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Abstract

It is shown that the Laplacian on an asymptotically flat manifold is
an isomorphism between certain weighted Sobolev spaces. This is
used to find a necessary and sufficient condition for an asymptotically
flat metric to be conformally equivalent to one with vanishing scalar
curvature. This in turn is used to give an example of a metric which
cannot be conformally deformed within the class of asymptotically
flat metrics to one with zero scalar curvature.

Introduction

The problem of conformally deforming a Riemannian metric to
achieve a specified scalar curvature has received much attention (see
Kazden and Warner [12, 13] and references therein). In this paper a
limited case of this problem is considered. We restrict ourselves to
asymptotically flat metrics (in a sense made precise below) where the
specified scalar curvature is the zero function. We find the situation is
quite different than the compact case (where it is easily shown the
sign of the scalar curvature is a conformal invariant) or the general
open case where one has a great amount of freedom in specifying
scalar curvature.

In particular, in section 2 a necessary and sufficient condition is

given for when an asymptotically flat metric is conformally equivalent
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to an asymptotically flat metric with vanishing scalar curvature. This
criterion is used in section 3 to give an example of a metric on R3
which is not deformable in the class of asymptotically flat metrics to
one with vanishing curvature.
On the other hand, in section 4, it is shown that the deformation is

possible as long as the scalar curvature of g is "not too negative".
The method used in this study depends on a study of the differen-

tial equation (4(n-1)/n-2)0394g~-R(g)~ = 0 where L1g is the

Laplacian operator L1gcp = gij~|i|j and R (g) is the scalar curvature of the
metric g. One needs a positive solution cp which approaches 1

sufficiently rapidly at infinity. In section 1, the necessary existence
and uniqueness theorems foràg are established. It is also shown using
perturbation techniques that it is possible to have the scalar curvature
change sign (Corollary 1.8 below).
Our interest in these metrics (beyond pure mathematical) arises

from various problems in general relativity. One of us (Cantor [6]) has
shown that the solvability of the Lichnerowicz-York equation for
asymptotically flat maximal slices is equivalent to the given metric
being conformally deformable to one with vanishing scalar curvature.
Our definition of asymptotically flat is consistent (when n = 3) with
the one used in general relativity. Also, it should be noted that the

example given in section 3 gives a precise proof of the physics result
that one cannot have an open axi-symmetric maximal slice of a

vacuum spacetime with "too much" gravitational energy (see Brill [1],
Wheeler [15], Eppley [8]).

Also, Hawking [10] in his formulation of the action conjecture for
Euclidean theories of gravity implicitly restricts his attention to those
conformal equivalence classes of asymptotically flat metrics on R 4
which have a scalar flat representative. It easily follows from the
example given in section 3 that this does not include every conformal
class of asymptotically flat metrics.
Throughout this paper we assume n~ 3. Also Wp,s is the usual

space of functions whose first s partial derivatives lie in LP.
The authors would like to thank J. York, R. Schoen and C. Gardner

for useful comments during the formulation of these results.

1. Weighted Sobolev Spaces

DEFINITION (1.1): A n-manifold M is said to have ends if the

complement of a compact set No in M may be written as the disjoint
union M - No = U Ji Ni where each Ni, 1:5 i :5 n, diff eomorphic under
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’Pi to the complement of a unit baIl in IR n. Each Ni for 1 ~ i ~ m is

called an end.

DEFINITION (1.2): Let p~1, sEN, 8 E IR and 03C3(x)=(1+|x|2)1/2.
We say a tensor field V is of class Mp,s if it is locally of class Wp°S and
over each end, Nt, we have

where the coordinates are taken with respect to lpf.

DEFINITION (1.3): Let p, s, 8, and 0" be as in Definition (1.1). We
say a metric g is o f class Rps,03B4 if g is locally o f class wp,s and in the
coordinates given over each end

We can make each Mps,03B4 space a Banach space by setting

where a- is taken to be a C°° positive function which restricts to
(1 + lx |2)1/2 on each end. It is routine to check that 1 Ip,s,8 is a norm on

Mps,03B4 and that the space is complete with respect to this norm.
There are various multiplicative properties of these Mps,03B4 spaces

which we will require. These are summarized below:

LEMMA (1.4): Let Mps,03B4(1)={f:M~R:f-1~Mps,03B4} given the

topology such that the map f ~ f + 1 is continuous. Then for p &#x3E; 1,
s &#x3E; n/p, 0 ~ t ~ s pointwise multiplication induces smooth maps

PROOF: These theorems are well known when M = Rn and 03B4~0

(see Cantor [4, 5, 7]). The extension to more general M and 8 is an

easy exercise. (Also see McOwen [14].) Q.E.D.
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In fact, a stronger version of this lemma exists (see Cantor [7]).

