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The proof of the Mordell-Weil Theorem, which asserts that the
group of rational points of an abelian variety over (for example) a
number field is finitely generated, is traditionally divided into two
parts (Cf. [6]), deriving from the theory of heights and from Kum-
mer theory, respectively. Kummer theory already provides the so-
called "weak" Mordell-Weil Theorem, namely, that, given an integer
n, and an abelian variety A over the number field K, the Selmer group
Sn (A, K), defined either in terms of Galois or of flat cohomology, is
finite. There is a natural imbedding of A(K)/nA(K) in Sn(A, K), so
that the number of Z/n Z independent elements of Sn (A, K) provides
an upper bound for the rank of the Z-free part of A(K); the Tate-
Shafarevich conjecture affirms that these numbers coincide for all but
finitely many n. It is therefore of the utmost interest to compute the
group Sn (A, K); this process is known as descent.
The Selmer group Sn (A, K) is defined in terms of H (Galois or flat)

with coeflicients in the group (scheme) A [n ] of n -division points of A.
This can only be computed, in general, by trivializing A [n ] as a Galois
module; i.e., by passing to the field K(A[n]) over which the points of
A [n ] become rational, and computing Sn (A, K (A [n ])) Gal(K(A[n])/K). This
will in general be different from Sn (A, K), although there is a natural
map Sn (A, K) - Sn (A, K(A[n ]))Gal(K(A[n])/K)- However, we have proved
the following theorem:

Effectivity Theorem (2.9 in the text): Let p be a prime number such
that, at every place v of K dividing p, A has good ordinary reduction
at v. (We then say A is ordinary at p.) Then, as n - m, the kernel and
cokernel of the natural map
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have order bounded independently of n.
It is therefore natural to consider the canonical tower K C Ko C

... C Kn C ... C Koo, where Ki = K (A [p ‘+1]), Koo = U Kl, and to
study the Ô = Gal(K./K)-module Spcx{A, K.) = limn-m Spn (A, Kn-1), in
case A is ordinary at p. We note that Spcx{A, K.) is the same whether
we take K or any of the Kn as ground field, and we may therefore
hope that an investigation of Spcx{A, K.) will provide effective in-

formation about the asymptotic growth of the Mordell-Weil groups
A(Kn) as n &#x3E; -.
When Koo is replaced by an extension k/K with Gal(k/K) = r rr Zp,

the analogous questions were considered by Mazur [28], who
based his theory, in turn, on Iwasawa’s theory of modules over

def.
Ar = lim Zp [T/ U]. We develop (§ 1) the analogous theory for AG,

U open in T

defined in the same way, when G is any torsion-free compact p -adic Lie
group, and investigate the structure of Sp-(A, Koo) as AG-module, where
G = Gal(Kool Ko).
The theory of AG, in conjunction with the descent techniques of

Mazur [28], enables us, in certain cases (§5 in the text) to exhibit

asymptotic upper bounds for the Mordell-Weil rank of an elliptic
curve over the intermediate fields of its canonical tower. These upper
bounds can be derived for any abelian variety A which satisfies the

Conjecture (4.6 in the text): If A is ordinary at p, then the Pontryagin
dual of Spoo(A, K.) is a torsion module over AG.

This is a weaker version of a conjecture of Mazur ([28]; Cf. 5.1.1,
in the text). We have only been able to prove this conjecture when A
is an elliptic curve with complex multiplication and K is an abelian
extension of the CM field (5.13), and for several particular classes of
elliptic curves (§5A and B). What evidence we have for the con-
jecture is presented in 4.7, which also provides a somewhat more
explicit description of Spoo(A, K.).
Here is an outline of our major results, in the order in which they

are presented:
In § 1, we develop the theory of Iwasawa algebras, relying heavily

upon the work of Lazard [24] and some elementary noncommutative
and commutative algebra in our proofs of weak analogues of Iwas-
awa’s structure theorems.

Chapter II, §2, introduces the infinite descent theory, à la Mazur



179

[28], in the context of the canonical tower of an abelian variety. In

particular, we prove the Effectivity Theorem for abelian varieties
ordinary at p ; our proof makes use of the Weil-Riemann hypothesis
for abelian varieties, and of a cohomological lemma of Serre [41].

In §3, we generalize the fundamental work of Iwasawa, and prove
analogues (Theorems 3.3 and 3.9) of Theorems 5 and 17 of [21], for
any Galois extension K’/K, [K : Q]  00, such that

(1) Gal(K’/K) is a torsion-free pro-p p-adic Lie group, and
(2) Only finitely many primes in K ramify in K’.

