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Introduction

This paper, as promised in the introduction to [1(c)], contains an

identity which is valid for any reductive group G over Q, and 
which

generalizes the Selberg trace formula for anisotropic G. 
We have

already shown that a certain sum of distributions on O(A)I, indexed

by équivalence classes in G(Q), equals the intégral of the function

The main task of this paper is to show that the integral may be taken

inside the sum over x. There does not seem to be any easy way to 
do

this. We are forced to proceed indirectly by first defining and studying

a truncation operator AT on functions on G(G)BG(A)’.
Recall that k x T(X@ f) was obtained by modifying the function

Kx(x, x). We shall apply the results of § 1 to the function
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obtained from Kx(x, y) by truncating in each variable separately, and
setting x = y. It will turn out that the function

is integrable. Then in §2, our main chapter, we shall show that for T

sufficiently regular,

converges absolutely. We shall also show that for each X, the integral
over G(Q)BG(A)’ equals 0. If we set J;(f) equal to

the identity associated to G is then

We should note that the distributions J’ and Ir are not in general
invariant. Moreover, they depend on a choice of maximal compact
subgroup and minimal parabolic subgroup. However, it should be

possible to modify each of the distributions so that they are invariant
and independent of these choices, and so that the identity still holds.
We hope to do this in a future paper.
Both formulas for J X ( f ) are likely to be useful. The integral on the

right is particularly suited to evaluating Ir on the function obtained
by subtracting f from a conjugate of itself by a given element in
O(A)I. It can also be used to show that Ir (f) is a polynomial function
in T. We shall not discuss these questions here. On the other hand,
the intégral on the left can be calculated explicitly if the class X is

unramified. We do this in §4. The result follows from a formula,
announced by Langlands in [4(a)], for the inner product of two
truncated Eisenstein series. It was by examining Langlands’ method
for truncating Eisenstein series that 1 was led to the definition of the
operator A T.
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1. A truncation operator

Let G be a reductive algebraic group defined over 0. We adopt the
definitions and notation of [I(c)]. In particular, K is a maximal

compact subgroup of G(A) and Po is a fixed minimal parabolic
subgroup of G defined over 0. Again we shall use the term ’parabolic
subgroup’ for a parabolic subgroup P of G, defined over Q, which
contains Po. We would like to prove that the terms on the right hand
side of the identity given in Proposition 5.3 of [1(c)] are integrable
functions of x. To this end, we shall introduce a truncation operator
for functions on G(Q)BG(A)’.

Recall that T is a fixed, suitably regular point in a 0 ’. If 0 is a

continuous function on 0(0)B0(#B)1, define (A Tf»(X) to be the func-
tion

(the sum over P is of course over all parabolic subgroups.) Note the

similarity with our definitions of the functions k r (x, f ) and k; (x, f) in
[1(c)]. If 0 is a cusp form, A Tc/J = c/J. It is a consequence of [1(c),
Corollary 5.2] that if 0(x) is slowly increasing, in the sense that

for some C and N, then so is

LEMMA 1.1: Fix PI. Then for

unless

PROOF: For any P, let n(4o; P) be the set of sEn such that

s-la &#x3E;0 for each a Ei!Õ. Applying the Bruhat decomposition to
P(Q)BG(Q), we find that fNt(Q)BNt(A) A Tq,(nlx) dnl equals the sum over
P and s E f2(ao; P) of the integral over n in N(Q)BN(A) of the

product of (-l)dim(Alz) with
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Since N,(G)BN,(A) = No(Q)BNÕ(Q)NI(A), this last expression equals

Decompose

This induces a decomposition of the measure dn 1 as dn* dn*. Then
write

and finally, combine the integral over fi * with the integral over n in
N(Q)BN( 11B). Because s lies in !J(40; P), No fl wsNlws n M is the
unipotent radical of a standard parabolic subgroup of M. It follows
that

is the unipotent radical of a uniquely determined parabolic subgroup
P, of G, which is contained in P. We have shown that

