting V" be the only open neighborhood containing x in a covering of X,
we see that there exists some h, € G(V) such that i, x = x. Thus, for
some neighborhood W of x in V, h, WN W =0. Again, there is some
homeomorphism 4, € G(W) and an open neighborhood U of x in W
such that A, UN U=, yielding some h, € G(U) satisfying h x = x.
Clearly,

[[hV’ hwl, [hy, hU]]x = [hl-/lhﬁ/lhvhw, hl_/lhl_thVhU]x
=[hy, hylx=hyx=*x.
This completes the proof.

PrOOF of 1.1: Clearly [[G, G], [G, G]] is a normal subgroup of G.
Moreover, [[G, G], [G, G]] moves each point of X as we saw in the last
part of the proof of 1.7. Thus, 1.7 completes the proof.

We actually proved a stronger theorem in 1.7. This is similar to
Epstein’s theorem that under additional hypotheses, [G, G] is the least
subgroup of G normalized by [G, G].

THEOREM 1.8: Suppose X is a paracompact space and G is a factorizable
group of homeomorphisms of X. If G has no fixed point, then [G, G] is the
least subgroup of G, normalized by [G, G, which acts without any fixed
point.

Theorem 1.8 is the main result of this paper and represents much
improvement from Theorem 1.1. In fact, we saw in the remarks after
Corollary 1.4 how 1.1 easily follows from the very simple 1.2 and 1.3. As
a corollary of 1.8, we obtain a slightly improved form of Epstein’s
theorem [4].

THEOREM 1.9: Suppose X is a paracompact space with a basis of open
neighborhoods B. If G is a group of homeomorphisms of X that satisfies the
following two axioms:
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AXIOM 1: G acts transitively inclusively on B, i.e., given U, V € B, there is
some g € G such that gUC V;

AXIOM 2: G is factorizable for each covering QU of X, where U C B. Then
[G, G], the commutator subgroup of G, is simple.

PrOOF: It suffices to show that each subgroup N of G normalized by
[G, G] has no fixed point provided that N = 1. Theorem 1.8 then com-
pletes the proof. To prove the above, we claim that for each U € %,
GU =[G, G]U. This follows from the proof of 1.6 because Axiom 1
implies the following statement in 1.6 is valid: there is some /4, € G such
that h,U,_, C X — supp g,, in the notations of the proof of 1.6, so the
claim is true. Since N =1, there is a neighborhood V€ ® such that
nV N V=0 for some n € N. By Axiom 1 and the equality GU =[G, G]U,
each point x € X has a basis neighborhood W € % such that W C gV for
some g € [G, G]. Therefore, gng™'(W)N W c gng™'(gV)N(gV)=g(nV
N V)=0, or Nx = x since gng~' € N.

ReMARK 1.10: The above theorem is better than Epstein’s theorem in
several ways. Firstly, we do not require as Epstein chose to: GH < % (his
Axiom 1). Secondly, we do not require G = % (his Axiom 2). In fact,
one does not know if GB =P for X a topological 4-manifold and B the
collection of 4-balls, depending on the status of the annulus conjecture.
Lastly, our factorization axiom is simpler than Epstein’s, which has an
additional inequality attached, we quote [4]: “Let g€ G, U D and
A% be a covering of X. Then there exists an integer n, elements
8158, €Gand Vy,...,V, €D such that g=g,8,_,... 8, supp 8§, CV,
and supp g,V (g,_,...gU)= X for 1 <i<n”

2. The examples

We will first mention the known (and well-known) examples and then the
new examples. The first seven are examples for Epstein’s theorem [4] (cf.
also Theorem 1.9). All the manifolds in this section will be either closed
or open, and connected.

ExXAMPLE 2.1: Let X" be a differentiable manifold, % the collection of C*
embedded n-balls, and G = Diff/ ( X), the group of C” diffeomorphisms
of X compactly C” isotopic to the identity (i.e., the isotopy has compact
support). The axioms of 1.8 are satisfied by the triple (G, X, %) [4].
Moreover, Diff[,( X) is perfect by the result of Thurston [15] for r = oo
and Mather [11,12] for r=n+ 1. Therefore, Diff/,(X) is simple for
r+n+1.

