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Introduction

In 1926 Hecke [5] constructed a certain family of holomorphic 1-forms
on a modular curve which arise from grossencharacters of an imaginary
quadratic field K/Q . He then considered the periods of these 1-forms
and showed [6] that, via the Mellin transform, these periods can be
expressed as special values at CM-points of certain Eisenstein series of
weight 1. Thus, by the theory of complex multiplication, all such periods
are, up to a fixed transcendental factor, algebraic numbers lying in a
class field over K.

In the present paper we will apply a very general principle in the
theory of dual reductive pairs to obtain an extension of Hecke’s results to
arithmetic quotients of the complex n-ball. This principle is implicit in
Hecke’s original method and can be applied in many other cases.
We begin with a general picture.
Let W, ,&#x3E; be a vector space over a field k of characteristic 0, with a

non-degenerate alternating form; and let Sp( W ) be the symplectic group
of W,(,). Recall that a dual reductive pair (G, H) in Sp( W ) consists of a
pair of reductive subgroups G, H of Sp( W ) such that H is the centralizer
of G in Sp( W ) and G is the centralizer of H in Sp( W ).

DEFINITION: A see-saw dual reductive pair in Sp(W) is a pair of dual
reductive pairs (G, H), (G’, H’) in Sp( W ) such that G D H’ and G’ D H.
This terminology is suggested by the picture

Now suppose that k = Q and that the subgroups G, H, G’, and H’ are
Q-rational algebraic subgroups of Sp( W ), viewed as an algebraic group
over Q. In this situation the oscillator representation gives rise to a

* Partially supported by NSF Grants MCS-77-18723 A03 and MCS-78-02817 A01.
* * Sloan Fellow.
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correspondence between automorphic forms on the groups (G, H ) (resp.
( G’, H’)) in a dual reductive pair, or, more precisely, on certain coverings
of these groups ([4], [7], [9]). This correspondence can be described in
terms of integral kernels as follows:

Let Mp(W)(A) be the metaplectic group (two-fold cover of the adele
group Sp(W)(A)), and let (A), fi(A), 6"(A) and À’(A) be the inverse
images in Mp(W)(A) of the subgroups G(A), H(A), G’(A) and H’(A) of
Sp(W)(A). For any complete polarization (decomposition into maximal
isotropic subspaces)

let (R, L 2 (W" (A))) be the associated Schrôdinger model of the oscillator
representation of Mp(W)(A). The corresponding theta-distribution on
the Schwartz space £ (W"(A)) is given by

for f e 5 ( W’(A». Then for the dual reductive pair (G, H ) and for
1 E £ (W"(A») there is a theta-kernel

where (g, h ) E G(A) X H(A). Similarly for the dual reductive pair (G’,
H’) there is a theta-kernel

where (g’, h’) E (A) x ’(A). Note that these theta-kernels are just
restriction to (A) (A) (resp. ’(A) X Ê’(A» of the theta-function
0398(R(g)f) (or its conjugate) where g E p(W)(A). Now if 99 is a cusp
form on (A), we obtain an automorphic form  on Û (A)
by the " lifting" integral:

Similarly, if (p’ is a cusp form on ’(A), we obtain an automorphic form
f ) on ’(A) by the " lif ting" integral:
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Such lifting integrals have been considered by many people; the descrip-
tion here is based on [7].

The see-saw dual reductive pair {( G, H), (G’, H’)} gives rise to the
following fundamental adjointness formula:

where Res £(~’) (resp. Res (~)) denotes the restriction of (~’) (resp.
(~)) to (A) (resp. ’(A)). Explicitly:

While completely formal in nature, (*) seems to have a number of
important applications and actually gives rise to non-trivial, identities.

