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Introduction

In a series of papers we intend to give a general method of

constructing harmonic forms on locally symmetric spaces as special
values of certain families of forms depending on complex parameters,
somewhat analogous to Eisenstein series. These harmonic forms will
be the Poincaré duals of certain totally geodesic cycles in the locally
symmetric space. On the other hand, for the locally symmetric spaces
which arise from the action of certain arithmetic groups on the

symmetric spaces associated to SO(p, q) and SU(p, q), the global
Weil representation provides a method of constructing automorphic
forms, and, in particular, harmonic forms in some cases. We will
show that, in certain cases, there is a coincidence of the duals of

geodesic cycles and the harmonic forms coming from the Weil

representation (Corollary 10.1). As a consequence of this coincidence,
we will show that the results of Hirzebruch and Zagier [7] for the
Hilbert modular surfaces and of Kudla [12] for certain arithmetic
quotients of the complex 2-ball, relating intersection numbers of

cycles and Fourier coefficients of elliptic modular forms, are special
cases of a general formula relating intersection numbers of cycles in
certain arithmetic quotients of the symmetric spaces of SO(p, q) and
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SU(p, q) to the Fourier coefficients of Siegel modular and Hermitian
modular forms respectively.

In this paper we carry out the above program for certain discrete

subgroups of SO(n, 1).
In the first part of this paper, we generalize the results of [13] to

quotients of hyperbolic n-space. More precisely, let M be a compact,
oriented, Riemannian n-manifold with constant negative curvature, so
that we may realize M as a quotient M = fBD of hyperbolic n-space
D by a torsion free group r of orientation-preserving isometries.
Suppose that N is a totally geodesic, oriented (n - k)-dimensional
submanifold of M, and let [N] E Hn-k(M, Z) be the corresponding
homology class. We then obtain an explicit formula for the harmonic
k-form which is the Poincaré dual to N by the following procedure:
We realize N as a quotient, N = 03931BD1, where Dl C D is an (n - k)-
dimensional hyperbolic space, totally geodesic in D, and FI C r is the
fundamental group of N (Section 1). Then we reduce the problem of
finding a Poincaré dual à) to N in M to the problem of constructing a
smooth closed k-form 03C8 having certain properties (Lemma 2.1), on
the ’tube’ 03931BD. A Poincaré dual form is then obtained by averaging:

In Section 3 we construct a family I/Is of such k-forms, depending on a
complex parameter s, such that the series

is absolutely convergent, and hence defines a Poincaré dual form,
provided s lies in the half-plane Re(s) &#x3E; 12(k -1). In Section 4 we
show that the family of forms w, satisfy the ’shift’ equation:

As a consequence, we obtain a meromorphic analytic continuation of
l1Jn which is analytic at s = so = max{0, k - 1 2 m 2}. The form l1Jso is then
the desired harmonic dual form to N (Theorem 4.3).

In the second part of the paper, we consider the case where r is a

congruence subgroup of the unit group of an anisotropic quadratic
form over a totally real number field 4. In this case, we establish a
relationship between the harmonic dual forms l1Jso to totally geodesic
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cycles of codimension k in M and the harmonic forms on M which
arise from the Weil representation for the dual reductive pair Sp(k) x
O(n, 1) in the sense of Howe [8], [4].
More precisely, let V be a h vector space with dim, V = m, and let

(,) be a nondegenerate, symmetric, k-bilinear form on V such that
(V(h,), (,)) is anisotropic, and

where k03BB, 03BB = 1,..., r = |h : Q|, are the archimedian completions of ae,
and VA = V ~h 4,.

Let G = SO( V) be the special orthogonal group of V, viewed as an
algebraic group over 4. Let 0 be the ring of integers of ae, and let
L C V be an 0-lattice such that the dual lattice

contains L. We then let r be a torsion free congruence subgroup of

and let

where we view D as the space of negative lines in V,.
Then, in Section 6, we associate to each frame X = (X1, ..., Xk) E

Vk, with (X, X) = ((Xi, Xj)) totally positive definite, an oriented,
totally geodesic cycle 03C0X:NX~M of codimension k, and hence a
homology class Cx = (03C0X)*(1X) ~ Hn-k(M, Z).