(In 3.9, we assume, as does Iwasawa, that K’ contains the p"th roots
of unity for all n.) This theory is applied to the canonical tower of an
abelian variety in the subsequent §, but it is also relevant to the p-adic
extensions defined by Deligne in [10]. A primary task for the future is
to find a substitute for Sp-(A, K.) in Deligne’s context.

In §4, we state the conjecture described above, and present the
relevant evidence. We also generalize (4.9) an observation of Coates
and Wiles [9], (Theorem 11) which plays a major role in their

work on the Birch-Swinnerton-Dyer Conjecture.
Examples of elliptic curves satisfying Conjecture 4.6 are produced

in §5, mostly by explicit calculation. A particularly interesting exam-
ple (5.7) makes use of a recent theorem of Ferrero [13] on the

vanishing of Iwasawa’s IL-invariant. The conjecture is verified (5.13)
for CM-curves, under the restrictions described above; our proof
makes use of Brumer’s work on Leopoldt’s conjecture [5]; the

reader will note the afhnity with work of Coates-Wiles [9] and
Vishik [40].
The Appendix presents a number of simple computations of first

descents for elliptic curves over Q. Particular attention is paid to the
cases, neglected in the main text, of supersingular reduction, and of
the prime p = 2.

1 take this opportunity to express my gratitude to Professor Barry
Mazur, who supervised the thesis of which this paper is a part, not
only for the manifest influence of his work on this paper, but also for
his encouragement and for the frequency with which he could be
reached for advice. Of the many others with whom 1 discussed this

work, 1 am particularly indebted to R. Greenberg and D. Kazhdan,
both of whom helped me to clarify certain crucial misconceptions,
and to K. Ribet, who pointed out that Serre’s paper [41] could be
used to simplify my original proof of the key Lemma 2.6.4.
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Notation

We make use of the following (fairly standard) notation:
When K is a field, K will denote its algebraic closure (all our fields

will be perfect). If v is a valuation on K, Kv will denote the

completion of K at v.
If S is a scheme, and v a point on S of codimension one (or, if S is

affine, a rank one valuation of the affine algebra of S), then Sv will
denote the spectrum of the completion at v of the local ring of S at v.
If X is a sheaf for some topology on Sv, then H!(Sv, X) will be

cohomology with support at the closed point of Sv.
If K is a field, and if X is a Gal(K/K)-module (continuous or

discrete), then we write H’(K, X) instead of Hi (Gal(KIK), X).
If S is a set, then ISI will denote its cardinality, whether or not S is

known a priori to be finite.
If K is a local or global field, OK will designate its integer ring; if K

is global, KA will be the adele ring of K.
We employ the standard notation Z, Q, Fq, Gm, /l-p, etc.

§ 1. Groups algebras of p-analytic groups

In this section we develop the most elementary properties of the

algebras which arise naturally in the infinite descent theory; the

algebras and their representations are investigated more intimately in
[50]. Here we are content to refer to the paper of Lazard [24] for the
bulk of our needed results.

1.1. By a p-analytic group we mean a p-adic analytic Lie group
which is a torsion free pro-p group. Our examples will be closed
subgroups of the kernel of the reduction map GL(n, Z,) ---&#x3E; GL(n, Fp);
such a group will be called standard. (For p = 2, one is restricted to

subgroups of the kernel of reduction mod 4.) If G is a p-analytic
group, its structure of profinite group is expressed by the formula
G = lim GI U, where U runs over the family of open subgroups of G

u

and the maps are the obvious ones. Then the Iwasawa algebra, or

completed group algebra, of G, is the ring AG = liM Zp [GI U], U as
above. u

This will often be denoted A, when there is no ambiguity. The interest of
A derives from the following theorem:

1.2. THEOREM ([24], p. 61): Let M be a complete Zp-module with
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continuous left G action. Then M has a unique continuous left
AG-structure which extends the action of G (via the inclusion of G in
AG).

1.3. Following [14] and [12] we define the left Krull dimension
of a ring R to be the Krull dimension of the partially-ordered set of its
left ideals. Recall that this means the following: a partially ordered set
y has Krull dimension zero if it satisfies the descending chain
condition and if there is at least one non-trivial inequality a  b ; it

has Krull dimension at most n + 1 if and only if for every strictly
decreasing sequence of elements ai &#x3E; a2 &#x3E; a3 ... the following con-
dition is satisfied:

(1.3.1) For i sufficiently large, the set {s E Y: ai+1  s  ai}
has Krull dimension at most n.

