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RETRACTS OF THE SORGENFREY LINE'

Eric K. van Douwen

Abstract

A space X is called (strongly) retractifiable if for every nonempty
closed subset F of X there is a (closed) retraction from X onto F.
The Sorgenfrey line is both strongly retractifiable and hereditarily
retractifiable but is not hereditarily strongly retractifiable. The Alex-
androff double arrow space is strongly retractifiable but not heredi-
tarily retractifiable.

1. Introduction

We call a space X (strongly) retractifiable if for every nonempty
closed subset F of X there is a (closed) retraction from X onto F [2].
Improving older results, Engelking [4] has shown that each strongly
zero-dimensional metrizable space is (necessarily hereditarily) stron-
gly retractifiable. His proof can easily be adapted so as to show that
each «k-metrizable space, with k =w,, is hereditarily strongly
retractifiable (the fact that x-metrizable spaces are paracompact,
which is used in this proof, can be found in [8]). Another class of
hereditarily strongly retractifiable spaces is the class of spaces of the
form [0, a], where «a is an ordinal. We omit the easy proof.

Retractifiable spaces have strong separation properties. It is not
difficult to prove that a retractifiable space is strongly zero-dimen-
sional, and also hereditarily collectionwise normal, see [2] for a
stronger result (we do not know if a retractifiable space must be
hereditarily strongly zero-dimensional). Retractifiable spaces are of
interest because they have the extension properties considered in [2],
(31, [5], [6] and [7].

! Part of this paper is contained in the author’s thesis [2].
0010-437X/79/02/0155-07 $00.20/0
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Let S be the Sorgenfrey line: the underlying set of S is the set of
reals, and the collection of all sets of the form [a, b) is a base. Let
T be the ‘“irrational Sorgenfrey line”, i.e. the subspace {xES|x
irrational} of S. We prove

(1) Sis both hereditarily retractifiable and strongly retractifiable,
but
(2) T is not strongly retractifiable.

CoRrROLLARY: S and T are not homeomorphic.

This shows that strong retractifiability is not hereditary, even in the
class of first countable hereditarily- (Lindenlof and separable and
retractifiable) spaces.

Let A be the Alexandroff double arrow space: the underlying set of
A is ([0, 11 x {0, 1}) — {(0, 0), (1, 1)}, where [0, 1] is the unit interval, and
A is topologized by the lexicographic ordering [1]. Let B be the
“irrational double arrow space’’, i.e. the subspace {(x,i)E A Ix irra-
tional} of A. We prove

(3) A is (necessarily strongly) retractifiable, but
(4) B is not retractifiable.

This shows that retractifiability is not hereditary, even in the class of
perfectly normal hereditarily separable compact spaces.

2. Positive results

PROOF OF (1):'Let Y be a subspace of S, and let F be a nonempty
closed subset of Y. Let € be the collection of all convex components>
of S\F which contain some point of Y. Each C € € contains a
nondegenerate interval, hence diam(C) > 0.> Observe that Y\F C U&.
Choose for each C € € a k(C) € F satisfying

(1) If sup(C) and diam(C) are finite, then sup(C)=k(C)<
sup(C) + diam(C).
(2) If sup(C) € F, then k(C) = sup(C).

For each x € Y\F let C(x) be the unique member of € that contains

2 A subset C of an ordered set L is called convex if [a, b] C C whenever a, b€ C. C is
a convex component of a subset U of L if C is convex and if C is not properly
contained in a convex subset of U.

3 The underlying set of S is the set of reals so that the notion of diameter makes sense.
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x. Define a function r: Y — F, satisfying r(x) = x for x € F, by

r(x)=x if x € F.
=inf(C(x)) if x € F and inf(C(x)) € F.
=k(C(x)) if x& F and inf(C(x)) & F or inf(C(x))
does not exist.

If x€ Y\F, then Y NC(x) is a neighbourhood of x on which r is
constant, hence r is continuous at x. Next consider a point x € F. We
may assume that x is not isolated. Then there are two cases to
consider.