f N I(O)BN I(A) ( (n lx) dn 1 equals

We shall change the order of summation, and consider the set of P
which give rise to a fixed P,. Fix s E f2. Define SI (resp. Sl) to be the
set of a eào such that s-Ia is a positive root which is orthogonal
(resp. not orthogonal) to a i. If P, is one of the groups that appear in
the above formula, à 0 -’ will be a subset of SI. Those P which give rise
to a fixed P, are exactly the groups for which 4 ô is the union of 2lg
and a subset S of Si. Thus, for fixed s with àj C S’, we will obtain an
alternating sum over SCSI of the corresponding functions Tp. We
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apply Proposition 1.1 of [ 1(c)]. Let XS be the characteristic function of
the set of H E 40 such that for a OEào -,à-’ 0 U Si, w«(H) &#x3E; 0, while
w,,,, (H) --5 0 for a in Si. Here 1170 is the element in jo corresponding to
a. Then fN1(Q)BN1(A) ((nix) dn 1 is sum over s E f2 and over all subsets 4 ô
of S’, of the integral over n* in W;I No(A)ws nN((Q)Ni(A))
NA(O)NI(A) and n in Ns(Q)BNs(A) of the product of

with -1 raised to a power equal to the number of roots in ào - SI U Si.
Suppose that for some s, Xs(Ho( wsn * v) - T) does not vanish. Then

if

ta is positive for a in ao - dô U SI, and is not positive for a E Si. If
10’ E j¡,

where s-’a is orthogonal to a’ if a E S’. This last number is clearly
less than or equal to 0. Now

for some element v OENo(A). If w EEjo, it is well known that

111 (s-’Ho(wsvws’) is nonnegative and w (T - s-’ T) is strictly positive.
Therefore 111 (Ho(x) - T ) is negative for any w E Âi. 0
From the definition of A T we obtain

LEMMA 1.3: Suppose that (i and cf&#x3E;2 are continuous functions on
0(0)B0(1B)1. Assume that (i 1 is slowly increasing, and that cf&#x3E;2 is

rapidly decreasing, in the sense that for any N, the function
IlxilN . )(2(x)) is bounded on any Siegel set. Then
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PROOF: The inner product (A TCPI, cp2) is defined by an absolutely
convergent integral. It equals

This last expression reduces to

REMARK: It can be shown that A T extends to an orthogonal
projection on L2(G(Q)BG(A)I).
We would like to show that under suitable conditions, A Tep (x) is

rapidly decreasing at infinity. The argument begins the same way as
the proofs of Theorems 7.1 and 8.1 of [1(c)]. Suppose 0 is a con-

tinuous function on G(Q)BG(#B)I. Apply Lemma 6.4 as in the begin-
ning of the proof of Theorem 7.1 of [1(c)]. We find that A To (x) is the
sum over {PI, P2: Po C PI C P21 and 5 E PI(Q)BG(Q), of

where

For the moment, fix 8 and x. We regard 8 as an element in 0(0)
which we are f ree to left multiply by an element in Pl(O). We can
therefore assume, as in [1(c), §7] that

where k E K, n*, n *, and m belong to fixed compact subsets of

N2(A), N2(A) and MI(A)L respectively, and a is an élément in AI(R)D
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with o-’(HO(a) - T) 0 0. Therefore

where c belongs to a fixed compact subset of G(A)’ which depends
only on G.
The function cPPloP2 resembles the function estimated in the corol-

lary of [3, Lemma 10]. We want a slightly different statement of the
estimate, however, so we had best re-examine the proof. If a E LiT, let
p«, Pi C p« C P2, be the parabolic subgroup such that A’î = à g is the
complement of a in LlT. For each a, let (Y«,i, ..., Ya,na} be a basis of
nâ(Q), the Lie algebra of N 2(a). We shall assume that the basis is
compatible with the action of A i, so that each Y«,; is a root vector
corresponding to the root /3a,i of (M2 n Pl, AI). We shall also assume
that if i  j, the height of /3a,i is not less than the height of fl«,j. Define
na,j, 0  j  n« to be the direct sum of {Ya,h..., Y,,,jl with the Lie
algebra of N2, and let Na,j = exp na,j. Then N«,; is a normal subgroup
of Ni which is defined over 0. If V is any subgroup of NI, defined
over Q, let ir(V) be the operator which sends 0 to

Then Op,,p2 is the transform of 0 by the product over a E L1 Î 1 of the
operators