The following facts can be found in [ 14] and [12], 3.5:
(1.3.2) If R is commutative, and Noetherian, this is equivalent to

the standard definition.

(1.3.3) If R is filtered, then Krull dim R s Krull dim Gr(R).

1.4. The ring 11G has a natural collection of two-sided ideals: for
any normal open subgroup U of G, the ideal Iu is that generated by
{M20131;MGÏ7}. These form a basis for the topology of A, in a

neighborhood of zero.
For the moment, let Gi = Ker(GL(k, Zp ) GL(k, Z/p ‘+iZ)), G = Go

(for p = 2, let G = G1). Any element g E G defines a one-parameter
subgroup of G (the closure of Ign 1 n = 0, ± 1, ±2,...}); call this (g).
The tangent space T(gll) at the identity maps to a subgroup contain-
ing (g) via the standard formula for the exponential map (by tangent
space, we actually mean the Zp-submodule of the tangent space where
the exponential map converges); this proves

(1.4.1) If g E Gi, then there exists h E G such that hpi = g.
(1.4.2) If g e Gi - Gi+,, then gP E Gi+1- Gi+2. One knows similarly

that

(1.4.3) The subgroup of commutators [Gi, Gj] C Gi+j.
1.4.4. Now let H be a p-analytic subgroup of G. The generators of

the Lie algebra of H give rise by exponentiation to generators Pi E H,
i = 1, ..., n = dim H, such that, if X, = vi - 1 E AH, then every element
of AH has a unique development ([24], p. 165)

Choose a small rational number E, and, with H = G above, let We
be the valuation on AG such that w,(Xi) = 1 - E, w,(p) = 1. Then
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(1.4.1-3) imply that Gr(AG), with respect to the filtration induced by
We, is a ring of commutative polynomials in k2 + 1 variables over Fp
(Cf. [24], p. 165; the extra variable, of course, comes from the

uniformizer p), if E is chosen correctly. (For p = 2, this requires an
additional argument.) Such a filtration induces a filtration on AH such
that Gr( l1H ) = FP[151 XI, ..., Xn] ] where denotes image in the asso-

ciated graded of an element of Au. Then we conclude by (1.3.2, 1.3.3).

1.5. PROPOSITION: Let H be as above. Then AH is a noetherian local

ring, without zero-divisors, of left Krull dimension at most n + 1.
PROOF: What is not immediate can be found in Bourbaki’s Com-

mutative Algebra, III, §2.

1.6. COROLLARY (Nakayama Lemma): Let H act continuously on
the discrete Zp-module M. If MH is cofinite over Zp, then M is cofinite
over AH (here M is cofinite means that the Pontryagin dual M’ of M is
finitely generated).

PROOF: Let m be the maximal idea of A = AH. By assumption, M’
is compact, and M’/mM’ is a finite group. The argument of [43]
Lemma 4, does not depend on commutativity of A, and gives the
result in this case.

1.7. COROLLARY: Suppose, in the situation of 1.6., that MH is

actually a finite group. Then M’ is a torsion module over AH, where
M’ is the Pontryagin dual of M.

PROOF: By Proposition 1.5, the set of torsion elements of M’ forms
a A-submodule (Cf. [12], 3.6.9). We may thus assume that M’ is

torsion -f ree.
(i) M’ is a submodule of a finitely generated free A -module. In fact,

1.5 and Goldie’s Theorem ([12], 3.6.12) imply that A has a skewfield
of fractions K. Then K 0A M’ is a left vector space over K, with

generators v 1, ..., v, say. Let mj = Yi ajis - 1 vi be a set of generators for
M’, imbedded in K 0AM’, where the aij’s and sij’s are in A. If we can
find s;’s in A such that there exist b;;’s in A with s;b;; = s;;, then the
free A-module generated by Isi ’vil contains M’. But such si’s and

bij’s must exist - the existence is needed in the proof of Goldie’s
Theorem (Cf. [12], 3.6.9).

(ii) We may assume, then, that M’ is a submodule of A r for some
integer r. Then, with respect to the filtration induced by We (Cf. 1.4.4),
Gr(M’) C Gr(AT), and in particular is a torsion-free Gr(A) = Fp[p, xi
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module (X = (XI,. - ., Xn)). Let J be the ideal generated by X ; local-
ize everything at J. The hypothesis is that Gr(M’)j = JGr(M’)j (since
p has become invertible). By the ordinary Nakayama lemma,
Gr(M’)j = 0. Since Gr(M’) is torsion-free, it is also zero. Then M’ is
zero.