In Sections 7 and 8 we construct a certain type of theta-function.
Specifically, for T = (T,, ..., Tr) ~Jrk, TÀ = UÀ + iv03BB; Z E D, W =

(W1, ..., Wk) E Vk1 with Wi E Z~ and 03BC E (L*)k/Lk, we define

where
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with (,)z the majorant of (,) associated to Z, and, for Y E Mk(cC)r,

If we identify the tangent space TZ(D) ~ Z 1. C VI, then as a f unc-
tion of Z and WEI TZ(D)k, 03B803BC, determines a k-form on D which is
easily seen to be r-invariant. On the other hand, we prove (Pro-
position 8.4) that, as a function of 03C0 ~ Hrk, 03B803BC has a transformation law

like a Hilbert-Siegel modular form of weight m and a certain 03B8-

multiplier with respect to a certain congruence subgroup r C Sp(k, 0).
In Section 9 we use the theta-kernel 03B803BC to define a lifting Yk from

Sm/2(), the space of holomorphic Hilbert-Siegel cusp forms which
transform as 0, does, to differential k-f orms on M, and we give an
explicit formula (Theorem 9.1) for the lifting Jk of the (generalized)
Poincaré series, P*03B2,s. In fact, if 03B2 = t03B2 ~ Mk(h) with 03B2 ~ 0 (totally
positive definite), we let

so that C(03B2; IL) E Hn-k(M, Z), and we let

where (J)x,s is the family of Poincaré dual forms to Cx constructed in
part 1. Then we find that

In Section 10 we obtain several consequences of this identity. In
particular, if k  1 4 m, we obtain (Corollary 10.1)

which shows that, in this case, the image of the lifting 5fk is the

complex span of the harmonic dual forms to the cycles C(P; ju). We
also show (Corollary 10.4) that if C e Hk(M, C), then the generating
function for the intersection numbers
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where Y* is a certain lattice, lies in Sm/2(). This generalizes the main
result of Hirzebruch and Zagier [7].

Finally, in Section 11, we use a slight generalization of the non-
vanishing theorem of Millson-Raghunathan [15] to prove that, for
suitable L, t£, and r the cycle C(03B2; g) 0 0 (Corollary 11.3). Thus our
mappings Yk and I0k will, in general, be nontrivial. The required
generalization of [ 15] is proved in the appendix.
Our initial interest in this question was sparked by the work of

Hirzebruch and Zagier [7] and Zagier [24]. Our approach is different
in that we find a formula for the Poincaré dual of a geodesic cycle,
then prove the intersection formula. Also, we believe that our use of
the Weil representation results in a better understanding of the nature
of the intersection number formula. This use of the Weil represen-
tation was inspired by Shintani [21], who constructed the map I, in
the split case for n = 2, although he stated his result in terms of
periods rather than intersection numbers. A similar mapping occurs in
the work of Oda [18].
We have greatly profited from the ideas of Roger Howe about the

Weil representation.
The first author would like to thank Professor A. Borel for the

opportunity to present the results of this paper in his seminar at the
Institute for Advanced Study during the fall of 1980.
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§1. Totally geodesic cycles in quotients of hyperbolic n -space

Let V be a real vector space, dimR V = m, and let (,) be a non-
degenerate symmetric R-bilinear form on V such that

with m = n + 1. Let

be the connected component of the special orthogonal group of V, (,),
and let

be the space of all negative lines in V with respect to (,). Then G acts
transitively on D, and the isotropy subgroup of any point of D is a
maximal compact subgroup of G.
We identify D with one sheet of the hyperboloid of two sheets in

V:

and thus we have a natural identification

where Tz(D) is the tangent space of D at Z, and

The bilinear form (,) induces a positive definite inner product on
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each Tz(D), and hence defines a G-invariant Riemannian metric on D.
The geodesics in D with respect to this metric are just the inter-
sections of D with hyperplanes in V, and, for Z, Z’ E D, the geodesic
distance d(Z, Z’) is given by

Also D has constant curvature -1.
Let r C G be a discrete, torsion free subgroup such that the

quotient space

is compact. Thus M is a compact orientable Riemannian n-manifold
with constant curvature -1.
We now consider totally geodesic cycles in M. For k ~ Z with

1 «5 k  n, let U C V be a subspace with dim,, U = k and such that
(,)u &#x3E; 0.