LEMMA (1.5): Let p &#x3E; 1, s &#x3E; nlp, t - 0, and a &#x3E; -n/p. Then

pointwise multiplication induces a continuous map

The following theorem is essential to our analysis of scalar cur-
vature.

THEOREM (1.6): Let s &#x3E; n/p + 2, p &#x3E; 1, -n/p  03B4  -2+n(1-1/p)
and g E R 1,à. Then L1g : S, R) ~ Mps-2,03B4+2(M, R) is an isomorphism.
Also if R~Mps-2,03B4+20394g + R has closed range..

PROOF:

Step 1. L1g is an injection on Mp0,03B1 for a &#x3E; - n/ p.
From distribution theory and standard regularity arguments we see

if u E Mg,« and L1gU = 0 then u E C’. We wish to show u(x)-0 as
x~~ on each end.

Using spherical coordinates (r,0) on each end we find r’~

up(r, 8)rpa+n-t must be in L’ as a function of r. Now pa + n - 1 &#x3E; - l.

It follows that r~up(r, 0) must be integrable. Since u is C’ it follows
u must vanish as r~~ on each end. Thus we can conclude

limace u(x) = 0 on each end.

Suppose Agu = 0, u E Mg,« and u~ 0. Then we may assume u takes
an absolute maximum or minimum at some x0~ M, where /u(xo)/ &#x3E; 0.

However the maximum principle applies to àg and thus we can
conclude u(x) = u (xo) on all of M. This contradicts the fact u van-
ishes at the infinities. Thus 0394g is an injection on Mo,a.

Step 2. L1g + R has closed range.
Let A = L1g + R. We establish the following inequality.

where 2~s’~s and C does not depend on u. To prove this note first
that by Theorem (1.4) of Cantor [5] as extended by McOwen [14] A
has closed range when restricted to functions over an end. (Also see
Cantor [7].) Thus for ~ = 1,..., n there is a Ce such that if supp(u) C
Ne we have
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Also let gio, .pl, ...,.pm be a partition of unity of M such that (Pe is

supported on Ne and ipe = 1 on all but a compact set in Ne. Also we

may assume .po has compact support.
Suppose there is no C so that (1) holds. Then there is a sequence

{ui}~Mps’,03B4 such that ludp,s’,8 = 1 and Aui ~ 0. For each i, we have,
using (2) and standard elliptic estimates

Now 03C80ui is bounded in Wp,s’(supp 03C80) with s’ ~ 1, and so by the
Rellich compactness theorem we may assume by passing to a sub-
sequence that |03C80ui|Lp is Cauchy. Similarly {A03C80ui - 03C80Aui} is a boun-
ded sequence in Wp,s’-1(supp 03C80) (the highest derivatives vanish) and
so may be taken to be Cauchy in Wp,s’-2. For each the sequence
{A03C8~ui- 03C8~Aui} consists of functions all having the same compact
support Bé, C M and so by the previous argument may be taken to be
Cauchy in WP,S-2(Be). Hence f uil has a Cauchy subsequence in

Mps-2,03B4+2. Finally since t/1i E C°° it is clear that /t/1oAud and |03C8~Aui| go to
zero and hence are Cauchy. It follows that by passing to a sub-
sequence we may assume luil is Cauchy in Mps,03B4 and so ui ~ u ~ Mps,03B4.
By continuity Au = 0, but ||p,s,03B4 = 1. This contradicts uniqueness and
the inequality is established.

It follows immediately that for 2~s’~s, A:Mps’,03B4~Mps’-2,03B4+2 has
closed range. We now use the following well-known result on opera-
tors between Banach spaces (see Kato [11], Theorem 5.13).

LEMMA: Let E and F be reflexive Banach spaces and L : E~ F a
bounded operator with closed range. Let L*:F*~E* be the adjoint.
Then L is onto iff L* is injective.
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Step 3. àg : M ps,03B4 - M ps-2,03B4+2 is onto.
We first will show 0394g : Mp2,03B4~ Mp0,03B4+2 is onto. We already know the

range of L1g is closed in Mp0,03B4+2.
Using the coordinate formula for dILg, the volume form determined

by g, we see that IL E Mp0,03B4 if and only if

It is easily shown that (Mp0,03B4+2)* = Mg:-(S+2) where 1/p + 1/p’ = 1.
Now since for v, w E Mp2,03B4

we have (0394g)* = 0394g. Thus 0394g is the surjection onto Mp0,03B4+2 if and only if
it is an injection on Mg"-(8+2). Thus, from step 1, we need check that

-(03B4+2)&#x3E;-n/p’. This follows easily from the assumption 03B4 

-2 + n(1 - 1/p).
To conclude let f E Mps-2,03B4+2 C Mp0,03B4+2. We know there is a u E Mp2,03B4

with L1gu = f. We need to check u E Mps,03B4. This follows from inequality
(1). Q.E.D.