1.8. We retain the notation of 1.4. We are going to prove an

asymptotic formula for torsion A-modules which will be applied in
the sequel to provide asymptotic bounds for Mordell-Weil ranks of
abelian varieties in the towers generated by their p "-division points.
Such bounds should be regarded as weak analogues of Iwasawa’s
class number formula [21].

Let D = Fp[H] = AlpA. We are goint to prove for f2 results of the
sort we sketched for A in 1.4. We define the envelope of H in G,
written env(H), to be the largest subgroup of G in which H is open; it
is the largest subgroup arising from exponentiation along the direc-
tions contained in the Lie algebra of H.
We assume from now on that p gÉ 2, to save us a great deal of

trouble. If H’ = env(H), let w be the valuation on f2H’ (obvious
notation), for which w(Xi) = 1.

1.8.1. LEMMA: With respect to the filtration defined by w, Gr(nH’) is
commutative. (And consequently, so is Gr(DH ).)

PROOF: Let Hi = H’ n Gi. We first show that if h E H;, then

w (h - 1) pi. In fact, by 1.4.1, h = s Pi , some s E H’ (because H’=
env(H’)). Write s = 77yp, where yl = 1 +X, and ri are p-adic integers.
Then h = (H(l + xi)ri)pi. Expanding this out (if you like, you can ap-
proximate the r;’s by rational integers and take the limit) the cross
terms appear with coefficients divisible by p, and we are left with

1 + caxa as the dominant term (Ci are constants). Incidentally,
the fact that w is a filtration depends on such a computation; we have

blithely been assuming its truth (armed with reference [24]).
A quick computation shows that [Xi, Xjl = «yi, yj) - I)yj-yi (where ( , )

means commutator in the group). Then by the result of the preceding
paragraph and 1.4.3, we are are done. Note how we have used the fact
that p 0 2 in order to get the commutator into a sufficiently high
filtration. Note also how setting wE(p) slightly bigger than w,(Xi) in
1.4.4 makes up for the fact that in A we do not have at our disposal
that p = 0.

1.9. PROPOSITION: In the notation of 1.4, let K be a normal



184

subgroup of H such that HI K can also be imbedded in

Ker(GL(k’, Zp) - GL(k’, Fp)) for some k’. Let M be a compact A-
module such that M/lIHIK is a finitely generated torsion AHIK-module.
Then M is a finitely generated torsion AH-module.

Similarly, if MIPM is a finitely generated torsion aH-module, then M
is a finitely generated torsion AH-module.

PROOF: That M is finitely generated follows from 1.6. The assump-
tion on H/K implies that Gr(AH )/Gr(AH )Gr(IK) = Gr(AHIK) is an in-

tegral domain, hence that J’ = Gr(l1H)Gr(IK) is a prime ideal in

Gr(11H). Of course, the ideal generated by fi (Cf. 1.4.4) is a prime in
Gr(AH). Now follow the proof of 1.7, replacing localization at J in
step (ii) by localization at J’ (resp. at fiGr(AH )).

1.10. THEOREM: Let M be a finitely generated compact A = AH-
module, M’ its discrete Pontryagin dual. Let n = dim H, and Hi =
H fl Gi, in the notation of 1.4. The vector space Qp Q9zp MIIH¡M has
finite dimension di. Then the following two conditions are equivalent
(Cf. [21], p. 256):

(i) M is a torsion A -module.

(ii) di = O(P(n-I)i).

PROOF: (i) implies (ii): We may replace M by N = MIM*, where
M* is the p-primary torsion submodule of M; this does not alter the
di’s. Then MIPM is a compact torsion n = aH-module, with Pon-

tryagin dual M’[p] = p-torsion submodule of M’. But d¡ is at most

equal to M’[p]i (d comes from the free, hence flat, part of MIIHM,
and thus persists mod p); we are done by

1.10.1. LEMMA: Let M be a finitely generated compact torsion
module over a = nH, with discrete Pontryagin dual M’. Then

dimFp M’Hi =0(p(n-I)i)@ where n = dim H and Hi = H n Gi.

