H. Kisilevsky

Some non-semi-simple Iwasawa modules

Compositio Mathematica, tome 49, n° 3 (1983), p. 399-404

<http://www.numdam.org/item?id=CM_1983__49_3_399_0>
The purpose of this note is to show that the semisimplicity result of [2] may fail to be true in the cases not covered by the theorem in section 2. We base the examples on the idea of J.F. Jaulent [4] although our method in §1 is somewhat different. Theorem 1 of this note gives an alternate proof of Theorem 1 of [2] and Theorem 9 of [4]. We follow the notation in [2].

Let \(k/Q \) be a totally complex abelian extension, and denote by \(\Delta = \text{Gal}(k/Q) \). Let \(J \in \Delta \) be the automorphism given by complex conjugation (under some fixed embedding of an algebraic closure of \(k \) into the complex numbers). Fix a prime \(p \), such that \(\delta^p = 1 \) for all \(\delta \in \Delta \). Let \(\hat{\Delta} = \text{Hom}(\Delta, \mu_{p-1}) = \text{Hom}(\Delta, \mathbb{Z}^*_p) \) and denote by \(V \) the set of characters \(\chi \) of \(\Delta \) which are either odd or trivial, i.e. \(V = \{ \chi \in \hat{\Delta} | \chi(J) = -1 \) or \(\chi = \chi_0 \} \).

For each \(\chi \in V \), there exists a (unique) \(\mathbb{Z}_p \)-extension (see [1]) \(K_\chi/k \), \(\text{Gal}(K_\chi/k) = \Gamma_\chi \) such that \(K_\chi/Q \) is normal and \(\text{Gal}(K_\chi/Q) \cong \Gamma_\chi \cdot \Delta \) a semidirect product with \(\delta \sigma \delta^{-1} = \sigma^{\chi(\delta)} \) for all \(\sigma \in \Gamma_\chi, \delta \in \Delta \).

Let \(L/K_\chi \) be the maximal abelian unramified \(p \)-extension of \(K_\chi \) so that \(\text{Gal}(L/K_\chi) = X \simeq \lim_{\rightarrow} A_n \) (where \(A_n \) is the \(p \)-primary subgroup of the ideal class group of \(k_n \subseteq K_\chi \), and the limit is taken as usual with respect to the norm maps). Then, as usual, \(X \) is a noetherian torsion \(\Delta \)-module, so we have

\[
X/TX \simeq \tau X \simeq \tau X_0 \simeq X_0/TX_0
\]

* This research was sponsored by an NSERC Grant.
where $TX = \{ x \in X | T x = 0 \}$ and $X_0 = \{ x \in X | T^k x = 0 \text{ some } k \geq 1 \}$ and "~" here denotes pseudo-isomorphism.

Since Γ_x acts trivially on X/TX and on τX we have a natural action of Δ on these groups and following [4], we study their Δ-decompositions.

If M is a Δ-module which is also a (pro) p-group then for $\phi \in \Delta$ write

$$M_\phi = \{ m \in M | \delta(m) = \phi(\delta) \cdot m \text{ for } \delta \in \Delta \}$$

and call this the ϕ-component of M.

Now $X_0 \sim \Lambda/T^{a_1} + \ldots + \Lambda/T^{a_r}$ for integers $a_1, \ldots, a_r \geq 1$. We say X_0 is semi-simple $\iff a_1 = a_2, \ldots = a_r = 1$ and in this case it is clear that

$$\tau X \sim X_0 \sim X/TX \text{ as } \Delta \text{-modules}.$$
Lemma 1: If M is the compositum of all \mathbb{Z}_p-extensions of F, and $G = \text{Gal}(M/F)$, then $G \cong \mathbb{Z}_p^{[D] + 1}$ and we have the D-decomposition of G for all $\phi \in \hat{D}$,

$$G_{\phi'} \cong \mathbb{Z}_p \quad \text{if} \quad \phi' \neq \chi_0$$

$$\cong \mathbb{Z}_p + \mathbb{Z}_p \quad \text{if} \quad \phi' = \chi_0.$$

Lemma 2: $F_{\phi}F_{x}/F_{x}$ is unramified if and only if either (a) $F_{\phi} = F_{x}$ or (b) $F_{nr} \subseteq F_{\phi}F_{x}$, where F_{nr} is the unique non-ramified \mathbb{Z}_p-extension of F and is equal to $F \cdot \mathbb{Q}_p^{nr}$, the compositum of F with the non-ramified \mathbb{Z}_p-extension of \mathbb{Q}_p.

