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Let X be a projective smooth geometrically integral scheme of
dimension d over the finite field Fq. By e(X, s) we denote the zeta
function of X (see [10]). For every integer n the numbers p(n) E Z
and c(n) E C* are defined through

In fact the c(n) are rational numbers and the purpose of this paper is
to compute them in cohomological terms associated with X. In the
case p(n) = 0 Bayer/Neukirch in [1] have given an expression of
IC(X, n )1, (for every prime 1 not dividing q) as an 1-adic Euler

characteristic. On the other hand the case d = 2, n = 1 was studied by
Tate in [12] (see also [5]). By combining the two methods we shall
attack the general case. After some necessary preliminaries, we give
in Section 1 a purely cohomological formula for |c(n)| assuming that
p(n) has the ’right’ value. This formula contains the determinants of
certain Poincaré duality pairings. In Section 2 we discuss the rela-
tionship between these pairings and the intersection pairing on the
algebraic cycles of X. Also, we study the special case of an abelian
variety more fully in the last section. Finally 1 want to thank J. Coates
for suggesting to me the study of this problem.

* This work was done while the author was supported by DFG.

0010-437X/82050133-11$00.20/0
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Preliminaries

Throughout, Fq denotes the algebraic closure of Fq, r the Galois
group of Fq over Fq, ~ the Frobenius generator of r, and  : =

XFq x Fq. We fix a prime 1 not dividing q. All cohomology groups are
understood to be taken with respect to the etale topology.

According to Grothendieck ([6]) we have the following description
of the zeta function of X. For every i ~ 0 define the polynomial

For example, we have Lo(T) = 1 - T and L2d(T) = 1- qdT. Then

Furthermore, by Deligne’s proof of the Weil conjectures ([12]), the
Li(T) have integer coefficients independent of 1 and their complex
roots have absolute value q-i/2. In particular, we see that c(n) ~ Q*
and p(n) 5 0 and strict inequality can only occur if 0 ~ n ~ d. More
precisely, one always has

moreover, equality would follow from the well-known conjecture that
cp operates semisimply on the Qrvectorspaces H’(9, Q1(n)). Here
01(n) denotes as usual the n-fold Tate twist of Qt (see [1]), and M r

respectively Mr are the invariants respectively coinvariants under r
of any r-module M.

Finally we introduce more notation. For an abelian group A, let Tor
A be the torsion subgroup and AT.,: = A/Tor A, let Div A be the
maximal divisible subgroup and ADiv: = A/Div A. For a homomor-
phism f : A ~ B between abelian groups let Tor f and f Tor denote the
induced homomorphisms Tor A - Tor B and ATor ~ BTor; f is called a
quasi-isomorphism, if it has finite kernel and cokernel, in which case
we define q(f): = #coker f/#ker f.

1. The cohomological formula

We fix in the following the integer n ~ Z. As r has cohomological
dimension 1, the Hochschild-Serre spectral sequence associated with
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the covering X/X degenerates and we get the short exact sequences

for every i ~ 0. In addition, we have H’(9, Zl(n» = 0 for i &#x3E; 2d and

H’(X, Z 1(n» = 0 for i &#x3E; 2d + 1 (see [6] VI.1). Now we use the well-
known (see [1] (3.2) for a proof) result about the value of Li(q -n) =
det(1- Cf) -1; H’(9, Q1(n))).

LEMMA 1: The following three assertions are equivalent: (i)
Li(q-n) ~ 0; (ii) H’(9, Zl(n))0393 is finite; (iii) H’(9, Zl(n))0393 is finite. If
these three conditions are valid, we have

The equivalent conditions in this lemma are in fact fulfilled in the
cases i odd, or i ~ 2n even, or i = 2n with n not a pole of C(X, s).
Using (1) this gives the formulae

In the case 03C1(n) = 0 multiplying them all together we immediately
obtain the result of Bayer/Neukirch in [1]:

PROPOSITION 2: For p(n) = 0, we have

From now on we assume 0 s n S d. We have to investigate the two
exact sequences from (1) in which infinite groups occur, namely
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The groups in the left lower and right upper corner are finite;
therefore a and 03B2 are quasi-isomorphisms. The map f is induced by
the identity on H2n(,Zl(n)). Furthermore define L(T) G Q[T] by