EXAMPLE 2.2: Let X" be a piecewise linear manifold, ® the collection of
PL n-balls in X, and G = PL_4( X ) defined just as in 2.1. Again, Theorem
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1.9 (cf. [7] for factorizations in G) implies PL_.,(X) has a simple
commutator subgroup. However, it is still unknown whether PL_,( X) is
perfect, except when X =R or S' [4].

ExAaMPLE 2.3: Just as in 2.1 and 2.2, by 1.9 Top,,(X), the group of
homeomorphisms of a topological manifold X compactly isotopic to the
identity, has a simple commutator subgroup. In fact, Top.,(X) is
factorizable via the isotopy extension theorem [3], and an old result of
Flsher [6] asserts that Top,,( X) is simple.

EXAMPLE 2.4: Let X" be a smooth manifold of dimension greater then 2
equipped with a volume form w, i.e, w=dx; A ... A dx, locally. Con-
sider the group Diff ,( X, w), of compactly supported volume preserving
diffeomorphisms of X isotopic to the identity through such diffeomor-
phisms. One can define the Calabi-Thurston-Weinstein homomorphism
V: Diff (X, w) > H" '(X, R)/T [16]. Then Thurston [16] showed that
ker V = [Diff (X, w), Diff ,( X, w)] is a perfect factorizable group if X
is closed. Therefore, by Theorem 1.8, the commutator subgroup of
Diff (X, w) is simple. Diff ,(R", w) is also known to be simple if n > 2,
and not simple if n = 2.

EXAMPLE 2.5: Let X" be a smooth manifold of dimensional greater than
2 equipped with a symplectic form w, ie, w =dx, Adx,+ ... +dx,,_,
A dx,, locally. Consider the group Diff (X, w), of compactly sup-
ported diffeomorphisms preserving w and isotopic to the identity through
such diffeomorphisms. One may again define the Calabi-Thurston-Wein-
stein homomorphism S: Diff ,( X, w) = H!( X, R)/T [1]. Then Banyaga
[1] showed for X closed, Ker S = [Diff (X, w), Diff (X, w)] is a perfect
factorizable group, so by 1.8, this commutator subgroup is a simple
group. If X is open, then Ker (.S) is not always simple. Instead, the kernel
of the homomorphism R: Ker (S)— R /A, defined in [1], is simple.

EXAMPLE 2.6: Let X?"*! be a smooth manifold, n > 1, equipped with a
contact form w, i.e., w=x,dx, +... + x,,_,dx,,+dx,,,, locally. The
group Diff (X, w), of compactly supported contact diffeomorphisms of
X preserving w up to a positive function and isotopic to the identity
through such diffeomorphisms, is factorizable because of a contact
isotopy extension theorem [10,2]. Since Axiom 1 of 1.9 is easily seen to be
true, Diff ,( X, w) has a simple commutator subgroup [2]. It is not known
if Diff_,( X, w) is simple.

ExAMPLE 2.7: Let X be a compact manifold, m is a probability measure
without atom whose support is the whose manifold. The group of
homeomorphisms of X preserving m is locally contractible [5]. Thus, its
identity component is factorizable. Moreover, if dim X > 3, the commu-
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tator subgroup of the identity component is simple (by 1.9), and its
abelianization is isomorphic to a quotient of H (X, R) by a discrete
subgroup.

* The next six examples satisfy the hypotheses of Theorems 1.1 and 1.8,
but not Epstein’s axioms (as in 1.9). The conclusions of 1.8 are omitted
here.

ExampLE 2.8: Let X be a differentiable manifold with a foliation F and
Diff/,( X, F), the group of leaf preserving C" diffeomorphisms of X and
compactly C” isotopic to the identity through such diffeomorphisms.
Then clearly Diff/,(X, F) has no fixed point. It is also factorizable
(Lemma 2.8), so the perfectness of [Diff/,( X, F), Diff},( X, F)] follows.

LEMMA 2.8: Given a covering A of X by open sets and f € Diff,(X, F) in
a small neighborhood N of the identity, then for N sufficiently small, there
are f\,...,f, € Diff,(X, F) and U,,..., U, € AU such that f={,...f,, supp
f,.C U foreachi=1,...,n,and f, € N, for each i=1,:..,n, where N, is a
preassigned neighborhood of the identity in Diff,( X, F).