The following result is a modest extension of one of Fischer and
Marsden [9]. They establish the theorem for M = IR n.

THEOREM (1.7): Let p, s, 8 and g be as in Theorem (1.6). Suppose
further that R(g) = 0. Then there is an E &#x3E; 0 such that if IRlp,s-2,8+2  E

than g is conformally equivalent to an asymptotically flat metric g
with scalar curvature R.

PROOF: Setting g = cp4/(n-2)g. We need to solve

We do this using the implicit function theorem. Set
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Using lemmata 4 and 5 we see e is smooth. Also note 03A6(1,0) = 0.
By the implicit function theorem the results follows if

is an isomorphism. However D103A6(1,0)=4(n-1)/(n-2)0394g which is
an isomorphism by the previous theorem.
The fact ~ is positive follows from continuity of the solution and

the Sobolev embedding theorem. Q.E.D.

COROLLARY (1.8) : Let p, s, and 03B4 be as Theorem (1.6). Suppose M
has a metric g~Rps,03B4 such that R(g) = 0. Then there exist two con-
f ormally equivalent asymptotically fiat metrics, gi and g2, on M such
that R(g1)&#x3E;0, R(g2)0.

PROOF: Let ~ &#x3E; 0 be given as in Theorem (1.7). Let R1&#x3E;0 with

|R1|p,s-2,03B4+2  ~ and R2  0 with IR2/p,s-2,8+2  ~. Let ~i be the solutions
of 4(n-1)/(n-2)0394g~+Rl~(n+2)/(n-1)=0 guaranteed by the proof of
Theorem (1.7). Set gi = cpi!(n-2)g. Q.E.D.

2. Conformai déformation to zéro scalar curvature

In this section we present a necessary and sufficient condition for
an asymptotically flat metric to be conformally equivalent to another
asymptotically flat metric with zero scalar curvature. In what follows
R(g) is the scalar curvature of g, and ( , )g is the inner product given
by g.

THEOREM (2.1): Let 1p2n/(n - 2),-n/p03B4-2+n(1-1/p),
s &#x3E; n/p + 2, and g E Rps,03B4. The following are equivalent :
(I) For all f E C~0, f~ 0, we have

(II) There is a g E Rps,03B4 such that g is conformally equivalent to g and
R() = 0.

PROOF: We will write g = ~4/(n-2)g. It is well known that statement
(II) is equivalent to finding a solution of the following problem (see
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Kazden and Warner [12]):

Using Lemma (1.4) one can show that ~-1~Mps,03B4 insures that

g E Mps,03B4. Thus we need show that (4) has a solution if and only if (I)
is satisfied.

Let us assume (4) has a solution cp. Let f ~ C~0. Since cp &#x3E; 0 we may

write f = cpu where u ~ C~0. Now

and

Thus, integrating by parts, we find

Hence, since cp &#x3E; 0, if f ~ 0 we have

Using the fact that cp satisfies (4) we get
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We now show that (I) implies (II). Let A03BB = 0394g - ÀR. We will first
show that for À E [0, 1], if (I) holds then A03BB is an injection on Mp,,«
with s’~ s and a &#x3E; -n/p. Note since p  2n/(n - 1), then if u E Mps’,03B1,
Vgu E L2 (see Cantor [5, 6]).
Suppose u ~Mps,03B1 and AÀu = 0. Let {ui}~ C~0 with ui~u in M P

Then for each i,

Integration by parts yields

Now since ui~u in Mps,03B4 we have ~gui~~gu in L2, and using
standard Sobolev theorems ui - u uniformly. Also we may assume
for each x E M IUi(X)1  2Iu(x)l. Since R(g) E Mps-2,03B4+2 one may show
that R(g)u2 E L’. Thus using the dominated convergence theorem we
may take the limit on both sides of (6) and conclude that

If À = 0 we see fM (Vgu, Vgu) dii, = 0. It follows u = 0.
If 03BB~0 one may show using (I) and (7) that

If u~0 it follows from (8) that 03BB&#x3E;1, which contradicts our

assumption that À :5 1 and so in all cases u = 0.
We wish to show AI is an onto map. To do this we use the

following well known lemma, usually called the continuity method.
(See Cantor [5].)