If Ko is an open compact subgroup of G(Aj), G(Q)BG(A)IIKo is
diff erentiable manifold. We assume from now on that 0 is a function
on this space which is differentiable of sufficiently high order. Sup-
pose that 1 is a collection of indices

Then
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and

are normal subgroups of Ni. Let n’ be the span of {Ya,ia} and let
n’(Q)’ be the set of elements

Then if n is any positive integer,

is a nonzero real number. By the Fourier inversion formula for the

group A/a, cf&#x3E;Pl.Pl(Y) is the sum over all I of

Here e and Vi are as in [1(c), §7] and ( ,) is the inner product defined
by our basis on nj. If n is a positive integer,

can be regarded as an element in OU(g(R)1 @ C). Then t!&#x3E;Pt,P2(Y) equals
the sum over I and over e E n,(G)’ of

Now, we set

as above. Since uy(Ho(a) - T) #= 0, a belongs to a fixed Siegel set in
M2(/A). It follows that the integrand in (1.1), as a function of X, is
invariant by an open compact subgroup of n/(/A,) which is in-
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dependent of a and c. Consequently, (1.1) vanishes unless e belongs
to a fixed lattice, LI (Ko), in nI (R). But for n sufficiently large

is finite for all I. Let cn(Ko) be the supremum over all I of these
numbers. Then lq,pt&#x3E;piac)1 is bounded by

Let /31 = E« /3a,ia. Then /31 is a positive sum of roots in a i. For any n,

We can choose a finite set of elements {Xi} in IM(g(R)’(&#x26; C), depend-
ing only on n and Ko, such that for any Pi, P2, I and c,

is a linear combination of fxij. Since c lies in a compact set, we may
assume that each of the coefficients has absolute value less than 1.

We have thus far shown that lA TcP(x)1 is bounded by the sum over all
Pi, P2 and 8 E PI(O)BG(O) of the product of

with

LEMMA 1.4: Let 6 be a Siegel set in G(A)I. For any pair of positive
integers N’ and N, and any open compact subgroup Ko of G(At), we
can choose a finite subset (X;) of OU(g(R)’(D C) and a positive integer
r which satisfy the following property: Suppose that (S, do) is a

measure space and that r#(a, x) is a measurable function from S to
cr(G(O)BG(A)l/Ko). Then for any x E 6,
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is bounded by

PROOF: Substitute cf&#x3E;(u) for 0 in (1.2) and integrate over a. The
result is

If Sx = ac, with a and c as above,

We are assuming that uT(Ho(a) - T) 0 0. Since 131 is a positive sum of
roots inài we conclude from [1(c), Corollary 6.2] that Ilall is bounded
by a fixed power of

It f ollows that for any positive integers N and Ni we may choose n
so that (1.3) is bounded by a constant multiple of

It is well known (see [2]) that there is a constant ci such that for any
y E G(Q) and x E 6,

The only thing left to estimate is

The summand is the characteristic function, evaluated at 8x, of a
certain subset of

The sum is bounded by
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It f ollows from [1(c), Lemma 5.1] that we can find constants C2 and
N2 such that for all Pi this last expression is bounded by C211x1lN2. Set
Ni = N’ + N2. Ni dictates our choice of n, from which we obtain the
differential operators lxil. The theorem follows with any r greater
than all the degrees of the operators Xi. 0

In the next section we will need to have analogues of the operators
A T for different parabolic subgroups of G. If PI is a parabolic
subgroup, and 0 is a continuous function on PI(O)BG(A)’, define

LEMMA 1.5 : Suppose that P is a parabolic subgroup and 0 is a

continuous function on P(Q)BG(A)I. Then

equals

PROOF: We need to prove that (1.4) is the sum over
and 8 E R(O)BP(G) of the product of

with

Consider Lemma 6.3 of [ 1 (c)], with A a point in -(at)+. The sum
given in that lemma then reduces to (1.5). It follows from [l(c), Prop.
1.1] that (1.5) vanishes if R # P and equals 1 if R = P. This establishes
Lemma 1.5. D
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2. Integrability of k f (x, f)

We take r to be a sufficiently large integer, and continue to let T be
a suitably regular point in at. In [1(c)] we associated to every

lE Cr c(G(A)’) a function, kf(x,f), on G(Q)BG(A)’.