Case 1: x =inf(C(y)) for some y € Y\F. Then r is continuous at x,
being constant on Y N[x, y).

Case 2: x#inf(C(y)) for all y€ Y\F. Then x € (F N(x,»))". Let
€ >0 be arbitrary. Then there is a y € F N(x, x + €). We wish to prove
that r[Y N[x, y)] C [x, x + 2¢); this will show that r is continuous at x.
Pick any z€ Y N[x, y). If z€ F, then r(z)=z €[x,x +2¢). If z& F,
then x <inf(C(2)) = r(z) <sup(C(z)) + diam(C(z)) <y + € < x + 2e.

This proves that S is hereditarily retractifiable. Next we show that
S is strongly retractifiable. Let F be any nonempty closed subset of S.
Let Y = S and define a retraction r: S = Y - F as above. We have to
show that r is a closed map. Before we proceed we take care of a
technical nuisance. If F has an upper bound, then let U = [sup(F), ).
Otherwise let U = @. If U # @, then r maps U onto a single point, p say
(note that p # sup(F) is possible because sup(F) & F is possible).

Now let G be any closed subset of S, and let x € r[G]". If x € G,
then x = r(x) € r[G], so we assume that x& G. Then there is an a >0
such that [x,x +a)NG =6, and such that p& (x,x +a) if U#8.
Since x € r[G], there is-an a € G such that x<r(a)<x+a. If
x = r(a), then x € r[G], so suppose x < r(a). Then there also is a
b € G such that x = r(b)<r(a). Since [x,x +a)NG =@, there are
two cases to consider.

Case 1. b <x. Then C(b) is bounded above, hence sup(C(b)) exists.
But F is closed, hence sup(C(b))EF. It follows that r(b)=<
sup(C(b)) < x. Consequently x = r(b) € r{G].

Case 2. r(a)<b. If C(b) does not have an upper bound, then b € U,
hence r(b) = p& (x, r(a)). Therefore x = r(b) € r[G]. If C(b) has an
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upper bound, then r(a) = inf(C(b)) =< r(b) < sup(C(b)). It follows that
r(a) = r(b), a contradiction.
This completes the proof that r[G] is closed. W

The following Proposition implies (3).

PROPOSITION: Any totally disconnected locally compact orderable
space is strongly retractifiable.

Let < be a compatible ordering for a totally disconnected locally
compact orderable space L. For each x € L define

L, = U{(a, b] | a=x=<b,[a,b]is compact}

Then L is easily seen to be the topological sum of {L, lx € L}, since
each L, is a neighbourhood of x and L,NL,=@ or L,=L, for
x,y € L. The ordering < induces a Dedekind complete ordering on
each L,. Since a topological sum of strongly retractifiable spaces is
again strongly retractifiable, it follows that we may assume in fact
that < is Dedekind complete.

Let F be a nonempty closed subset of L. Let {C, | v €I'} be the
collection of convex components of L\F. Since < is Dedekind com-
plete, each C, has the form (a,, b,), with a,, b, € F, or (e,, ®), with
e,EF, or (—»,e,), with e, E F. Let I'* be the set of all y&E I for
which C, has the form (a,, b,). Since L is totally disconnected, < is
Dedekind complete and (a,, b,)#@ for y € I'*, there is for each
y € I'* an m, € [a,, b,) with an immediate successor. We can define a
function r: L —» F such that r(x) = x for x € F by

rx)=x ifx€eF.
=a, if x € (a,, m,] for some y € I'*.
=b, if x €(m,, b,) for some y € I'*.
=e, if x € C, for some y € I'I'*.

The easy proof that r is continuous is omitted. Let A C L be closed,
and assume that x € r[A]". There have to be p,q € F, p < x < q such
that x € r[A N[p, q]1". Since the restriction of r to [p, q] is a closed
map, because [p, q] is compact, it follows that x € r[A]. W

The idea of the definition of the above retractions is known [9,
lemma on page 118].
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3. Negative results

The proofs of (2) and (4) are based on the same idea, and show that
in some cases retractions must look like the retractions we con-
structed.

