D. W. CURTIS

Hyperspaces of noncompact metric spaces

Compositio Mathematica, tome 40, no 2 (1980), p. 139-152

<http://www.numdam.org/item?id=CM_1980__40_2_139_0>
0. Introduction

For a metric space X, the hyperspace 2^X of nonempty compact subsets and the hyperspace $C(X)$ of nonempty compact connected subsets are topologized by the Hausdorff metric, defined by $\rho(A, B) = \inf\{\varepsilon : A \subseteq N_\varepsilon(B) \text{ and } B \subseteq N_\varepsilon(A)\}$. It is easily seen that the hyperspace topologies induced by ρ are invariants of the topology on X. It is known that $2^X \approx Q$, the Hilbert cube, if and only if X is a non-degenerate Peano continuum, and $C(X) \approx Q$ if and only if X is a nondegenerate Peano continuum with no free arcs [6]. In this paper we obtain various characterization theorems for hyperspaces of non-compact connected locally connected metric spaces.

Theorem 1.6: 2^X is an ANR (AR) if and only if X is locally continuum-connected (connected and locally continuum-connected).

Theorem 3.3: $2^X \approx Q\text{point}$ if and only if X is noncompact, connected, locally connected, and locally compact.

Theorem 4.2: X admits a Peano compactification \hat{X} such that $(2^{\hat{X}}, 2^X) = (Q, s)$ if and only if X is topologically complete, separable, connected, locally connected, nowhere locally compact, and admits a metric with Property S.

Analogous results are obtained for $C(X)$. Additionally, we discuss two examples relating to local continuum-connectedness, and an example relating to Property S.
1. Hyperspaces which are ANR's

A growth hyperspace \mathcal{G} of a metric space X is any closed subspace of 2^X satisfying the following condition: if $A \in \mathcal{G}$ and $B \in 2^X$ such that $B \supset A$ and each component of B meets A, then $B \in \mathcal{G}$. Both 2^X and $C(X)$ are growth hyperspaces of X. Another growth hyperspace of particular interest is $\mathcal{G}_A(X)$, the smallest growth hyperspace containing $A \in 2^X$. Thus $\mathcal{G}_A(X) = \{B \in 2^X : B \supset A \text{ and each component of } B \text{ meets } A\}$. Growth hyperspaces of Peano continua were studied in [4].

Lemma 1.1: (Kelley [11]). Let $A, B \in 2^X$ such that $B \in \mathcal{G}_A(X)$ and B has finitely many components. Then there exists a path $\sigma : I \to \mathcal{G}_A(B)$ such that $\sigma(0) = A$ and $\sigma(1) = B$.

Definition: A metric space X is continuum-connected if each pair of points in X is contained in a subcontinuum. X is locally continuum-connected if it has an open base of continuum-connected subsets.

Note that in verifying the local property it is sufficient to produce, for each neighborhood U of a point x, a neighborhood $V \subset U$ of x such that each $y \in V$ is connected to x by a subcontinuum in U. For topologically complete metric spaces, the properties of local connectedness, local continuum-connectedness, and local path-connectedness are equivalent, since every complete connected locally connected metric space is path-connected. Examples given later show that in general these properties are not equivalent.

Lemma 1.2: Let $A \in 2^X$, with X a locally continuum-connected metric space. Then for arbitrary $\epsilon > 0$ there exists $\tilde{A} \in \mathcal{G}_A(X)$ such that $\rho(A, \tilde{A}) < \epsilon$ and \tilde{A} has finitely many components.

Proof: For each $n \geq 1$ choose $\epsilon_n > 0$ such that, whenever $x \in A$ and $y \in X$ with $d(x, y) < \epsilon_n$, there exists a continuum in X connecting x and y with diameter less than $\min\{1/n, \epsilon\}$. For each n let $A_n \subset A$ be a finite ϵ_n-net for A. Then for each $p \in A_{n+1}$ there exists a continuum L_p in X with diameter less than $\min\{1/n, \epsilon\}$, connecting p and some point of A_n. Set $\tilde{A}_1 = A_1$ and $\tilde{A}_{n+1} = \cup \{L_p : p \in A_{n+1}\}$ for each $n \geq 1$. Then $\tilde{A} = \text{cl}(\cup \tilde{A}_n) = \cup \tilde{A}_n \cup A$ has the required properties (note that each component of \tilde{A} meets the finite subset A_1).

Lemma 1.3: Let X be a connected and locally continuum-con-
nected metric space. Then every compact subset is contained in a continuum.

PROOF: Let A be a compact subset of X. There exists by Lemma 1.2 a compact set $\tilde{A} \supset A$ such that \tilde{A} has finitely many components. It is easily seen that X is continuum-connected. Thus the components of \tilde{A} may be connected together by the addition of a finite collection of subcontinua of X, thereby producing a continuum $B \supset \tilde{A} \supset A$.