PROOF: M’Hi is dual to MIIHM = MH., so we can forget about M’.
We may assume that H = env(H). Otherwise, letting H’ = env(H), we
may induce up to H’-i.e., tensor on the left with AH,; if we call the

result M*, then M* is clearly a torsion AH’-module (Cf. 1.11 below for
the trivial proof), and MH, is a submodule of Mhj, so that estimates
for the latter give stronger estimates for the former.
Thus we may assume that all the Xi’s have the same valuation

w(Xi) = 1. Now IH, D (( 1 + X;)P’ - 1) = (Xi’). Thus Gr(IH.) contains

(with notation analogous to that of 1.4.4) every polynomial divisible
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by Xfj for some i, and in particular contains GR(IH) ,,,i defm np’, where n
is as usual dim H = dim(Gr(f2)). Now Gr(M) is a finitely generated
torsion Gr(f2)-module. So for t sufficiently large, Gr(M)ImtGr(M) has
dimension given by XM(t), where XM is the Hilbert polynomial of
Gr(M), of degree at most n - 1. Letting t = np , we see that

Gr(M)/Gr(IH,)Gr(M), which as an abstract vector space is isomorphic
to MH,, is a quotient of a vector space of dimension 0«np’ )n-’); this
gives the required estimate.

(ii) implies (i); Assuming as usual that M is torsion-free, hence
contained in a free A-module (Cf. the proof of 1.7), we derive a
contradiction: Since M C A for some integer r, Gr(M) C Gr(A/.

1.10.2. LEMMA: Let M be a finitely generated module over R =

k[Xo, XI, ..., Xn], k a field, such that M is torsion-free. Then M can be
imbedded in a free R-module V such that Supp( VI M) 2) Supp(R/XoR).

PROOF: Let U be the open subset of Spec(R) on which M is locally
free; then U contains the generic point of every hypersurface (since
the local ring of such a point is a DVR). Thus the complement of U is
of codimension two. Choose a hypersurface containing Spec(R) - U
and transversal to supp(RIXOR); call it H, and its complement W.
Then M (DR F(W, ÛW) is r( W, Cw)-projective, hence a direct sum-
mand of a free r(W, 6w)-module B ; and an R-lattice in B containing
M will be the desired V.

We apply this lemma to Gr(M) and Gr(A) = Fp Xi,..., Xn], let-
ting p play the role of Xo. We have the exact sequence (write M for
Gr(M))

giving rise to the exact sequence (we continue to write R =Gr(A),
and now set J; = Gr(IHj)

We claim that Tj = Tor R(RlJj, 1 VI M) satisfies

In f act, Jj is generated by n elements (coming from (1 + Xi)Pj - 1,
i = 1,..., n, Cf. 1.4.4), so that a free resolution for RIJI begins
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Tj will be a subquotient of R" 0R ( V/M), and will thus remain torsion
when tensored with Rlj5R, thanks to our choice of V. (1.10.4) then
follows from 1.10.1.

Now MI JjM, as a finitely generated Fp[p]-module, has a free part
and a torsion part; we are given that the free part has rank 0(p (n - I)j) ,
and we know that the torsion part is in the image of T;, hence when
reduced mod p has dimension O(P(n-l)j). Thus, as a Gr(f?)-module,
M/pM = N satisfies

we write J; again for the image of Ji in Gr(f?). But in Gr(il), 7/ is

generated by {X fi , i = 1,..., nl, hence is contained in mp’, where m is
the ideal generated by fX,, X,,I. By the Hilbert polynomial,
dimfp NlfftPj -- dimf, NIJIN = O(P(n-llj) implies N is a torsion Gr(il)
module. As in part (i) of the proof of 1.7, this implies M/pM is a
torsion il-module, hence by 1.9, M is a torsion A-module.

1.10.8. REMARK: We may refine Lemma 1.10.1, and consequently
Theorem 1.10, as follows: we have shown that, if M is a finitely
generated compact torsion il-module, and if M’ is the Pontryagin
dual of M, then dimFp M’H  XM(np‘), where n = dim H and XM is the
Hilbert polynomial of Gr(M), considered as a Gr(f?)-module. Hence,
if the support of Gr(M) is of codimension k in Spec(Gr(f2», we may
replace the estimates in 1.10.1 by dimF p M’Hi = O(p(n-k)Î), and thus, we
may replace (ii) of 1.10 with

When H is commutative, one need not reduce (mod p), nor need one

appeal to Gr: the support of M on Spec(H) = Spec(ZpQXI, ..., XnD)
will have a codimension k, and 1.10.8.1 will hold for this k.

1.11. PROPOSITION: Let K be an y p-analytic subgroup of H, M a
compact finitely generated module over AK. Then Ind %(M) is finitely
generated over AH, and M is torsion over AK if and only if Ind t(M) is
torsion over AH.