In this paper we will not work adelically, but rather will reformulate
( * ) in classical language. The particular see-saw pair of interest to us can
be constructed as follows:

Let K/Q be an imaginary quadratic field, let Q be the Galois automor-
phism, and let 8 E K x be such that 8 = - 03B403C3. We view K as a subfield of
C and assume that Im(03B4) &#x3E; 0. Let VJ,(,)J for j = 0, 1, be finite dimen-
sional K vector spaces with non-degenerate o-Hermitian forms. Let

and let

and

where RK/Q denotes restriction of scalars from to Q and Im03B4(03B1) =
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(203B4)-1(03B1 - 03B103C3). Then, composing the natural inclusions U(V0) X U(V,)
~ U(V) and U(V) ~ Sp( W ), we obtain a natural homomorphism

03C1: U(V0)  U(V1) ~ Sp(W)

where U(VJ) and Sp( W ) are the unitary and symplectic groups of these
spaces respectively. The image of p is a dual reductive pair in the sense of
Howe [9]. Next let

and

Suppose that U1 c W, is a maximal isotropic subspace with respect to
(’)1 such that U1 n 03B4U1 = (0). Then there are isomorphisms:

and

with

We again obtain a natural homomorphism

where O( Ul ) is the orthogonal group of U1,(,)1|U1. Again the image of p’
is a dual reductive pair. Finally we obtain the following commutative
diagram

where c and c’ are the natural inclusions. Thus we obtain a see-saw-dual
reductive pair {(Sp(W0), O(U1)), (U(V1), U(V0))} as defined above.
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Now suppose that the signature of the Hermitian spaces are

and

Then, extending scalars to R and choosing appropriate bases, we obtain
the commutative diagram:

or, more graphically:

As explained in Section 1 below, there is a corresponding diagram of
equivariant imbeddings of symmetric spaces:

where

and Dk is the Siegel space of genus k. Note that the embedding -’ will not
be holomorphic and that 03BA’(x) = (03C40, x) where 03C40 ~n is the isolated

fixed point of U(V0) ~ Sp( Wo ) = Sp(n, R).
We now describe, in classical language, the special case of ( * ) which

yields information about the arithmetic nature of the periods of a certain
class as holomorphic ( n, 0)-forms on D.

Suppose that f is a Siegel modular form on n(n+1) with respect to an
arithmetic subgroup Ù c Sp( W ), such that e*f determines a holomorphic
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( n , 0)-f orm

on D. Let

so that ~ determines a holomorphic ( n, 0)-form on the quotient 0393BD.
For each choice of Ul c W1 as above, let

and observe that K = 03BAU1 : B ~ D gives rise to a (possibly non-compact)
Lagrangian n-cycle

We then consider the period

which we assume to be finite. The "see-saw" pair structure yields the
following:

On the other hand, for arbitrary r Fz we define

and obtain the special case of the identity ( * ) :

which expresses the period as a special value of the function ~.
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Now it will turn out that, for a suitable choice of f - actually a
derivative of a reduced theta-function, see section 4 - the functions ~(03C4)
are holomorphic Siegel modular forms with Fourier coefficients in Kab,
the maximal abelian extension of K ! Therefore Shimura’s theorem about

special values of arithmetic Siegel modular functions at isolated fixed
points applies to the function p0(03C4)-1~(03C4) where p0(03C4) is any Siegel
modular form of the same weight as ~, with cyclotomic Fourier coeffi-
cients and such that p0(03C40) ~ 0. Thus we will find (Section 6, Theorem
6.4) that

that is, we obtain, via the "see-saw" pair, a rationality statement about
the periods 9(-q, UI, r ) of over a certain class of Lagrangian cycles. It
should be noted that, in this special case, the automorphic forms (P and T’
of the general discussion above are essentially trivial, at least at the
infinite place.
We now describe the contents of this paper in more detail. In Section

1 we give an intrinsic construction of the see-saw reductive pair described
above and of the corresponding equivariant embeddings of symmetric
spaces. In Section 2 we find explicit formulas for these embeddings and,
in Section 3, we determine the relations between the various automorphy
factors. In Section 4 we describe the pullbacks of certain derivatives of
reduced theta-functions and thus obtain a family of holomorphic (n,
0)-forms on D generalizing Hecke’s binary theta series of weight 2. Such
forms had previously been constructed by G. Anderson [1]. In Section 5
we use the results of [ 11 ] and [12] to prove that the periods of one of our
(n, 0)-forms is a special value at a CM-point of a holomorphic Siegel
modular form with Fourier coefficients in Kab. The main results here are
Theorem 5.4 and Corollary 5.6, which follow from the particular case of
( * ), given in Proposition 5.1. The key fact is that the function 0"( T; (P,