Lemma 1.4: If X is a locally continuum-connected metric space, then every growth hyperspace \mathcal{G} of X is locally path-connected.

PROOF: Given $A \in \mathcal{G}$ and $\epsilon > 0$, choose $\delta > 0$ such that whenever $x \in A$ and $y \in X$ with $d(x, y) < \delta$, there exists a continuum in X of diameter less than ϵ connecting x and y. We claim that for any $B \in \mathcal{G}$ with $\rho(A, B) < \delta$, there exists a path $\sigma: [0, 1] \to \mathcal{G}$ between A and B, with $\rho(A, \sigma(t)) < \epsilon$ for each t. We may assume by Lemmas 1.1. and 1.2 that each of A and B has finitely many components. Adding a finite collection of continua to $A \cup B$, which connect each component of A to B and each component of B to A, and all of which have diameter less than ϵ, we obtain an element $C \in \mathcal{G}_A(X) \cap \mathcal{G}_B(X)$ such that $\rho(A, C) < \epsilon$. Then paths between A and C, and B and C, given by Lemma 1.1, will provide the desired path.

Lemma 1.5: Let $\mathcal{D} \subset 2^X$ be compact and connected, and let $A \in \mathcal{D}$. Then $\cup \mathcal{D} \in \mathcal{G}_A(X)$.

PROOF: Clearly, $\cup \mathcal{D}$ is a compact subset of X and contains A. We show that each component of $\cup \mathcal{D}$ meets A. Let $x \in D \in \mathcal{D}$ be given. For each $\epsilon > 0$ there exists an ϵ-chain $\{D_i\}$ in \mathcal{D} between D and A, and therefore an ϵ-chain $\{q_i\}$ in $\cup \mathcal{D}$ between x and some point of A. Since A is compact, there exists $a \in A$ such that for each $\epsilon > 0$, there is an ϵ-chain in $\cup \mathcal{D}$ between x and a. Then x and a are in the same quasi-component, hence the same component, of $\cup \mathcal{D}$.

Theorem 1.6: If X is locally continuum-connected (connected and locally continuum-connected), then every growth hyperspace \mathcal{G} of X is an ANR (AR). Conversely, if there exists a growth hyperspace \mathcal{G} such that $\mathcal{G} \supset C(X)$ and \mathcal{G} is an ANR (AR), then X is locally continuum-connected (connected and locally continuum-connected).

PROOF: We use the Lefschetz–Dugundji characterization of metric
ANR's [9]: a metric space M is an ANR if and only if, for each open cover α of M, there exists an open refinement β such that every partial β-realization in M of a simplicial polytope K (with the Whitehead topology) extends to a full α-realization of K. Thus, let α be an open cover of \mathcal{G}, and assume that the elements of α are open metric balls, with respect to the Hausdorff metric on \mathcal{G}. Take an open star-refinement α' of α. By Lemma 1.4 there exists an open refinement β of α' such that each element of β is path-connected.

Then every partial β-realization $f : L \to \mathcal{G}$ of a polytope K extends to a partial α-realization $g : L \cup K^1 \to \mathcal{G}$, where K^1 is the 1-skeleton of K. Using Lemma 1.5, we may extend g to a full α-realization $h : K \to \mathcal{G}$ by the following inductive procedure. Consider an n-simplex σ of K, $n \geq 2$, such that h has been defined over $\partial \sigma$. Let $r : \sigma \to C(\partial \sigma)$ be any extension of the natural injection $\partial \sigma \to C(\partial \sigma)$. Then define h over σ by setting $h(x) = \cup \{h(p) : p \in r(x)\}$. Thus \mathcal{G} is an ANR.

If additionally X is connected, then by Lemma 1.3 every compact subset of X is contained in a continuum. Thus for arbitrary $A, B \in \mathcal{G}$, there exists a continuum C containing $A \cup B$, and $C \in \mathcal{G}$. By Lemma 1.1. there exist paths in $\mathcal{G}_A(C)$ from A to C and in $\mathcal{G}_B(C)$ from B to C, hence a path in \mathcal{G} between A and B. Thus \mathcal{G} is path-connected. Since the argument of the preceding paragraph shows that \mathcal{G} is always n-connected for $n \geq 1$, it follows that \mathcal{G} is an AR.

Conversely, suppose there exists a growth hyperspace \mathcal{G} of X such that $\mathcal{G} \supseteq C(X)$ and \mathcal{G} is an ANR. Let $x \in X$ and a neighborhood U be given. Since \mathcal{G} is locally path-connected, there exists a neighborhood V of x such that for each $y \in V$, there exists a path $f : I \to \mathcal{G}$ between $\{x\}$ and $\{y\}$ with each $f(t) \subset U$. By Lemma 1.5, $\cup \{f(t) : t \in I\} \subset U$ is a continuum. Thus X is locally continuum-connected. And if \mathcal{G} is an AR, and therefore connected, X must also be connected.