Let K be the Cantor ternary set, i.e.

K={2ak/3“|ak=00r2fork21}
k

and let E be the set of all end points of the convex components of
S\K. E is countable, and for each x € K\E and for each € > 0 the sets
K N(x —¢,x) and K N(x, x + €) are uncountable. So if we put

F=KnNT

then the fact that T N E = @ implies

A. For each x € F and for each € >0 the sets FN(x—¢, x) and
F N(x, x + €) are not empty.

Observe that F is closed in T, and that F X {0, 1} is closed in B.

Fact 1: If r: T - T is continuous, and if r(x) = x for x € F, then there
are p,q € F with p <q such that if x€EF, yETand p<=x<y=gq,
then x < r(y).

Fact 2: If r: B— B is continuous, and if r(x) =x for x € F x{0, 1},
then there are p,q € F with p < q such thatif x€ F, y€ T, z € F and
p=x<y<z=gq, then {x,1)<r((y, i) <(z,0) fori=0,1.

Proof of fact 1: Define
F,,={xEF|xSy<x+1/n implies x < r(y) for each y € T},

Since r is continuous and r(x) = x for x € F, we have F = U, F,. Since
F is a Baire space,’ there are n =1 and p, g € S with p < q such that
FN(p,q)#0 and F,N(p, q) is dense in F N(p, q). Then A implies
that we may assume that p, q € F, and also g < p + 1/n. Suppose that
xEF, yeT and p=sx<y=gq. Because of A and the fact that
F, N(p, q) is dense in F N(p, q) thereisat € F,N(x,y). Thent <y <
t+1/n,hence x<t=<r(y). R

* Whether one considers F as a subspace of S or as a subspace of R.
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The proof of Fact 2 is similar.

PROOF OF (4): Let r: B— B be a continuous map such that r(x) = x
for x € F x{0,1}. Let p and q be as in Fact 2. Since F is nowhere
dense in T, there is a y € (p, q) N(T\F). Then the statement of Fact 2
implies that r((y, i)) € F x {0, 1}, where i = 0 or 1. Therefore r is not a
retraction. W

ProoF OF (2): Let r: T - F be any retraction. Using Fact 1 we will
construct a subset Y ={y, | n =1} of T such that y, <y, < F(yus1) <
r(y,) for all n =1, and such that P = M= [y., 7(y,)] is a subset of F.
Since y, < y,+1 for n =1, the set Y is closed. The set P has a greatest
element, p say—in fact, P ={p}-and clearly p € r[Y]\r[Y]. There-
fore r is not a closed map.

Let {b, | n =1} be the set of all rationals. Let {C, I n =1} be the
collection of all convex components of T\F. Since F is nowhere
dense, we have

B. Each interval (s, t) intersects T\F, therefore A implies

C. Each interval (s, t) that intersects F, contains infinitely many
C,’s.

Let p and g be as in Fact 1. Then

D. If x €(p, @) NT\F, then x < r(x).

We now proceed to the construction of Y. By B we can choose a
y1€ (p, q) N(T\F). Suppose y, to be constructed for a certain n, and
that y, € (p, q) N(T\F). Then r(y,) € F and y, < r(y,). So if m is the
smaller of r(y,) and g, then m € F and y, <m. Using A and C we
pick an x € (y,, m) N F such that (x, m) NC, =@ and b, & (x, m). Since
r is continuous at x and r(x) = x, there is an € > 0 such that x < r(y) <
m if y€[x,x+e)NT. Because of B there is a y,1 €
(x, m) N(x, x + €) N(T\F). Since y,,, € (p, q) N(T\F), we see from D
and our choice of y,.; that y, <y, < F(¥as1) < r(¥n), that C, N (Y1,
r(yn+1)) =@ and that b,& (Yn+1, 7(¥ns1)). This completes the construc-
tionof Y. W

REMARK: There is a direct proof of the corollary to (1) and (2), that
S and T are not homeomorphic, which is based on the fact that each
homeomorphism from S into S has to be increasing on some
nonempty open subset of S, cf. Fact 1.
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