Theorem 1: $K_{\phi}K_{x}/K_{x}$ is unramified if and only if

$$\phi \in \hat{V} \quad \text{and} \quad \phi|D = \chi|D.$$

Proof: Suppose $K_{\phi}K_{x}/K_{x}$ is unramified so that for each p over p, we have $F_{\phi}F_{x}/F_{x}$ is unramified. Hence by Lemma 2, either (a) $F_{\phi} = F_{x}$ so that $\phi|D = \chi|D$ or (b) $F_{nr} \subseteq F_{\phi}F_{x}$. In this case, (b), we must have $\text{Gal}(F_{\phi}F_{x}/F)_{\chi_0}$ is non-trivial since $\text{Gal}(F_{nr}/F)_{\chi_0} \cong \mathbb{Z}_p$. Since both F_{ϕ}/F and F_{x}/F are infinitely ramified it follows that only the χ_0 component of $\text{Gal}(F_{\phi}F_{x}/F)$ is non-zero and so $\phi|D = \chi_0|D = \chi|D$. Hence in either case, $\phi \in \hat{V}$ and $\phi|D = \chi|D$.

Conversely, suppose $\phi \in \hat{V}$, and $\phi|D = \chi|D$. If $\chi|D \neq \chi_0|D$ then $F_{\phi} = F_{x}$ by Lemma 1, and so $K_{\phi}K_{x}/K_{x}$ is unramified at primes over p.

If $\phi|D = \chi|D = \chi_0|D$ then again by Lemma 1 either $F_{\phi} = F_{x}$; or $F_{nr} \subseteq F_{\phi}F_{x}$, so again $K_{\phi}K_{x}/K_{x}$ is unramified at primes over p. Since K_{ϕ}/k in unramified outside of primes over p, the conclusion of the theorem follows.

Corollary: $(X/TX)_{\phi} \sim \mathbb{Z}_p$ for $\phi \in \hat{V}$, $\phi|D = \chi|D$, $\phi \neq \chi$, and ~ 0 otherwise.

Remark: This corollary furnishes another proof of Theorem 1 in [2] and Theorem 9 of [4].

We also note if for any ϕ we have $F_{\phi} = F_{x}$, then it follows that $K_{\phi}K_{x} \subseteq L$ in the notation of [2] and for each ϕ, $(X'/TX')_{\phi}$ has non-zero \mathbb{Z}_p-rank. This gives many examples of \mathbb{Z}_p-extensions where X'/TX' and $\tau X'$ are infinite.
§2. Δ-structure of τX

Let $\Gamma = \Gamma_x = \text{Gal}(K_x/k)$, and so $\tau X = \lim_{\leftarrow} A_n^\Gamma$. Since the limit is taken with respect to the norm maps $N_{m,n}$ and since $\delta N_{m,n} = N_{m,n} \delta$ for all $\delta \in \Delta$, it follows that

$$(\tau X)_\phi = \lim_{\leftarrow} (A_n^\Gamma)_\phi \text{ for } \phi \in \hat{\Delta}.$$

We consider the usual exact sequences

$$1 \to P_n \to I_n \to C_n \to 1$$
$$1 \to E_n \to k_n^* \to P_n \to 1$$

where I_n, C_n, P_n, E_n are the ideal group, class group, group of principal ideals, and unit group of the nth layer k_n of K_x respectively.

We obtain the exact sequence

$$1 \to P_n^\Gamma \to I_n^\Gamma \to C_n^\Gamma \xrightarrow{f} NP_n/P_n^{\gamma -1} \simeq E_0 \cap Nk_n^*/NE_n \to 1$$

where the map f is given below. Choose a fixed generator γ of Γ_x. Then for $x \in C_n^\Gamma$, $\gamma x = x$ and so $\frac{\gamma A}{A} = (\alpha) \in P_n$ for an ideal $A \in x$, define $f(x) = (\alpha) \mod P_n^{\gamma -1}$. This is a group homomorphism which is not a Δ-map, (c.f. [4]), but satisfies

$$f: (A_n^\Gamma)_\phi \to (\gamma P_n/P_n^{\gamma -1})_\phi.$$

Also the isomorphism is given by:

$$NP_n/P_n^{\gamma -1} \simeq E_0 \cap N(k_n^*)/NE_n$$
$$(\alpha) \mod P_n^{\gamma -1} \to N(\alpha) \mod N(E_n)$$

where N denotes the norm map $N_{n,0}$ from k_n to $k = k_0$. Hence we obtain the exact sequence

$$1 \to \frac{P_n \cap I_0}{I_0} \to P_n^\Gamma/P_0 \to I_n^\Gamma/I_0 \to C_n^\Gamma/j(C_0) \to \frac{E_0 \cap N(k_n^*)}{N(E_n)} \to 1$$