The ANR (AR) characterizations for the hyperspaces 2^X and $C(X)$ of a compact metric space X were obtained by Wojdyslawski [15]. These characterizations were extended to complete metric spaces by Tašmetov [13]. Independently, some partial results along these lines were announced by Borges [3].

The following examples show that for noncomplete metric spaces, the property of local continuum-connectedness lies strictly between local connectedness and local path-connectedness.

Example 1.7: There exists a connected and locally connected subset of the plane which is not locally continuum-connected.

Proof: There exist disjoint subsets A and B of the plane E^2 such
that every nondegenerate continuum in the plane meets both \(A \) and \(B \) ([10], p. 110). Thus \(A \) contains no nondegenerate subcontinuum, and is not locally continuum-connected. However, \(A \) is connected and locally connected. Suppose \(A = A_1 \cup A_2 \) is a separation. Then there exists a closed subset \(C \) of the plane separating \(A_1 \) and \(A_2 \). Since \(C \) cannot be 0-dimensional, it contains a nondegenerate subcontinuum \(D \). Then \(D \) must meet \(A \), impossible. Thus \(A \) is connected, and the same argument applied locally shows that \(A \) is locally connected.

Example 1.8: There exists a connected and locally continuum-connected subset of the plane which is not locally path-connected.

Proof: We begin with the continuum

\[
S = \{(x, \sin 1/x) : 0 < |x| \leq 1/\pi\} \cup \{(0,t) : |t| \leq 1\}.
\]

A countable collection \(\{S_i\} \) of progressively smaller copies of \(S \) is then fitted inside the individual loops of \(S \) as indicated, creating local continuum-connectedness on the limit segment \(L = \{(0,t) : |t| \leq 1\} \subset S \). Then for each \(i \), a countable collection \(\{S_{ij}\} \) of copies of \(S \) is similarly fitted inside the loops of \(S_i \). The infinite iteration of this procedure produces the desired space \(X = S \cup (\cup \{S_i : i \geq 1\}) \cup (\cup \{S_{ij} : i, j \geq 1\}) \cup \ldots \).

\(X \) is connected and locally continuum-connected. However, \(X \) is not locally path-connected at any point on a limit segment such as \(L \). It suffices to show that there exists no path in \(X \) between the endpoints \(a = (-1/\pi, 0) \) and \(b = (1/\pi, 0) \). Suppose there exists such a path \(\sigma \). Then for some \(i \) (in fact, for infinitely many \(i \)), \(\sigma \) must contain a subpath \(\sigma_i \) in \(S_i \cup (\cup \{S_{ij} : j \geq 1\}) \cup \ldots \) between the corresponding endpoints \(a_i \) and \(b_i \) of \(S_i \). By the same argument \(\sigma_i \) must contain a subpath \(\sigma_{ij} \) in some \(S_{ij} \cup (\cup \{S_{ijk} : k \geq 1\}) \cup \ldots \) between the endpoints \(a_{ij} \) and \(b_{ij} \) of \(S_{ij} \). Thus the path \(\sigma \) must pass through each
member of some nested sequence \((S_i, S_{ij}, S_{ijk}, \ldots)\). But this is impossible, since the limit point of such a sequence is not included in \(X\).

2. Peano compactifications with locally non-separating remainders

Since \(2^Y \approx Q\) for every non-degenerate Peano space \(Y\), one way to study the hyperspace of a noncompact space \(X\) is to consider, when possible, a Peano compactification \(\bar{X}\) of \(X\), and the corresponding \(Q\)-compactification \(2^\bar{X}\) of \(2^X\). The procedure works if the remainder \(\bar{X} \setminus X\) is sufficiently “nice”. In this section we specify the desired property of the remainder, and establish the conditions under which such a compactification exists.

Definition: A subset \(A\) of \(X\) is locally non-separating in \(X\) if, for each nonempty connected open subset \(U\) of \(X\), \(U \cap A\) is nonempty and connected.

Note that if \(A\) is locally non-separating, so is every subset of \(A\). It is easily shown that if a locally connected space \(X\) has a connected open base \(\{U_a\}\) such that each \(U_a \cap A\) is nonempty and connected, then \(A\) is locally non-separating.

The motivation for considering locally non-separating subsets comes from the following pair of results on positional properties of intersection hyperspaces. For \(A_1, \ldots, A_n \in 2^X\), we define the intersection hyperspaces \(2^X(A_1, \ldots, A_n) = \{F \in 2^X : F \cap A_i \neq \emptyset \text{ for each } i\}\) and \(C(X; A_1, \ldots, A_n) = \{F \in C(X) : F \cap A_i \neq \emptyset \text{ for each } i\}\). For any nondegenerate Peano space \(X\), \(2^X(A_1, \ldots, A_n) \approx Q\), and \(C(X; A_1, \ldots, A_n) \approx Q\) if additionally \(X\) contains no free arcs [7]. A closed subset \(F\) of a metric space \(Y\) is a \(Z\)-set in \(Y\) if, for each compact subset \(K\) of \(Y\) and \(\varepsilon > 0\), there exists a map \(\eta : K \to Y \setminus F\) with \(d(\eta, id) < \varepsilon\).