C1; r ) which occurs there is precisely the holomorphic Siegel modular for
considered in [ 12] and [ 13]. These Siegel modular forms are generaliza-
tions to SO(n, 1) of Hecke’s binary theta-functions associated to real
quadratic fields, and they are intimately connected with the results of
[10]. It should be noted that the constructions of Sections 4 and 5 depend
on the choice of an identification of the symmetric space for Sp( W ) with
the Siegel space of genus n ( n + 1) - in short, on the choice of polariza-
tion - and that this, in turn, depends on the choice of Lagrangian cycle.
In section 6 we show that the Kab-span of the holomorphic (n, 0)-forms
constructed in section 4 is actually independent of this choice, Corollary
6.3. This allows us to compare the periods of a fixed form over various
Lagrangian cycles and gives our main rationality result, Theorem 6.4.
Moreover, it follows that there is a natural Kab-vector space 6D(Kab) of
holomorphic ( n, 0)-forms associated to the dual pair (U(V0), U(V1)), and
independent of other choices. In Section 7 we compute the Fourier-Jacobi
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expansion of a form 11 E D(Ka b), and show that such an 11 is a cusp form,
Corollary 7.5. This implies, in particular, that the period of q of any
Lagrangian cycle, compact or not, is finite. We also show, Theorem 7.6,
that, up to a uniform transcendental factor all forms ~ ~ D(Kab) are
arithmetic in the sense of Shimura. Implicit in the proof of this result is
another use of the see-saw pair principle. Finally, in Section 8, we
observe that if 71 ~ D(Kab) ~ KabC is r-invariant for some F c SU(V1),
then it extends to a holomorphic ( n, 0)-form on a smooth compactifica-
tion 0393BD of 0393BD. We then shown, Theorem 8.1, that for any Lagrangian
cycle B c D associated to a choice of U0, U1 etc. as above, there exists a
r c SU(V1) and an q E D(C) such that

In particular every such B eventually becomes non-trivial in the homol-
ogy of 0393BD for sufficiently small r. This is analogous to a result of
Wallach [18].

In the case n = 1 and for hl,(,) 1 isotropic, the ~’s described above
coincide with Hecke’s family of holomorphic 1-forms. If we identify D
with the upper half-plane and take U1 so that 03BA(B) = iR +, then the
corresponding function e is a holomorphic Eisenstein series of weight 1.

Thus the see-saw pair gives, via (0.9), a structural explanation of the
otherwise mysterious connection between the periods of binary theta-
series of weight 2 and special values of Eisenstein series of weight 1,
exploited by Hecke. In particular, we obtain (0.9) without an intervention
of the Mellin transform. Moreover, if we choose U1 so that 03BA(B) is a

hyperbolic arc associated to a real quadratic field F/Q, then the corre-
sponding function e is a holomorphic theta-function of weight 1 for an
indefinite binary quadratic form associated to F. Such functions were
first introduced by Hecke [5], but he did not notice their connection with
periods.

Because we do not rely on the Mellin transform we obtain a result
about the periods of the analogues of Hecke’s binary theta-series of
weight 2 when n = 1 and V1,(,)1 is anisotropic. In this case SU(V1) is
isomorphic to the group of elements of norm 1 in a division but

indefinite quaternion algebra over Q, and the periods over a hyperbolic
arc associated to an embedded real quadratic field F will again be special
values of theta-functions of weight 1 associated to F. We hope to return
to this example elsewhere.

The method of this paper can be generalized in several ways. For
example, let K be any CM-field, IK: 01 = 2m, let f c K be the maximal
real subfield of K, and let a be the Galois automorphism of Kif. Let
V,(,) be a o-Hermitian space over K such that
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where V03BB,(,)03BB is the 03BBth completion of V,(,) for 1  03BB  m. Then there is a

family of holomorphic (nr, 0)-forms on the quotient 0393BDr, where
l’c SU(V,(,)) is a suitable arithmetic subgroup, whose periods over a
certain types of Lagrangian nr-cycle are expressible, via the see-saw pair
construction, as special values of Hilbert-Siegel modular forms of weight
1 2(n+1) for f. Note that this family of examples includes compact
quotients 0393BD for arbitrary n.