PROOF: Let {mi} be a set of AK-generators of M. Then {1 Q9 mi} is a
set of AH-generators of IndK(M), and they are annihilated already by
elements of AK if M is a torsion AK-module. On the other hand, if M
is torsion-free, then so is IndÍ2V(K)nHM, since Aenv(K)nH is free over AK;
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thus we may assume that K = env(K) n H. Then Gr(AH) is smooth
over Gr(AK), and in particular faithfully flat; so if Gr(M) is torsion-
free over Gr(AK), then Gr(IndH(M» is torsion-free over Gr(AH), and
IndK(M) is torsion-free over A

1.12. TERMINOLOGY: Let M be a discrete A-module, M’ its com-

pact Pontryagin dual. If M’ is finitely generated over A, we say M is
cofinite; this is to say that MH, up to a finite group is isomorphic to
(Q,/Z,)t for some integer t. If M’ is A-torsion, we say M is cotorsion.
The category of compact torsion A-modules will be denoted 3. We
shall always understand by a torsion module a finitely generated
torsion module.

Finally, let M be a compact A-torsion module; if Supp(Gr(M)) is of
codimension at least two in Spec(Gr(A)), we say M is trivial mod 16,
and we let 16 be the full, necessarily thick, subcategory of J of
modules trivial mod Cf¿; we employ the usual conventions in dealing
with quotient categories. If M is compact and trivial mod 16, its

Pontryagin dual will be called cotrivial mod 16. As in 1.11, we see that
being trivial mod 16 commutes with induction. Similarly, the proper-
ties of being cotorsion or cotrivial mod Q3 commute with coinduction,
where CoindK M = HomAK(AH, M) with its usual left l1H-module
structure.

§2. Mazur’s descent theory and the canonical tower

Hère we recall Mazur’s formulation of the classical theory of
infinite descent for abelian varieties in terms of flat cohomology,
following [28] more or less literally. In that paper, Mazur proves that
Iwasawa theory provides valuable information about the growth of
Mordell-Weil groups of abelian varieties over Zp-extensions, where p
is a prime at which the abelian variety has ordinary reduction. In this
section, we derive analogous results on the growth of the Mordell-
Weil group over the particular p-analytic Galois extension obtained
by adjoining the p"-division points to the ground field for all n.

2.1. Let K be a number field, AK an abelian variety over K. If

S = Spec(OK), OK the ring of integers in K, we denote by A the
Néron model of AK over S. It is known that, over an open subset of
S, A is proper and has connected fibers; thus, if we define Fn, n a

positive integer, by the exactness of the sequence of f pp f sheaves on
S
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(A[n] is the kernel of multiplication by n), then, if A has semi-stable
reduction at all points of characteristic dividing n, then Fn is a

skyscraper sheaf with finite fibers, not in general representable, such
that if q is a number relatively prime to n, then q does not divide the
order of any stalk of Fn. This is true in particular if n is a power of

the prime p, and A has good reduction at all points of characteristic p.
Break up (2.1.1) into the following diagram, whose rows are exact

sequences of f pp f abelian sheaves on S:

This gives rise to the exact cohomology sequences

Let n = p r and take the direct limits, over r, of the three sequences
above. Evidently, at any given point, Fn has order bounded above by
the number of connected components of the Néron fiber. We want to
find sharp bounds for H° and H’ of Fn. First of all, we note that

H’(S, Fn) = EBxEsuppFn Hi(Gal(k(x)lk(x)), Fn,x), where k(x) is the resi-

due field at x, k(x) its algebraic closure - this is true because Fn is a

skyscraper sheaf, and because cohomology of A and A computed for
the flat or étale topologies give the same results (Cf. App., 1.0.2.3),
and by the five lemma, the same is true of Fn.

2.1.3.3. We record, for future reference, that H’(S, Fn) has order
bounded independently of n, which follows immediately from the
corresponding assertion for F" itself.

(2.1.4) In this paragraph only, we assume K is local, S = Spec(OK)
as before. We let Kn = K(A[pn+1]), Koo = K(A[pOO]), in the obvious
notation, and Sn, S. the corresponding Spec’s of integer rings. A does
not lift to a Néron model over Sn in general, but we shall denote ail
the Néron models by the letter A. In any case, there is a map from the
lift of A over Sn to the Néron model of A over Sn, so that it makes

sense to take direct limits over n of cohomology groups of A. Similar