Proposition 2.1: Let \(A\) be a closed subset of a Peano continuum \(X\). Then \(2^X(A)\) is a \(Z\)-set in \(2^X\) if and only if \(A\) is locally non-separating in \(X\). More generally, for closed subsets \(A, B_1, \ldots, B_n\) of \(X\), \(2^X(A, B_1, \ldots, B_n)\) is a \(Z\)-set in \(2^X(B_1, \ldots, B_n)\) if and only if \(A\) is locally non-separating in \(X\) and \(B_i \setminus A\) is dense in \(B_i\) for each \(i\).

Proof: Suppose \(A\) satisfies the stated conditions, and let \(\varepsilon > 0\) be given. We must construct a map \(\eta : 2^X(B_1, \ldots, B_n) \to 2^X(B_1, \ldots, B_n) \setminus 2^X(A, B_1, \ldots, B_n)\) such that \(\rho(\eta, id) < \varepsilon\). For each \(i\), there exists a finite \(\varepsilon/3\)-net \(\beta_i\) for \(B_i\) such that \(\beta_i \subset B_i \setminus A\). By [7], there
exists an “expansion” map \(h : 2^X(B_1, \ldots, B_n) \to 2^X(\beta_1, \ldots, \beta_n) \) such that \(\rho(h, id) \leq \varepsilon/3 \). And by \([8]\), \(2^X(\beta_1, \ldots, \beta_n) = \text{inv lim } (2^{\Gamma_i}(\beta_1, \ldots, \beta_n), f_i) \), where \(\{\Gamma_i\} \) is a sequence of compact connected graphs in \(X \), with each \(\Gamma_i \) containing \(\beta_1 \cup \ldots \cup \beta_n \) in its vertex set, and each bonding map \(f_i : 2^{\Gamma_{i+1}}(\beta_1, \ldots, \beta_n) \to 2^{\Gamma_i}(\beta_1, \ldots, \beta_n) \) induced by a map \(\varphi_i : \Gamma_{i+1} \to C(\Gamma_i) \) such that \(\varphi_i(b) = \{b\} \) for each \(b \in \beta_1 \cup \ldots \cup \beta_n \). Thus for some \(i \) the projection map \(p_i : 2^X(\beta_1, \ldots, \beta_n) \to 2^{\Gamma_i}(\beta_1, \ldots, \beta_n) \) satisfies \(\rho(p_i, id) < \varepsilon/3 \).

Let \(\mathcal{U} \) be a finite cover of \(\Gamma_i \) by connected open subsets of \(X \) with diameters less than \(\varepsilon/3 \). There exists a subdivision \(Sd\Gamma_i \) of \(\Gamma_i \) such that each simplex of \(Sd\Gamma_i \) is contained in a member of \(\mathcal{U} \). To each vertex \(v \) of \(Sd\Gamma_i \) we assign a point \(\kappa(v) \in \bigcap \{U \in \mathcal{U} : v \in U\} \setminus A \), with \(\kappa(b) = b \) if \(b \in \beta_1 \cup \ldots \cup \beta_n \). Then \(\kappa \) may be extended to a map \(\kappa : Sd\Gamma_i \to X \setminus A \) such that, for each simplex \(\sigma \) of \(Sd\Gamma_i \), \(\kappa(\sigma) \subset U \setminus A \) for some \(U \in \mathcal{U} \) with \(\sigma \subset U \) (we use the fact that each \(U \setminus A \) is connected, locally connected, and locally compact, therefore path-connected). Thus \(d(\kappa, id) < \varepsilon/3 \), and the induced map \(k : 2^{\Gamma_i}(\beta_1, \ldots, \beta_n) \to 2^{X \setminus A}(\beta_1, \ldots, \beta_n) \) satisfies \(\rho(k, id) < \varepsilon/3 \). The composition \(kp_i h : 2^X(B_1, \ldots, B_n) \to 2^{X \setminus A}(\beta_1, \ldots, \beta_n) \subset 2^X(B_1, \ldots, B_n) 2^X(A, B_1, \ldots, B_n) \) satisfies \(\rho(kp_i h, id) < \varepsilon \), and \(2^X(A, B_1, \ldots, B_n) \) is a \(Z \)-set in \(2^X(B_1, \ldots, B_n) \).