Finally, in his thesis G. Anderson [1] J constructed differential forms
yielding non-vanishing cohomology for a large class of compact quotients
of bounded symmetric domains. It should be possible to apply the

see-saw pair construction to obtain information about the arithmetic
nature of the periods of these forms.

1 would like to thank the Institute for Advanced Study for providing a
stimulating and congenial research environment during the academic
year 1980/81. 

§ 1. Symplectic embeddings: see-saw pairs

In this section we will give an intrinsic construction of a certain type of
see-saw pair following Howe [8] and Satake [13].

1.1. Let KIQ be an imaginary quadratic field. Let a be the Galois
automorphism of KIQ, and choose 8 E K  such that 8 a = - 8. We view
K as a subfield of C and assume Im(03B4) &#x3E; 0.

Let VJ, (,)J, j = 0, 1, be finite dimensional K-vector spaces with

non-degenerate Q-Hermitian forms, so that ( av, a’v’)j = 03B103C3(03BD, v’),a’ for
a, 03B1’ ~ K, 03BD, 03BD’ ~ Jj. Let

and let

and

Then if we let G = U(V1,(,)1) and H = U(V0,(,)0), we have a natural
homomorphism of algebraic groups over Q :
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Also let

and let

For a Hermitian space V,(,) as above, let 03A9(V)={U~W| U is
maximal isotropic subspace of W for ,&#x3E;}, and let

LEMMA 1.1: Let U E Q( V). Then the following are equivalent:
(i) U ~ 03A9+(V),
(ii) (,)lu is non-degenerate, symmetric and Q-valued,
(iii) the pair of subspaces U, 8 U form a complete polarization of W,(,).

PROOF : Immediate 0

Now suppose that VI E 03A9+(V1,). Then we have isomorphisms:

and

Let

We then obtain a natural commutative diagram of homomorphisms of
algebraic groups over Q :

The pairs p : H X G ~ Sp( W ) and p’ : G’ X H’ - Sp( W ) are both dual
reductive pairs in the sense of Howe ([4], [9]), and so we have constructed
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a see-saw pair {(G, H), (G’, H’)} as defined in the introduction.
1.2. We now want to describe the embeddings of symmetric spaces

associated to a see-saw pair (1.4).
Assume that

and

so that

Let

and let

where q = poq 1 + p1q0. Then there is a natural embedding

which is equivariant with respect to the homomorphism

Next, viewing W(C) as the complexification of W(R), we define a
Hermitian form F on W(C) by

where w - w denotes the complex conjugation on W(C) and we have
extended (,) to a C-bilinear form on W(C). The form F then has

where 2m = dimRW(R) = 2( po + q0)(p1 + ql). Let
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so that D* is an intrinsic realization of the symmetric space attached to
G*(R) [13].

Let à be the endomorphism of W determined by multiplication by 8
on V, and let W(C) ± be the ± 03B4-eigenspaces of à in W(C). Define
isomorphisms:

Then

and, if we view ~± as giving a C-isomorphism (resp. anti-isomorphism) of
V(R) with W(C) ±, we have, for v, v’ e V(R):

and

Moreover,

for all v and v’ in V(R). Since ~-(03BD) = ~+ (03BD) we also have:

Thus, if ~ ~ D and ~~ is the orthogonal complement of ~ in V(R), we
may define an embedding;

Finally, we define
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This embedding is obviously equivariant with respect to (1.0).
Now if Ul E 03A9+(V1) as above, we have

Let

so that B is a realization of the symmetric space associated to H’(R).
There is a natural embedding

and so we obtain an embedding

equivariant with respect to the homomorphism

If we repeat the construction of D* and (1.8) with Vo in place of V we
obtain

and an embedding

and hence an embedding

equivariant with respect to ’ X 1: H(R) H’(R) ~ G’(R) H’(R). Note
that, if ( po, q0) = (n, 0), then Do reduces to a point and 03B50(D0) is an

isolated fixed point of the maximal compact subgroup i’( H(R )) in G’(R).
Finally, via (1.3) we have
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and

so that we obtain an embedding

which is equivariant with respect to p’ : G’(R) X H’(R) ~ Sp(W(R)).
Thus we have constructed a natural commutative diagram

of embeddings given by (1.9), (1.11), (1.13), and (1.14), and this diagram
is equivariant with respect to the see-saw pair (1.4).