where $j(C_0) \subseteq C_n^\Gamma$ is the subgroup generated by the ideals of $k = k_0$. We shall compute the ϕ-components of the groups $E_0 \cap N(k_n^*)/E_0^{\gamma}$ and I_n^Γ/I_0. Since the groups on either side of $C_n^\Gamma/j(C_0)$ are (at worst) quotients
of these, this will describe the set of \(\phi \)-components of \(A_n^r \sim C_n^r/j(C_0) \) which are possibly non-trivial. (As in [2], we use the notation \(A_n \sim B_n \) for sequences of groups \(\{A_n\} \) and \(\{B_n\} \) to mean there are homomorphisms \(\phi_n : A_n \to B_n \) whose kernels and cokernels have orders bounded independently of \(n \).)

For each prime \(p \) of \(k \) dividing \(p \), let \(p = A(p) \in I_n \) where \(e_p \sim p^\kappa \) is the ramification index of \(p \) for \(k_n/k \). Since \(\Delta \) permutes the primes of \(k \) over \((p) \) transitively it follows that

\[
I_n^r/I_0 \simeq \bigoplus_{p \mid (p)} \langle A(p) \rangle/\langle p \rangle \sim \mathbb{Z}/p^n\mathbb{Z}[\Delta/D]
\]

where \(\langle A(p) \rangle, \langle p \rangle \) are the multiplicative subgroups of \(I_n^r \) generated by \(A(p) \) and \(p \) respectively.

Hence it follows that \((I_n^r/I_0)_\phi \sim \mathbb{Z}/p^n\mathbb{Z} \) if \(\phi \mid D = \chi_0 \mid D \sim 0 \) otherwise.

On the other hand by [2, Lemma 1] we have

\[
(E_0 \cap N(k^*_n)/E_0p^n)_{\phi_1} \sim \mathbb{Z}/p^n\mathbb{Z} \text{ if } \phi_1 \text{ even, } \phi_1 \neq \chi_0 \text{ and } \phi_1 \mid D \neq \chi \mid D \sim 0 \text{ otherwise.}
\]

Since \((A_n)_\phi \to (E_0 \cap N(k^*_n)/N_{E_n})_{\phi_2} \), the possible \(\phi \)-components of \(A_n^r \) which have non-trivial image in this group are among those \(\phi \),

\[
\phi(J) = \chi(J), \phi \neq \chi^{-1} \text{ and } \phi \mid D \neq \chi_0 \mid D.
\]

Hence the non-trivial \(\phi \)-components of \(A_n^r \) are among

\[
\{\phi \mid \phi \mid D = \chi_0 \mid D\} \cup \{\phi \mid \phi(J) = \chi(J), \phi \neq \chi^{-1}, \phi \mid D \neq \chi_0 \mid D\}.
\]

This provides no restriction in the case that \(D \subseteq \ker \chi \) when in fact \(X_0 \) is semisimple [2].

If \(\chi \mid D \neq \chi_0 \mid D \), then we see that the \(\chi^{-1} \) component of \(A_n^r \) and that of \(TX \) must be pseudo-null.

§3. Examples

We now describe a set of characters \(\chi \) so that for the \(\mathbb{Z}_p \)-extensions \(K_\chi/k \) the groups \(X/\tau X \) and \(\tau X \) have different \(\Delta \)-decompositions. This implies that the corresponding \(X_0 \) is not semi-simple.

By Corollary of §1, we see that \((X/\tau X)_{\chi^{-1}} \sim \mathbb{Z}_p \) if \(\chi^{-1} \neq \chi \) and \(\chi^{-1} \mid D = \chi \mid D \), i.e. if \(\chi^2 = \chi_0 \) and \(\chi_0 \mid D = \chi_0 \mid D \). On the other hand §2 implies that \((\tau X)_{\chi^{-1}} \sim 0 \) if \(\chi \mid D \neq \chi_0 \mid D \) so we have:
For any character χ, such that $\chi^2 \neq \chi_0$, $\chi|D \neq \chi_0|D$ and $\chi^2|D = \chi_0|D$ we have $(\tau X)_{x^{-1}} \sim 0$ and $(X/\tau X)_{x^{-1}} \sim \mathbb{Z}_p$.

The examples of Jaulent [4] are of this type.

I would like to acknowledge several helpful discussions with D. Dummit.

REFERENCES

(Oblatum 22-11-1982)

Department of Mathematics
Concordia University
Sir George Williams Campus
1455 De Maisonneuve Blvd. West
Montreal
Quebec H3G 1M8
Canada