Conversely, suppose the \(Z \)-set condition is satisfied. Then each \(B_i \setminus A \) must be dense in \(B_i \) otherwise \(2^X(A, B_1, \ldots, B_n) \) has a nonempty interior in \(2^X(B_1, \ldots, B_n) \). For each \(i \), choose \(b_i \in B_i \setminus A \). Given a neighborhood \(U \) of a point \(y \in A \), let \(V \) be a connected open neighborhood of \(y \) such that \(V \subset U \setminus \{b_1, \ldots, b_n\} \). We show that \(V \setminus A \) is connected, thus \(A \) is locally non-separating. Suppose \(V \setminus A = V_0 \cup V_1 \) is a separation. There exists a continuum \(M \) in \(V \) such that \(M \cap V_0 \neq \emptyset \neq M \cap V_1 \). Let \(\mathcal{F} = \{F \in 2^X(M) : F \setminus M = \{b_1, \ldots, b_n\}\} \). Then \(\mathcal{F} \) is homeomorphic to the connected hyperspace \(2^M \), and \(\mathcal{F} \subset 2^X(B_1, \ldots, B_n) \). For each \(\varepsilon > 0 \) there exists a map \(\eta : \mathcal{F} \to 2^X \setminus 2^X(A) \) with \(\rho(\eta, id) < \varepsilon \). If \(\varepsilon \) is sufficiently small, there exist elements \(F_0, F_1 \in \mathcal{F} \) such that \(\eta(F_0) \cap V_0 \neq \emptyset \) and \(\eta(F_1) \cap V_0 = \emptyset \), and \(\eta(F) \cap bd V = \emptyset \) for every \(F \in \mathcal{F} \). Then \(\eta(\mathcal{F}) = \{\eta(F) : \eta(F) \cap V_0 \neq \emptyset\} \cup \{\eta(F) : \eta(F) \cap V_0 = \emptyset\} \) is a separation of the connected space \(\eta(\mathcal{F}) \), impossible.

Proposition 2.2: Let \(A, B_1, \ldots, B_n \) be closed subsets of a Peano continuum \(X \). Then \(C(X; A, B_1, \ldots, B_n) \) is a \(Z \)-set in \(C(X; B_1, \ldots, B_n) \) if and only if \(A \) is locally non-separating in \(X \) and \(B_i \setminus A \) is dense in \(B_i \) for each \(i \).

Proof: The argument for obtaining the \(Z \)-set property is the exact
parallel of the corresponding argument in the proof of Proposition 2.1. For the converse, suppose \(C(X; A, B_1, \ldots, B_n) \) is a \(Z \)-set in \(C(X; B_1, \ldots, B_n) \). Actually, we only use the fact that \(C(X; A, B_1, \ldots, B_n) \) has empty interior in \(C(X; B_1, \ldots, B_n) \). It is immediate that each \(B_i \setminus A \) must be dense in \(B_i \), and \(X \setminus A \) must be connected. Thus there exists a connected open set \(G \) in \(X \setminus A \) such that \(G \cap B_i \neq \emptyset \) for each \(i \) and \(G \cap A = \emptyset \). Given a neighborhood \(U \) of a point \(y \in A \), let \(V \) be a connected open neighborhood of \(y \) such that \(\overline{V} \subset U \setminus \overline{G} \), and choose \(\epsilon > 0 \) such that \(N_{\epsilon}(V) \subset U \). Let \(\mathcal{W} = \{ V \setminus A, G, W_1, W_2, \ldots \} \) be an open cover of \(X \setminus A \) such that each \(W_i \) is connected and has diameter less than \(\epsilon \). By connectedness of \(X \setminus A \), we obtain a chain in \(\mathcal{W} \) between \(V \setminus A \) and \(G \), which in turn leads to connected open sets \(H \) and \(W \) in \(X \setminus A \) such that \(H \supset G, H \cap V = \emptyset, H \cap W \neq \emptyset \neq W \cap V \), and \(\text{diam } W < \epsilon \). Then \(V \cup W \subset U \) is a connected open neighborhood of \(y \), and we claim that \((V \cup W) \setminus A \) is connected. If there exists a separation \((V \cup W) \setminus A = V_0 \cup V_1 \), with the connected set \(W \) contained in \(V_1 \), then \((V \cup W \cup H) \setminus A = V_0 \cup (V_1 \cup H) \) is also a separation. However, there exists a continuum \(K \) in the connected open set \(V \cup W \cup H \) which meets each \(B_i \), and also meets the open sets \(V_0 \) and \(V_1 \). Then \(K \) is in the interior of \(C(X; A, B_1, \ldots, B_n) \) in \(C(X; B_1, \ldots, B_n) \), impossible.

Definition: A metric \(d \) for a space \(X \) has Property S if, for each \(\epsilon > 0 \), there exists a finite connected cover of \(X \) with mesh less than \(\epsilon \).

If \(X \) admits a metric with Property S, then \(X \) is locally connected. Without added conditions, the converse is not true (see Lemma 3.2 and Example 4.3).