§2. Explicit formulas

In this section we will give more explicit expressions for the embeddings
of (1.15) in the special case of interest to us. Specifically we assume that

and

with p &#x3E; q &#x3E; 0. Later we will take p = n and q = 1. As noted in § 1, in this
case Do reduces to a point and the embedding

is holomorphic.
First recall that for any complete polarization

of the real symplectic space W(R), (,) we obtain an unbounded model
for D* as follows. Choose a basis w’1, ... , wm for W’ and let wl’, ... , wm be
the dual basis for W" so that
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Then for the basis w’,..., 1 w"m, w’1, ... , wm for W(R) we have

and, if ~ ~ D* is spanned by the columns of the matrix

then T = w2w 11 and we obtain an isomorphism

We now let VI E 03A9+(V1) be as in §1 and choose U0 ~ 03A9+(V0). Then
U = Uo ~ oUI E 03A9+(V) and, via Lemma 1.1, we obtain complete polariza-
tions

and

where à and 03940 are as in §1.
Choose Q-bases {fi} for Uo and (e ) for UI and let

and

be the corresponding matrices for (’)0 and (,)1. Then, with respect to the
bases 03940f1, ... , 03940fn, f i , ... , fn f or Wo and 

fl for W we have the iso-

morphisms 
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where m = n ( p + q ). Also the forms ,&#x3E;0 and ,&#x3E; are given by

and

respectively, where Q = Q0 ~ Q1. Define

and

Then if £ G Dô is spanned by the columns of a G M2n,n(C) we write

and let

This gives an isomorphism

Similarly, if ~ ~ D * is spanned by the columns of w E M2m, m(C), we let

and we obtain an isomorphism:
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Note that we also obtain isomorphisms

and

and the extension of these

and

Next choose T0 ~ GL+n(R) and TI E GL+p+q (R) such that

and

where r = p - q. We then have isomorphisms

and



20

If we let

we obtain an isomorphism

where

Note that the positive p-plane ~~ is spanned by the columns of T, P’+( X)
where

Similarly, via (1.1) we have

and

If we let

then we have an isomorphism
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where

Again the orthogonal complement ~~ is spanned by the columns of
Tl P +( z ) where

Using the isomorphisms (2.8), (2.9), (2.14), and (2.19) we obtain a
diagram of embeddings

from (1.15).

PROPOSITION 2.1. Fix a choice of data 8= (Uo, To, Ul, T1) with Uo E
03A9+(V0), VI E 03A9+(V1) and To (resp. T1) satisfying (2.12) (resp. (2.13)), as
above. Then the embeddings of (2.22) are given as follows:

(i) If X = (xo, x1) E 9, then

(ii) If X E 8, then

(iii) If z E D, then

where
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and

with

and P±(z) given by (2.20) or (2.21).
(iv) If 03C4 ~ Dn and X ~ B,

where

and

with

and P’±(X) given by (2.15) or (2.16).

PROOF: To prove (i) observe that for X E B the corresponding ~ ~ B is
the span of the columns of T1P’_(X) and hence 03BA(~) is the C-span of the
same columns. Hence the corresponding point of D is (-03B4-1x0, 03B4-1x1)
as claimed.

With respect to the basis for Wo chosen above we have

and so

is given by
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Therefore, since Do is a point,

and

03B50(D0) = span of the columns of To ( To ) .

Hence, according to (2.8),

and so 03B50(D0) = -03B4-1Q-10 as claimed.
To prove (iii), observe that, with respect to the basis chosen above for

W,

and so, again, ~+: V(R) ~ W(C)+ is given by:

Since the q-plane te Dl corresponding to z ~ D is spanned by the
columns of T1P_(z) andf’ is spanned by the columns of T1P+(z), we
find that

03B5(~) = span of the columns of

Then
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Thus the point of Dm corresponding to £( z) is given by

where

and

This proves (iii).
Finally, to obtain (iv), we observe that the point of Dô corresponding

to 03C4 ~ Dn under (2.8) is

T
span AD 1 n ,

and that the orthogonal complement to this in (W0(C), Fo ) is

Then, by (1.14),

where