THEOREM 2.1: For sufficiently regular T,

is finite. 

We will not prove the theorem directly. Rather, we shall relate

k;(x, f) to the truncation operators whose asymptotic properties we
have just studied. We shall operate on Kp.x(x, y), which of course is a
function of two variables. If Pi C P2, we shall write T’PI (resp. A 2’Pl) for
the operator A T,PI, acting on the first (resp. second) variable.

PROOF: The given expression is the sum over all chains Pl C P C
P2 C P3 and over 5 E PI(G)BG(G), of

As we have done many times, we appeal to [l(c), Prop. 1.1]. We see
that the sum over P2 equals 0 unless P = P3. Therefore the given
expression equals
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Apply Lemma 1.5 to the sum over Pi. We obtain

Since

this last expression equals kI(x, f), as required. 0

Fix Pl C P2. Motivated by the last lemma, we shall examine the

expression

It equals

Let F(Pl, P2) be the set of elements in Pl(o)BP2(0) which do not
belong to Pi(0)BP(Q) for any P, with Pl C P CP2. By [I(c), Prop. 1.1]
the above expression equals 

In this last formula we have affected the cancellation implicit in the
alternating sum over P. In order to exploit the equation we have just
derived, we interrupt with a lemma.

LEMMA 2.3: Suppose that for each i, 1 sis n, we are given a
parabolic subgroup Qi D Pl, points xi, Yi E G(A) and a number ci such
that
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vanishes for all m E MI(Q)BM,(A)’. Then for any X E #,

also vanishes for all m E MI(G)BM,(A)’.

PROOF: Suppose that for a given X’ E #, there is a group R in Px’
which is contained in Pl. We would like to prove that for any function

4&#x3E;x’ E L2(MR(Q)BMR(IA.)I)x" the integral

vanishes for X# X’. Suppose that X# X’, and that 0 E YeQ(ir), for
some Q c Qi, and some 7T E II(MQ). The construction of Eisenstein
series is such that if the function

is substituted for hx in (2.1), the result is 0. It follows from the

estimates of [1(c), §4] that (2.1) itself is 0. The same estimates yield
constants c and N such that

By assumption, 1,, hx(m) equals 0. Consequently (2.1) is zero even
when X = X’. The function hx is continuous. Because (2.1) vanishes
for all 0,,,, h,, satisfies the hypotheses of [4(b), Lemma 3.7]. hx is

therefore zero. D

To return to the proof of the theorem, we look for conditions
imposed on x, y and y by the nonvanishing of

Set

There is a compact subset of G(A)’, depending only on the support of
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f, which contains some point

whenever (2.2) does not vanish. Fix w e â 1 and let A be a rational
representation of G with highest weight dw, d &#x3E; 0. Choose a height
function )) [[ as in [I(c), §1]. If v is a highest weight vector, we can
choose a constant ci such that

whenever x-tynrmYl lies in the given compact subset of G(/A)I. The
lef t side of this inequality equals

which is no less than a constant multiple of

In other words, 0153(Ho(yx)-Ho(Y» is no less than a fixed constant. It
follows from this observation that we may choose a point To E ao,
depending only on the support of f, such that

whenever (2.2) does not vanish identically in m. We conclude from
Lemma 2.3 that if (2.3) fails to hold for a given x, y and y, then

vanishes for all x and m.
Combining [l(c), Lemma 5.1] with what we have just shown, we

conclude that for fixed x and y,

vanishes unless y belongs to a finite subset of F(Pi, P2), independent
of X. Theref ore the sums in
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are finite. Since the expression vanishes for all m in MI(Q)BM,(A)’,
we can apply Lemma 2.3. We obtain an equality of functions of y for
each X. We are certainly at liberty to apply our truncation operator to
those functions. It follows that for any X E ae,

equals

We have thus far shown that

is bounded by the sum over

Let 6 be a fixed Siegel set in MI(A)’ with MI(Q)6 = M1(A)I, and let r
be a compact subset of Ni(A) with NI(Q)r = N1(A). Then the last
integral is bounded by the integral over n E F, m E 6 rl Po(A), a E
A1(R)0 rl G(A)I, and k E K, of