Definition: A metric \(d \) for a connected space \(X \) is strongly connected if, for each \(x, y \in X \), \(d(x, y) = \inf \{ \text{diam } M : M \text{ is a connected subset containing } x \text{ and } y \} \).

A convex metric on a Peano continuum is an example of a strongly connected metric. If \(X \) admits a strongly connected metric, then \(X \) is locally connected. Conversely, the proof of the following lemma shows that every connected, locally connected metric space admits a strongly connected metric.

Lemma 2.3: Let \(X \) be a connected metric space which admits a metric with Property S. Then \(X \) admits a strongly connected metric with Property S.
PROOF: Let d be a metric with Property S. Define a topologically equivalent metric d^* for X by $d^*(x, y) = \inf\{\text{diam } M : M \text{ is a connected subset of } X \text{ containing } x \text{ and } y\}$. It is easily verified that d^* is a metric function. Since $d^*(x, y) \geq d(x, y)$, every open set with respect to d is open with respect to d^*. The converse is easily established, using the local connectedness of X. And since the diameters of connected subsets are the same with respect to d and d^*, d^* is strongly connected and has Property S.

PROPOSITION 2.4: A connected metric space X has a Peano compactification \hat{X} with a locally non-separating remainder $\hat{X} \setminus X$ if and only if X admits a metric with Property S.

PROOF: Suppose X admits a metric d with Property S. We may assume by Lemma 2.3 that d is also strongly connected. Then the completion (\hat{X}, \hat{d}) of (X, d) is the desired Peano compactification. That (\hat{X}, \hat{d}) is connected and has Property S follows from the same properties for (X, d). And since a complete, totally bounded metric space is compact, (\hat{X}, \hat{d}) is a Peano compactification of (X, d).

Given a nonempty connected open subset U of \hat{X}, we show that the nonempty set $U \cap X$ is connected, thereby verifying that $\hat{X} \setminus X$ is locally non-separating in \hat{X}. Suppose $U \cap X = H \cup K$ is a separation. Since U is open in \hat{X}, $U \cap X$ is dense in U, and $U \subset \overline{H} \cup \overline{K}$ (the closures are taken in \hat{X}). We must have $\overline{H} \cap \overline{K} \cap U \neq \emptyset$, otherwise $U = (\overline{H} \cap U) \cup (\overline{K} \cap U)$ is a separation. Let $p \in \overline{H} \cap \overline{K} \cap U$. Choose $\delta > 0$ such that the 3δ-neighborhood of p lies in U, and choose points h and k of H and K, respectively, lying in the δ-neighborhood of p. Then $d(h, k) < 2\delta$, and since d is strongly connected there exists a connected subset M of X containing h and k, with $\text{diam } M < 2\delta$. Then M lies in the 3δ-neighborhood of p, therefore in U. Thus $M \subset U \cap X$ is a connected set meeting both H and K, and $H \cup K$ cannot be a separation of $U \cap X$.

Conversely, suppose X has a Peano compactification \hat{X} such that $\hat{X} \setminus X$ is locally non-separating. Take any admissible metric \hat{d} on \hat{X}, and let d be its restriction to X. For every connected open cover $\{U_i\}$ of \hat{X}, $\{U_i \cap X\}$ is a connected cover of X. Since (\hat{X}, \hat{d}) has finite connected open covers with arbitrarily small mesh, so does (X, d), and d has Property S.
3. Hyperspaces which are homeomorphic to $Q\setminus \text{point}$

Lemma 3.1: Let X be a connected, locally connected metric space, with compact subsets A and B such that $A \subset \text{int } B$. Then only finitely many components of the complement $X \setminus A$ meet $X \setminus B$.

Proof: Each component U of $X \setminus A$ must have a limit point in A, otherwise U is both open and closed in X. Thus if $U \setminus B \neq \emptyset$, we must have $U \cap bdB = \emptyset$. Suppose there exists an infinite sequence $\{U_i\}$ of distinct components of $X \setminus A$, each extending beyond B. Choose $y_i \in U_i \cap bdB$ for each i. By compactness of bdB, we may assume that $y_i \to y \in bdB$. Since y has a connected neighborhood in $X \setminus A$, the component of $X \setminus A$ containing y meets U_i for almost all i, contradicting our supposition that the U_i are distinct components.

Lemma 3.2: Every connected, locally connected, locally compact metric space admits a metric with Property S.

Proof: Let $\tilde{X} = X \cup \infty$ be the one-point compactification of such a space X. Then \tilde{X} is metrizable, since X is separable metric. We claim that for any admissible metric d on \tilde{X}, the restriction of d to X has Property S (and therefore \tilde{X} is a Peano continuum). Given $\epsilon > 0$, choose a compact subset $A \subset X$ such that the complement $X \setminus A$ lies in the ϵ-neighborhood of ∞, and let $B \subset X$ be a compact neighborhood of A. Then by Lemma 3.1, only finitely many components of $X \setminus A$ extend beyond B. Thus a finite connected cover of B with mesh less than ϵ, together with the finite collection of components of $X \setminus A$ extending beyond B, provides a finite connected cover of X with mesh less than ϵ.