In particular, this means that L(q-"l 0 0 and

LEMMA 3: - p(n) = dim H2n(x, Q1(n))0393 = rank H2n(X, Zl(n)) if and
only if f is a quasi -isomorphism, in which case

PROOF: Clearly - 03C1 (n) = dim H2n(X, Q1(n))r is equivalent to

|L(q-n)|l = |det(1- cp-’; H2n(x, Ql(n))/H2n(, OI(n»f)l, = |det(1- ~-1;
(cp - 1)H2n(, Q1(n)))|l. When this is true we have

The equality dim H2n(, Ql(n))0393 = rank H2n(,Zl(n))0393 = rank
H2n(X, Zl(n)) is immediately seen from (3). Q.E.D.
Combining these results, we obtain the following lemma.

LEMMA 4: If - p(n) = rank H2n(X, Zl(n)), then

PROOF: From (3) and lemma 3, we conclude that
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Inserting this and the formulae (2) into (4) gives the required state-
ment.

Thus it remains to interpret the index #coker(03B2f03B1)Tor = q«f3fa)Tor).
For this we consider the f ollowing commutative diagram of pairings
induced by cup-product

(recall H2d+1(X,Zl(d)) =H2d(, Zl(d)) =Zl, [6] VI.11). By Poincaré
duality (loc. cit.) the pairing in the second line is nondegenerate, and
therefore the pairing in the first line is too. If f is a quasi-isomor-
phism, then all pairings in the diagram must be nondegenerate.
Assuming this to be the case we denote by 0394(0)n, respectively 0394(1)n, the
determinant of the pairing in the top, respectively, the bottom line
(both determinants are defined up to a unit in Zl), and we have

Now we can state our first main result.
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PROOF: The first equality is just the combination of lemma 4 with
the considerations above. The second equality follows easily from the
exact cohomology sequence associated with the exact sequence of
sheaves

COROLLARY 6: For n = 0, d we have p(n) = - 1 and

PROOF: That p(n) = - 1 is clear because Lo(T) = 1 - T and

L2d(T) = 1- qdT. Furthermore (f3fa)Tor is an isomorphism in each

case because we have H’(X, Zi)r = (Tor H’(9, Z i»r =
(HO(g, Ql/Zl)Div)0393 = 0 and H2d+1(, Zl(d)) = 0.

COROLLARY 7: If d - 1 and p(l) = - rank H2(X, Zl(1)), then

where Hi(X,Gm)(l) denotes the 1-primary component of the

cohomology of the multiplicative group Gm.

PROOF: One simply passes to the direct limit (with respect to v ) in
the exact cohomology sequence associated with the Kummer

sequence 0~Z/lvZ(l)~Gm Gm ~ 0, and uses theorem 5.

2. The intersection pairing

Again we assume 0~n~d. By Z"(X), respectively, N"(X), we
denote the group of n -codimensional algebraic cycles on X, respec-
tively its factor group modulo numerical equivalence. Then Nn(X) is
a finitely generated free abelian group (this follows from [6] V I.11.7
because of the fact, that N"(X) injects into Nn()), and the inter-
section product defines a nondegenerate pairing

let On be the determinant (defined up to sign) of this pairing. We want
to relate On to the determinants introduced in the first section of this

paper.

According to SGA 41 2 [Cycle] there exist canonical cycle maps
Zn(X)~H2n(X,Z/lvZ(n)) for v ~ 1. For the further discussion we
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assume the following statement to be true (in fact this is a well-known
conjecture of Tate, see [11]).

HYPOTHESIS: The cycle maps induce an isomorphism

Obviously we have then also a canonical injection Nn(X)~Zl ~
H2n(X, Zl(n))Tor with finite cokernel, the order of which we denote by
ti(n). Now we can prove

is commutative (see SGA 42 [Cycle] and [9]). As the intersection

pairing is nondegenerate, the pairing in the bottom line is non-

degenerate too (by our hypothesis). This implies, of course, the

statement (ii). But going back to the diagram (5) we see at once, that f
must be a quasi-isomorphism, which implies the statement (i) by
lemma 3. For (iii), we consider first the following commutative exact
diagram induced by the cycle maps
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where the map in the middle is an isomorphism by our hypothesis. So
the cokernel and kernel of the upper respectively lower map are finite
of equal order. This means that in the commutative diagram

the horizontal maps (again induced by the cycle maps) are injective
with finite cokernels of equal order. Now the left vertical maps are
given by cup-product, the Poincaré duality says that the lower one is
an isomorphism and the upper one injective with finite cokernel of
order |0394(0)n|-1l (compare (5)). These facts together give immediately
là(’)Il = 1, as required.