Define an involution u    U E O(V) by

Let

be the centralizer of or in G, and let

be the fixed point set of u in D. Note that Du = D n U~, so that D, is
a totally geodesic submanifold of D with dim D, = n - k.

Let 039303C3 = r n G,, and let N = r u B Du. We then obtain the diagram

where the map t is induced by the inclusion of D, into D. In general,
F, will be the identity, and the image L(N) of D, in M will be dense.
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Thus to obtain nice cycles we assume the compatibility condition :

The following lemma is then proved in Millson-Raghunathan [15].

LEMMA 1.1: Assume that the involution u defined above satisfies
(*). Then

(i) the quotient N = 039303C3BD03C3 is compact, and
(ii) (Jaffee) the map L is an embedding with locally finite image.

Now let G’ be the connected component of G,, and assume that

so that N is orientable. We then obtain a compact embedded totally
geodesic n - k cycle

and hence, choosing an orientation 1N E H,,-k(N, Z), a homology class

When r is a group of units of an indefinite quadratic form over a
totally real number field, we will construct a large f amily of subspaces
U C V for which the corresponding involution o-u satisfies (*) and
(**). In this case Millson and Raghunathan [15]2013see also Prop. 11.1
and Appendix2013hâve shown that, after passing to a suitable con-

gruence subgroup, we can obtain nonvanishing classes [N] in all

dimensions. We do not know, however, if it is possible to obtain
similar results for other types of discrete subgroups r c G.

§2. Poincaré dual forms

In this section we begin the construction of a Poincaré dual form to
the cycle N considered in § 1.

Recall that if M is a compact, smooth oriented n-manifold and if
03C0:N~M is a smooth singular cycle with N oriented of dimension
n - k, then a Poincaré dual form to N is a smooth closed k-form w on
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M such that, for all smooth closed n - k forms ~ on M we have

Any two Poincaré dual forms to N are cohomologous, and, by Hodge
theory, there exists a unique harmonic dual form which we call the
Poincaré dual form to N. If N’ is any smooth oriented k-cycle in M
and w is a Poincaré dual of N, then

where [N’]· [N] is the intersection number of the classes [N] E
Hn-k(M, Z) and [N’] E Hk(M, Z).
We now return to the situation of §1, and we assume that 03C3 satisfies

conditions (*) and (**). We then consider the partial quotient E =
039303C3BD and obtain the diagram

Note that the projection E ~ M is a non-normal covering.
For convenience we will identify differential forms on M (resp. E)

with r(resp. r CF) invariant forms on D.

LEMMA 2.1: Suppose that 03C8 is a smooth closed k-form on E such
that

(i) Ji is integrable on E, i.e., E~03C8~dv  00,

(ii) for any closed, bounded, n - k form 11 on E

and

(iii) the series
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is absolutely convergent, uniformly on compact subsets of E. Then the
r-invariant form

is a Poincaré dual form to N in M.

PROOF: By (Hi) úJ is closed, smooth, and r-invariant. Moreover, if F
is a measurable fundamental domain for r in D, we have

where we observe that U yF is a fundamental domain for 039303C3 in D.
03B3~039303C3B0393

By (iii) the interchange of summation and integration is justified, and
the lemma is proved.

§3. A family of dual forms

In this section we will construct a family of 039303C3-invariant forms 1p,
depending on a complex parameter s, such that, for Re(s) sufficiently
large, t/ls satisfies the conditions of Lemma 2.1. Thus we obtain a

family of Poincaré dual forms to N.
First observe that there is a natural projection
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defined as follows. Write V = U + U~ where U’ is the orthogonal
complement to U in V, and let 7r : V ~ U~ be the orthogonal pro-
jection. Then the image of 1 E D under 7r is again a negative line in
U~; hence we have

Moreover, if g E G,, then

i.e., 03C0 is G, equivariant. Therefore 7r induces a fibration:

which we also denote by 03C0.

Observe that if t’e Du, then

and so the fibers of 1T are totally geodesic hyperbolic subspaces of D
of dimension k.