Theorem 3.3: $2^X \approx Q\setminus \text{point}$ if and only if X is a connected, locally connected, locally compact, noncompact metric space. Similarly, $C(X) \approx Q\setminus \text{point}$ if and only if X satisfies the above conditions and contains no free arcs.

Proof: Suppose X satisfies the stated conditions. By Lemma 3.2, X admits a metric with Property S, and by Proposition 2.4, X has a Peano compactification \tilde{X} with locally non-separating remainder. Since X is locally compact it must be open in its compactification \tilde{X}, and the remainder $\tilde{X} \setminus X$ is closed. By Proposition 2.1, the intersection hyperspace $2^{\tilde{X}}(\tilde{X} \setminus X)$ is a Z-set in $2^{\tilde{X}}$. Thus $(2^{\tilde{X}}, 2^{\tilde{X}}(\tilde{X} \setminus X))$ and $(Q \times [0, 1], Q \times \{0\})$ are homeomorphic as pairs, and $2^X = 2^{\tilde{X}} \setminus 2^{\tilde{X}}(\tilde{X} \setminus X)$ is
homeomorphic to $Q \times (0, 1]$, which is homeomorphic to $Q \setminus \text{point}$ (since Cone $Q = Q$).

If in addition X contains no free arcs, then neither does \tilde{X}, and the hyperspaces $C(\tilde{X})$ and $C(\tilde{X}; \tilde{X}\setminus X)$ are copies of Q. By Proposition 2.2, $C(\tilde{X}; \tilde{X}\setminus X)$ is a Z-set in $C(\tilde{X})$, and it follows as above that $C(X) \approx Q \setminus \text{point}$.

Conversely, if either 2^X or $C(X)$ is homeomorphic to $Q \setminus \text{point}$, X must be a connected, locally connected metric space by Theorem 1.6. Since X has a closed imbedding into both 2^X and $C(X)$, X must be locally compact. Obviously, X is noncompact, and if $C(X) \approx Q \setminus \text{point}$, X contains no free arcs (otherwise $C(X)$ contains an open 2-cell).

4. Hyperspaces which are homeomorphic to 1^2

With the Hilbert cube Q coordinatized as $\Pi^\infty [0, 1]$, let $s = \Pi^\infty (0, 1) \subset Q$. Anderson [1] showed that s is homeomorphic to the Hilbert space $1^2 = \{(x_i) \in R^\infty : \sum x_i < \infty \}$. Any subspace P of Q such that $(Q, P) \approx (Q, s)$ is called a pseudo-interior for Q, and its complement $Q \setminus P$ is a pseudo-boundary. A non-trivial example of a pseudo-boundary is the subset $\Sigma = \{(x_i) \in Q : 0 < \inf x_i$ and $\sup x_i < 1\}$. Kroonenberg [12] has given the following characterization for pseudo-boundaries, based on the original characterization by Anderson [2].

Lemma 4.1: Let $\{K_i\}$ be an increasing sequence of subsets of Q such that:

i) each $K_i \approx Q$,

ii) each K_i is a Z-set in Q,

iii) each K_i is a Z-set in K_{i+1},

iv) for each $\epsilon > 0$, there exists a map $f : Q \to K_i$ for some i such that $d(f, \text{id}) < \epsilon$.

Then $\bigcup K_i$ is a pseudo-boundary for Q.

Theorem 4.2: The following conditions are equivalent:

1) X has a Peano compactification \tilde{X} such that $(2^X, 2^X) \approx (Q, s)$,

2) X has a Peano compactification \tilde{X} such that $(C(\tilde{X}), C(X)) \approx (Q, s)$,

3) X is a topologically complete, separable, connected, locally connected, nowhere locally compact metric space which admits a metric with Property S.
PROOF: Suppose X satisfies condition 3). Then by Proposition 2.4, X has a Peano compactification \tilde{X} with a locally non-separating remainder. Let \tilde{d} be a convex metric for \tilde{X}. Since X is topologically complete and nowhere locally compact, the remainder $\tilde{X}\setminus X$ must be a dense countable union $\bigcup_i F_i$ of closed, locally non-separating sets in \tilde{X}. We may assume that $F_i \subset F_{i+1}$ and F_i has empty interior in F_{i+1}, for each i. This can be arranged inductively as follows. Select a dense sequence $\{x_n\}$ in F_i, a sequence $\{y_n\}$ in $\tilde{X}\setminus F_i$ such that $\tilde{d}(x_n, y_n) < 1/n$ for each n, and a sequence $\{z_n\}$ in $(\tilde{X}\setminus X)\setminus F_i$ such that $\tilde{d}(y_n, z_n) < 1/n$ for each n. Then replace F_{i+1} by the compact set $F_i \cup F_{i+1} \cup \{z_n : n \geq 1\}$.