Theorem 5 and lemma 8 together imply the second main result.

THEOREM 9: If 0 ~ n ~ d and (*) is true for both n and d - n, then

REMARK: It is easy to see, that (*) is true for n = 0, d and that

fi(0) = 1 and làoll = |0394d|l = Iti(d)ll = )min(m EN : X(Fqm) ~ }|l.

LEMMA 10: (*) for n = 1 ~ d implies that tl(1) = 1.

PROOF: According to the proof of lemma 8 it is enough to show the
injectivity of N1(X)~Q1/Zl~H2(X, But we have the

commutative exact diagram (see SGA 42 [Cycle] 2.1)
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where the injective horizontal map is induced by the connecting
homomorphism in the exact cohomology sequence associated with
the Kummer sequence Q.E.D.

3. The special case of an abelian variety

In this last section we assume that X is an abelian variety A over

Fq of dimension d &#x3E; 0 and n ~ Z is arbitrary.

LEMMA 11: (i) Hi (À, Z 1 (n» is torsionfree for i ~ 0; (ii) the action of
the Frobenius cp on Hi(Ã, Ql(n)) is semisimple for i ~ 0.

PROOF: We give only short indications of proofs, because these
assertions are well-known.

(i) We can À lift to characteristic 0 ([7]). Therefore, by the com-

parison theorem of étale cohomology, it is enough to show the

torsion-freeness of the integral cohomology of abelian varieties over
the complex numbers. But this is clear (see [8] § 1).
(ii) For i = 1, see [8] p. 253. The general case then follows from the
fact that

is the i-th exterior power of H1(Ã, 0,) ([4] 2A8).

PROOF: Lemma 11 (i) implies (by arguing modulo 1) that the

Poincaré duality

is dualizing, i.e. its determinant is a unit in ZI. Going back to the
diagram (5) we see that the pairing in the second line is dualizing too.
But again by lemma 11 (i) the map 03B2Tor is an isomorphism. This means
that |0394(0)n|l = 1.
Plainly lemma 11 (ii) gives 03C1(n) = - dim H2n(, 01(n»r = rank

H2n(A, Zl(n)). Theref ore simplif ying the computations in Section 1 by
making use of lemma 11 and 12 we get our last theorem.
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THEOREM 13: (i) |Li(q-n)|-1l = # Tor Hi unless i = 2n,
0:5 n ~ d, and 03C1(n) ~ 0; (ii) for 0 ~ n S d we have

COROLLARY 14: The 1-primary component Br(A)(1) of the Brauer
group of A is finite; furthermore we have p(1)= -rank N1(A), and

PROOF: The hypothesis (*) is fulfilled for A and n = 1 according to
Tate [13]. From this it follows, of course, that

and also the finiteness of the cokernel of the map N1(A)~Ql/Zl ~
H2(A, Ql/Zl(1)). Now the proof of lemma 10 shows that this cokernel
is equal to H2(A, Gm)(1). By [3] (2.6) and (3.3), we have Br(A)(1) =
H2(A, Gm)(1) which means the finiteness of the first group. On the

other hand H2(A,Gm)(l)=H2(A, Ql/Zl(1)Div = Tor H3 (A,Zl(1)) is

straightforward (see the proof of corollary 6). Thus we get

Inserting this into theorem 13 (ii) gives the statement.
Finally we remark: The duality theory for abelian varieties allows

to prove that hypothesis (*) for n = d - 1 implies t,(d - 1) = 1, that is
|0394(1)1|l = là,li. Namely with the help of the correspondence (respec-
tively its powers) defined by the Poincaré divisor of A one reduces to
the consideration of the dual abelian variety at n = 1 and applies
lemma 10.

Added in proof

1 am thankful to Y. Zarkin who has called my attention to the fact that
Poincaré duality even implies |0394(0)n|l = 1.
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