REMARK: In fact, E is diffeomorphic to the normal bundle of N in
M, and we want to construct, in effect, a form ~ on E representing
the Thom class of this bundle, i.e., the dual form to the zero section.
However, such a form is usually taken to have compact support.
Since we want to construct a harmonic form, we must proceed in a
different way.
We may describe the fibration 1T: E - N a little more explicitly. If

Z, E D03C3, Z2 E U with (Z2, Z2) = 1, and t E (0,00), then

and 03C0(Z)=Z1. Conversely, every Z E 1T-I(ZI) has this form, so we
obtain a parametrization:
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where Sk-’ C U is the unit sphere. Note that

so that t is the geodesic distance from f (Z,, Z2, t) to D,. To compute
the metric in these coordinates, we first make identifications:

and

Then it is easy to check that if w, E TZt(Da) and W2 E Tq(Sk-I), then

and

Thus we have:

LEMMA 3.1: Let ds2, dsi, and ds’ be the metrics induced by (,) on D,
Du and Sk-I. Then, in the coordinates given by f,

and the corresponding volume form is

We may now construct the required family of forms. Let li be the
volume form on D,, and let

where * is the Hodge * operator with respect to our metric. Then ~ is
a k-form on D which is, in fact, G03C3-invariant since 7r is G,-equivari-
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ant. Now for s ~ C we define

LEMMA 3.2: In the coordinates given above on D - D,, we have:

and so

Moreover, d’Ps = 0 for all s.

PROOF: First we have

Since ch(t)n-kdv1 is the volume form on the ’horizontal’ subspace at
distance t from D,, we must have

where Sh(t)k-Idvl A dt is the volume form on the fiber at distance t. Of

course, ~ and ~s are G03C3-invariant, so we may view them as forms on
E.

REMARK: The f orm cps is square integrable on E provided

In particular, ~ is itself square integrable provided

We next want to normalize ~s so that it has integral 1 over the
fibers of 03C0 : E ~ N.

LEMMA 3.3: If Re(s) &#x3E; k - 1 2 m, then ’Ps is integrable over the fibers
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of 7r: E ~ N. Explicitly, if F is such a fiber, and we let

then

PROOF: We compute

and this integral converges for Re(s) &#x3E; k - 1 2(n + 1) and is easily
evaluated, yielding the value above.
For Re(s) &#x3E; k - 1 2 m, define

so that f/ls is G-invariant, closed for all s and has fiber integral 1.

PROPOSITION 3.4: If Re(s) &#x3E; 1 2(k -1), then f/ls satisfies conditions (i),
(ii) and (iii) of Lemma 2.1 and hence determines a dual form

toNinM.

PROOF: Since

is finite provided r=Re(s)&#x3E;1 2(k - 1), condition (i) is satisfied in this
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range. To check condition (ii) we note that

But now, if we let

then

and we may consider the projection onto F:

Note that, if (Z2, t) E F, then

We write

and observe that, in E the cycles N(Z2, t) are all homotopic to N via

Now we apply ’fiber integration’ to 7r’. Since the fibers of 7r’ are

compact, fiber integration gives a mapping [5, Chapt. VII, §5],

Then it is easily checked that

Since the N(q,t)’s are homotopic to N and q is closed, we have



222

simply,

and so

This proves (ii). Finally, (iii) follows by a standard argument like that
of [13, p. 199, Lemma 2.3].

§4. The shift équation, analytic continuation, and the harmonic dual
form

We now want to construct the harmonic dual form to N.
First we compute the Laplacian A applied to ~s. Note that by

Lemma 3.1

and

LEMMA 4.1: 

where m = n + 1.
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PROOF: We compute

as claimed.

COROLLARY 4.2: (the shift equation).

PROOF: We observe that

and so

as claimed.
Thus we see that at s = 0 and s = k - 1 2m 2 the form o/s will be

harmonic. Neither of these values is in the range allowed in Pro-

position 3.4 and so we must obtain the harmonic dual form by first
averaging o/s over 03931B0393 and then constructing an analytic continuation.
The analytic continuation will follow from the shift equation. This
method of continuation was inspired by Selberg [20] and exploited in
[13].
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THEOREM 4.3: Let

Then:

(i) This series is absolutely convergent for Re(s) &#x3E; 1 2 (k - 1) and
defines a holomorphic family of closed k-forms dual to N.