LEMMA: Let E, F be Banach spaces and for À E [0, 1], 03BB ~ L,, is a
continuous family of bounded linear operators from E to F. Suppose
Lo is an isomorphism and that for each À E [0, 1], LÀ is an injection
with closed range. Then LÀ is an isomorphism for all À E [0, 1].
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We apply this lemma to A03BB: M sp,8 ~ M?-2,g+2. From Theorem (1.6) we
see the hypotheses of the lemma are satisfied.
Now to solve (4), write cp = q; + 1. To find §3 we have to solve

However since R(g) E Mps-2,03B4+2, it follows from the above result

that - exists and is unique.
To finish we need show our solution cp to (4) is positive. We know,

in fact, for À E [0, 1] there is a ’PA such that 4(n - 1)/(n - 2)L1g’PA -
03BBR~03BB = 0 and ’PA - 1 E Mps,03B4. Also ’PA depends continuously on À in the
C° topology. Note that ço = 1 and so if any ~03BB has a zero there is a
Ào E [0, 1] such that ~03BB0 ~ 0 and there is an xo E M such that ~03BB0(x0) = 0.
At this point we have 0394g~03BB0(x0) = ÀoR(g)W4(xo) = 0. It is well known

that this is impossible (see, for example, Cantor [6]). Thus ~03BB &#x3E; 0 for

all À and in particular cp = ~1 is positive. Q.E.D.

3. An example

In this section we present examples of asymptotically flat metrics
which are not conformally deformable to zero curvature. Let M = R 3
be described in cylindrical coordinates r, z, 0, and let the metric have
the axially symmetric form

Here A is a constant and q is an arbitrary function of r and z, except
for the following conditions: For regularity at the origin we require
q = 0 = qr at the origin. For simplicity we further assume that q E C~0
and has compact support. In this case the scalar curvature is given by
(Brill [1959])

Now let cp = Aq. Then

If condition (I) of Theorem (2.1) holds, then the inequality would hold
in particular for f = cp. But we wish to show that for A sufficiently
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large,

that is

Now we compute

Integration by parts of the second term in the bracket gives

The last integral vanishes because the integrand is the (two-dimen-
sional) divergence of (2/3)A 2q3 al ar, and q has compact support. The
first integral can clearly be made negative by choosing A sufficiently
large. It then follows that KO. Thus we may conclude that for A

sufficiently large, metrics of form (9) may not be conformally defor-
med to an asymptotically flat metric with zero scalar curvature.

Also note that violation of condition (1) of Theorem (2.1) is an

open condition in RP,5. Hence there is a non-empty open set of

asymptotically flat metrics on Rn which are not deformable to

asymptotically flat scalar flat metrics.

4. The |R(g)|n/2 criterion

It follows immediately from Theorem (2.1) that if g is asymptotic-
ally flat and R(g)~0 then g is conformally equivalent to an asymp-
totically flat metric with zero scalar curvature. This result is already
known (see Cantor [6]). However, it also follows from Theorem (2.1)
that the condition that R(g) ~ 0 may be weakened to allow some
negative scalar curvature. We first prove a Sobolev-type lemma.

LEMMA (4.1): Let M be a manifold with ends. Let g be a Rieman-
nian metric on M such that if gij is the coordinate expression g, gij - 5ij
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is bounded on each end and for each end there is a B &#x3E; 0 such that

for all 1 E Rn. Then if q &#x3E; 1 and 1/p = 1/q - 1/n, there is a C &#x3E; 0 such
that for all f E C~0(M, R), we have

PROOF: For convenience, denote the left hand side of (10) by |f|p
and the right hand side by |~gf|g. These are both norm functions on
C~0. Also we will denote all large constants by C.
Now let .po, ...,.pm be the partition of unity defined in the proof of

Theorem (1.6). As shown in Cantor [2] there is a C such that for each
i

Thus for f E Cô,

Now, we may use the Poincaré inequality on the compact set

containing the union of the supports of the V gtPi’S to establish

Also

Thus

THEOREM (4.2): Let g be an asymptotically flat metric on M satis-
fying the hypotheses of Theorem (2.1). Then if C is the constant of
Lemma (4.1), and if
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g is conformally equivalent to an asymptotically flat metric with zero
scalar curvature.

PROOF: We show that under the hypothesis of this theorem that (I)
of Theorem (2.1) is satisfied. Let f E Cô, then using Hôlder’s in-

equality

Note we have used the fact that the integral over f x E M : R(g)(x) ~
01 of |f|2n/n-2 is dominated by the integral over M. We now apply
Lemma (4.1) to conclude

Thus condition (I) of Theorem (2.1) is satisfied if

which holds by hypothesis. Q.E.D.
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