By Proposition 2.1, each intersection hyperspace $2^X(F_i)$ is a Z-set copy of Q in 2^X, and each $2^X(F_i) = 2^X(F_i, F_{i+1})$ is a Z-set in $2^X(F_{i+1})$. Given $\epsilon > 0$, we claim there exists a map $f : 2^X \to 2^X(F_i)$ for some i, such that $\rho(f, id) \leq \epsilon$. For $D \in 2^X$, define $f(D)$ to be the closed ϵ-neighborhood of D in X (with respect to the convex metric \tilde{d}). Suppose $f(2^X) \cap 2^X(F_i) \neq \emptyset$ for each i. Then there exists a convergent sequence $y_i \to y$ in \tilde{X} such that the ϵ-neighborhood of y_i is disjoint from F_i, for each i. It follows that the ϵ-neighborhood of y is disjoint from $\bigcup_i F_i = \tilde{X}\setminus X$, contrary to the fact that $\tilde{X}\setminus X$ is dense in \tilde{X}. Thus by Lemma 4.1, $\bigcup_i 2^X(F_i) = 2^X \setminus 2^X$ is a pseudo-boundary for 2^X, and $(2^X, 2^X) \approx (Q, s)$.

The proof that $(C(\tilde{X}), C(X)) \approx (Q, s)$ is virtually the same as above, using Proposition 2.2.

Conversely, suppose either condition 1) or 2) is satisfied. Since s is a topologically complete, separable, nowhere locally compact metric AR, X must be a topologically complete, separable, connected, locally connected, nowhere locally compact metric space. We show that the remainder $\tilde{X}\setminus X$ is locally non-separating in \tilde{X}. For every connected open subset U of \tilde{X}, the hyperspace 2^U is a connected open subset of 2^X. Since the pseudo-boundary $Q\setminus s$ is locally non-separating in Q, $2^X \setminus 2^X$ is locally non-separating in 2^X. Thus $2^U \cap 2^X = 2^U \cap X$ is connected, and $U \cap X$ is connected. It follows from Proposition 2.4 that X admits a metric with Property S.

The first result of this type, $(2^Q, 2^s) \approx (C(Q), C(s)) \approx (Q, s)$, was obtained by Kroonenberg [12].

Using the very powerful Hilbert space characterization theorem of Torunczyk [14], the author has recently shown that $2^X \approx C(X) \approx 1^2$ for every topologically complete, separable, connected, locally connected, nowhere locally compact metric space X [5]. The following example illustrates the difference between this result and Theorem 4.2.
EXAMPLE 4.3: There exists a space X such that $2^X = C(X) \approx 1^2$, but X does not admit a metric with Property S.

PROOF: The space X is a countable union of copies of 1^2 meeting at a single point θ, and given the uniform topology at θ. X may be realized in 1^2 as follows. Let $N = \bigcup_{i=1}^{\infty} \alpha_i$ be a partition of the positive integers, with each α_i infinite, and for each i set $1^2_i = \{(x_n) \in 1^2 : x_n = 0$ if $n \in \alpha_i\}$. Then $X = \bigcup_{i=1}^{\infty} 1^2_i \subset 1^2$. Clearly, X is a closed, connected, locally connected, nowhere locally compact subset of 1^2, thus $2^X = C(X) \approx 1^2$.

The argument that the space X does not admit a metric with Property S is easy. Consider any admissible metric d for X. For some $\delta > 0$, the δ-neighborhood (with respect to d) of θ in X must be contained in the neighborhood $\{x \in X : \|x\| < 1\}$ of θ. Now consider any connected cover of X with mesh less than δ. For each i, any element of the cover intersecting $\{x \in 1^2_i : \|x\| \geq 1\}$ cannot contain θ, and must therefore lie in $1^2_i \setminus \theta$. Hence the cover is infinite, and d does not have Property S.

REFERENCES

The condition iv) of the pseudo-boundary characterization Lemma 4.1 is insufficient, and should be replaced by the following condition iv)*: there exists a deformation \(h: Q \times [0, 1] \rightarrow Q \), with \(h(q, 0) = q \) for each \(q \in Q \), such that for each \(\varepsilon > 0 \), \(h(Q \times [\varepsilon, 1]) \subseteq K_i \) for some \(i \). In the application of Lemma 4.1 contained in the proof of Theorem 4.2, this stronger condition is easily verified (the map \(f \) of \(\tilde{X} \) is replaced by the deformation \(h: \tilde{X} \times [0, 1] \rightarrow \tilde{X} \), where \(h(D, t) \) is the closed \(t \)-neighborhood of \(D \) in \(\tilde{X} \)).