(ii) Ws has a meromorphic analytic continuation to the s-plane and
satisfies the ‘shift equation’ :

(iii) if k :5! m, then the function s H ws, valued in fi k (M) is holomor-
phic at s = 0, and Wo is the harmonie dual form to N. If n &#x3E; k ~ 1 2 m, then
the function s ~ 03C9s is holomorphic at s = k - 1 2 m, and ú)k-I/2m is the
harmonic dual form to N.

PROOF: Part (i) is just a restatement of Proposition 3.4. To obtain
an analytic continuation of Ws we expand in terms of eigenforms. Let
0 ~ 03BB1 ~ À2,..., be the eigenvalues of 0394 on flk(M), repeated according
to their multiplicity, and let {fj}j=1,2,... be a corresponding orthonormal
basis for flk(M). Thus 0394fj=03BBjfj. For Re(s) &#x3E; 2(k -1) we have the
expansion

where

In the half plane,of absolute convergence, the shift equation for 4p,
given in Corollary 4.2 implies that

and therefore

We may write this as
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with

Iterating this formula, we obtain

First observe that, if 03BBj = 0, we obtain simply

and so a;(s) is an entire, periodic function of s in this case. Next, if
03BBj~ 0, we see that aj(s) has a meromorphic analytic continuation to
the whole s-plane with possible poles at points

Now the roots of P;(x) = 0 have the form

and these occur in pairs: (a) symmetric about the line Re(s) =
1 2(k-1 2m) and strictly inside the strip 0  |Re(s)|e|k-1 2m| (these
occur if 03BBj1 4(2k-m)2), or (b) complex conjugates lying on the line
Re(s) = 1 2 (k - 1 2 m ). Moreover, since we have taken care of the case
Àj = 0 above, there is no pole at the point s = 1 2 (k - 1 2 m ). Thus we have
the following picture depending on the codimension k:
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where the line of possible poles repeats at integer translates to the
left.

REMARK: The condition k  1 2m 2 is precisely that required for

square integrability of the form 03C80 on E.

Thus we have obtained an analytic continuation of the coefficients
a;(s) of the eigenfunction expansion. We now want to show that the
series Lj aj(s)fj is absolutely convergent uniformly on any compact
set in the s-plane from which we have deleted the possible poles of
the a;(s)’s. If K is any such compact set, then there exists an E &#x3E; 0
such that K does not meet any E-disk about any of the points
{xj - ~}xj is a root of P;(x) = 0 and 1 Ei Z, ~ ~ 01. Moreover, we may
choose r E Z, r ~ 0, such that the set K + r lies within the half plane
Re(s ) &#x3E; 1 2 (k -1 ) + ~. Applying the above shift formula for aj(s) we
obtain

where, since Àj ~ ~ as j - 00, we may choose C uniformly with respect
to j. Now to obtain convergence in the Hilbert space norm on fl’(M)
we observe the following :

LEMMA 4.4: Suppose that s lies in some compact set K’ in the half
plane Re(s) &#x3E; !(k - 1). Then

1) VI E Z&#x3E;o, 3Ct &#x3E; 0 such that

where Cl is uniform on K’.
2) (Gaffney [3]) asymptotically

for some constant C’.
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Then

and by the Schwarz inequality for forms

Thus we may take Cl = max ~0394~03C9s~.
Now on our original set K we obtain uniform convergence in the

Hilbert space norm as follows:

which is, by 2) of the lemma, convergent provided 4(~ - r) &#x3E; n 1. We
choose such an 1 and obtain convergence of úJs to a holomorphic
03A9k(M) valued function on K. Of course, 03C9s continues to satisfy the
shift equation, so we have proved (ii).

Finally, from what was shown above about the possible poles of
the aj(s)’s, it is clear that lJ)s is holomorphic at s = 0 if k ~ 1 2 m and at
s = k - 1 2 m. Moreover, there are no poles to the right of these values,
i.e., at s = 1 (resp. s = k - 1 2 m + 1), and so via the shift equation, wo
(resp. Wk-I/2 m) is the harmonic dual form to N.

§5. Additional remarks

5.1. In this section we make two variations in our previous con-
structions which will be needed in part II.

First we want to weaken condition (*) of § 1. Suppose that M is a
smooth, compact, oriented n -manifold, and let