Suppose that f or n, m, a and k as above, and f or some
y E F(PI, P2) and X E f,

Write l’ = VWs1T, for v G NÉ(Q), TT E Po(Q) and s E nM2, the Weyl
group of (M2, Ao). It follows from Lemma 2.3 that there is a fixed
compact subset of 0(1B)1 which contains

for points ni E No(A) and pi E MI(/A)INI(/A). Fix w E A, and let ll and
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v be as above. A(ws)v is a weight vector, with weight sw. The vector

can be written as a sum of weight vectors, with weights higher than
S’m. By the construction of our height function,

It f ollows that there are constants c’ and c, depending only on the
support of f, such that

Since s fixes d2 pointwise, the inequality

holds for the projection of 1IJ onto ai. In other words, we may take
to be an element in â i. For each such w, m - s w is a nonnegative
integral sum of roots in L1i. We claim that the coefficient of the
element a in à’, such that w = is not zero. Otherwise we would
have (w - s w )(w ’) = 0, or equivalently, S1I7 = w . This would f orce s to
belong to 12",- for some parabolic subgroup P, Pl C P GP2. This
contradicts the assumption that y = VWs1T belongs to F(PI, P2), so the
coefficient of a is indeed positive. We can assume that a has the
additional property that

It follows from Corollary 6.2 of [1(c)] that for any Euclidean norm
1111 on ao there is a constant c such that

We have shown that if a E AI(R), n G(A)l is such that for some X, y,
n,m,mandk,

does not vanish, then the inequality (2.5) holds.
Suppose that f is right invariant under an open compact subgroup
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Ko of G(Af). Then if Ipl( TT, f)o 0 0 for some TT and 0 E 9ÃPl( 1T)x, the
function E(y, 0) is right Ko-invariant in y. Theref ore for any x, y and
X, Kplox( ;’x, y) is right Ko-invariant in y. It follows that (2.6) is right
invariant in m under the open compact subgroup

of M1CA.f)l. We apply Lemma 1.4 with the group G replaced by MI.
For any positive integers Nl and NI we can choose a finite set {A,} of
elements in OU(ml(R)’(&#x26; C), the universal enveloping algebra of the
complexification of the Lie algebra of Ml(R)l, such that for all n E r,

is bounded by

We can choose éléments {Yj} in ôh(g(R)’(D C) such that

where Cij(k) are continuous functions on K. Recall that Kp,,"(x, y) is
ultimately defined in terms of f. The function R,(Yj)Kpl’X(X, y) is

defined the same way, but with f replaced by f * f 4’. The support of
f * F* is contained in the support of f, so we can assume that (2.3) is
valid whenever R,( Yi)Kpl’X( l’X, y) does not vanish. By Corollary 4.6 of
[l(c)],

is bounded by a constant multiple of a power of llxll - M. It follows
from Corollary 5.2 of [l(c)] that the expression
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is also bounded by a constant multiple of a power of llxll - Ilyll. By
taking Ni to be large enough we obtain constants Cz and N2 such
(2.8), and therefore (2.7), is bounded by

Set m = m in (2.7). Integrate the resulting expression over n E r,
m E 6 fl Po(A), k E K and a in the subset of elements in AI(R)o n
G(A)’ which satisfy (2.5). There are constants C3 and N3 such that the
result is bounded by 

If we set Ni = N3, this is finite. The proof of Theorem 2.1 is complete.
Il

LEMMA 2.4: For T sufficiently regular, and r sufficiently large,

for all f E Cr(G(A)’) and X E X.

PROOF: It follows from the proof of Theorem 2.1 that the integral
of k x ’(x, f) is the sum over all Pl C P2 of the product of (-1)dim(A2/Z)
with

As a double integral over x and y this converges absolutely. If

Pt = P2 gé G, the integrand is zero. If Pt = P2 = G, the result is the

integral of AIKx(x, x). We have only to show that if PI CP2, the
result is zero. Let n(PI, P2) be the set of elements s in fl’°2 such that
sa and s -’a are positive roots for each a eà 0 and such that s does
not belong to any !JM, with PICP CP2. Then the above integral
equals the sum over all s E !1(Pt, P2) of

Since