PrOOF: The proof is entirely analogous to the smooth case without a
foliation (cf. [14, 3.1]). For the sake of completeness, we include it here.
Let H: X X I - X be a leaf preserving C” isotopy * such that H, = f and
H, = identity. Let U,,..., U,€Q be a cover of the compact set U,
supp H,, and {¢;|i=1,...,n}) a partition of unity subordinate to the
cover {U|i=1,...,n}. Define h;: X—> XX I by h,(x)=(x, ¢,(x)), let
g =H(h +...+h)) fori=1,...,n, and g, = identity. Then for f suffi-
ciently small, H can be very near the projection my: X X I — X, so that
g € Diff/,( X, F). Let f,=g,g,_, for each i=1,...,n, then supp f,C U.
Therefore, f,...fi=(8,8,"1).--(8:81 'N&8 =8, =H(h,+ ...+ h))
= H, = f. Moreover, by assuming f small enough, f, can be made as small
as possible.

ExaMPLE 2.9: Let #: X — B be a C” fiber bundle and Diff/,( X, «), the
group of fiber preserving C" diffeomorphisms compactly fiber preserving
C” isotopic to the identity. This group acts without a fixed point.
Moreover, Lemma 2.8 adapts trivially to this case and shows Diff,( X, «)
is factorizable. Therefore, Theorem 1.1 concludes [Diff/ (X, ),
Diff/,( X, m)] is perfect.

ExaMPLE 2.10: As a generalization of 2.9, we can consider a C" map
between differentiable manifolds f: X — Y and Diff,( X, f), the group
of C” diffeomorphisms that preserve inverses of points and compact C”

* We assume H is actually C”, which is equivalent to the non-C” definition of an isotopy as
a path in Diff/; (X, F) with respect to the fine C" topology.
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isotopic to the identity through such diffeomorphisms. Lemma 2.8 again
adapts trivially to this case and shows Diff/,( X, f) is factorizable. If
G = Diff’,( X, f) acts without any fixed point, then [G, G] is perfect by
1.1. We note that if /=y is a single point for some y € y, then clearly G
has a fixed point /™ 'y.

ExAMPLE 2.11: Let X be a C” manifold and Y a closed submanifold,
dim Y > 0. Consider Diff/,( X, Y) the group of compactly supported C”
diffeomorphisms preserving Y setwise and C” isotopic to the identity
through such diffeomorphisms. Again, as in 2.8 and 2.9, Lemma 2.8
adapts to show Diff/ (X, Y) is factorizable, so 1.1 shows Diff/ (X, Y)
has a perfect commutator subgroup. Note that if Y is 0-dimensional or
immersed, Diff/;( X, Y) may fix a point.

EXAMPLE 2.12: Let X be a C” manifold and & a C” stratification with
closed strata of dimension greater than zero for X. Consider Diff/,( X, &)
the group of compactly supported strata preserving C” diffeomorphisms
isotopic to the identity through such diffeomorphisms. Again, as in 2.11,
Lemma 2.8 and Theorem 1.1 apply to yield the perfectness of
[Diff’y( X, &), Diffy( X, $)]. Note that if S has a 0-dimensional strata,
then Diff/,( X, &) may fix a point.

ExaMPLE 2.13: The above examples may be combined. For example,
consider the groups of diffeomorphisms preserving both a foliation and a
differential form, or both a fiber bundle and a differential form, etc.
Then an isotopy extension theorem, where the appropriate structures are
preserved, will prove the identity components to be factorizable. The rest
follows immediately.

EXAMPLE 2.14: There is a simple example where a group leaves one point
fixed and thereby both the group and its commutator subgroup fail to be
perfect. Consider Diff/ (X", x) = {(h € Diff[;,(X")| x = hx), where
Diff/;(X") was defined in 2.1 and x € X. Taking the differential at x
gives a homomorphism d: Diff/,( X", x) = GL,(R). This is actually onto
by a classical result of Palais [13]. Hence, the fact that GL, (R) and
[GL,(R), GL,(R)] are nonperfect for n large implies the same for
Diff/,( X", x).

Lastly, we remark that for manifolds, a factorizable group is always
compactly supported. Therefore, a group of noncompactly supported
homeomorphisms calls for different techniques [9].
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