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1. Introduction

By a Q-manifold we will mean a separable metric manifold

modeled on the Hilbert cube Q. Let f: M --&#x3E; B be a map of a

Q-manifold to an ANR. In this paper we will be concerned with the
following question: Does f fiber, i.e. is f homotopic to the projection

map of a fiber bundle M - B with fiber a Q-manifold? In general it isnot true that f fibers. For example, a constant map Q --- &#x3E; S’ does not
fiber. In Theorem 1 below we treat the [0, 1)-stable case in which f
always fibers, while Theorems 3-7 indicate some of the problems one
encounters in the compact cases.

Theorem 1 is not terribly surprising. It is an extension of the well

known result that Q manifolds which have the form M x [0, 1) are

homeomorphic if and only if they are homotopy equivalent (see [3,
Chapter V]).

THEOREM 1: If f: M - B is a map of a Q-manifold to a locally

compact ANR, then the composition

Of course, there is an analogue of this result for l2-manifolds, where
l2 is separable infinite-dimensional Hilbert space.

THEOREM 2: If f: M ---&#x3E; B is a map of an l2-manifold to a topolo-
gically complete separable metric ANR, then f fibers.

In the compact cases below we immediately encounter obstructions
to repeating the proofs of Theorems 1 and 2. By making enough
connectivity assumptions so that these obstructions vanish, we obtain
the following result. See §2 for a review of the undefined terms.
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THEOREM 3: Let f : M - B be a map of a compact Q-manifold to a
compact, connected ANR B which is simple homotopy equivalent to a

finite n-complex. If the homotopy fiber F(f) of f is homotopy
equivalent to a finite n-connected complex K, then there is an obs-

truction in the Whitehead group Wh 7r,(M) which vanishes iff f fibers.
Moreover, if n = 1 we only need assume that Wh 7TI(K) == 0, and if
n = 2 we only need assume that K is 1-connected.

As a special case of Theorem 3 we obtain an infinite-dimensional
version of Casson’s fibering theorem [2].

COROLLARY: If M - S2 is a map of a corripact Q-manifold to S2
such that F(f ) is homotopy equivalent to a finite 1-connected complex,
then f fibers.

In Theorems 4-7 we specialize to the cases in which the base B is
homotopy equivalent to a wedge of 1-spheres. The main tool is given in
Theorem 4 and the main result is given in Theorem 5.

THEOREM 4: Let (e, p, B) be a Hurewicz fibration such that B is a
compact ANR homotopy equivalent to a wedge of n 1-spheres and the
fiber F is homotopy equivalent to a finite connected complex. Then e
is fiber homotopy equivalent to a compact Q-manifold fiber bundle
over B ifl an obstruction lying in a quotient of the direct sum of n
copies of Wh 03C01(F) vanishes. Given that this obstruction vanishes,
there is a 1-1 correspondence between simple equivalence classes of
such bundles and a quotient of a subgroup of Wh 7r,(F).

For an explanation of the last sentence in the above statement we
refer the reader to §5.

THEOREM 5: Let f : M ---&#x3E; B be a map of a compact Q-manifold to a

compact ANR which is homotopy equivalent to a wedge of n 1-

spheres and assume that the homotopy fiber F(f) is homotopy
equivalent to a finite connected complex. There are two obstructions to

f fibering. The first one lies in a quotient of the direct sum of n copies
of Wh 03C01F(f). If this obstruction vanishes, the second one is defined
and lies in a quotient of Wh 7TI(M).

In Theorem 6 we treat the special case of Theorem 5 in which B is
homotopy equivalent to S’. Here the situation is considerably sim-
plified and what we obtain is an infinite-dimensional version of

Farrell’s fibering theorem [10].
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THEOREM 6: Let f: M ---&#x3E; B be a map of a compact Q-manifold to a
compact ANR which is homotopy equivalent to S’ and for which the
homotopy fiber F(f) is homotopy equivalent to a finite connected
complex. There are two obstructions to f fibering. They are in-

dependently defined and both lie in Wh 7r,(M).
We remark that one of the obstructions obtained here is just

Farrell’s obstruction for the finite-dimensional case, but the infinite-

dimensional nature of the problem requires another obstruction.
Finally, in Theorem 7 we classify equivalence classes of Q-mani-

fold fiber bundle projections over nice ANRS.

THEOREM 7: Let f, fI: M ---&#x3E; B be homotopic compact Q-manifold
fiber bundle projections, where B is a compact ANR homotopy
equivalent to a wedge of n 1-spheres, and let F be the connected fiber
of f: M --&#x3E;B. There are two obstructions to finding a homeomorphism
h : M ---&#x3E; M such that fh = f 1 and h is homotopic to the identity. The
first lies in Wh 7TI(F), and if it vanishes the second is defined and lies
in a quotient of the direct sum of n copies of P(F).

Here P(F) is the group of all isotopy classes of homeomorphisms
of F to itself which are homotopic to the identity. It is a quotient of -

7ro of the concordance group of F, which has been algebraically
investigated by [12]. See §2 for further details.
We now say a few words about the organization of the material in

this paper. §2 contains some preliminary results and in §3 we prove
Theorems 1 and 2. In §§4-8 we prove Theorems 3-7. In §9 we prove a
result (Theorem 8) which calculates the kernel of a certain map of
Whitehead groups. This generalizes a result of Farrell [9]. Theorem 8
may be paraphrased as follows. Let (Z, p, B) be a Hurewicz fibration,
where B is a finite wedge of 1-spheres and the fiber F has the

homotopy type of a finite complex. If i is the inclusion map i : F4 E,
then Theorem 8 computes the kernel of

The constructions in §9 are made more geometric by replacing e with
a finite "wedge" of mapping tori.

2. Preliminaries

If p: E ---&#x3E; B is a map and B 1 C B, we use E Bi 1 to denote p -1(B 1)
and we let Eb = p-1(b), for each b E B. If p’: E’--&#x3E; B is another map,
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then f: E ---&#x3E; E’ is said to be fiber preserving (f.p.) provided that

f (Eb) = Eb, for each b E B. The restriction of f to Eb is denoted by
fb: Eb --&#x3E; E’. A fp. map f : E ---&#x3E; E’ is said to be a fiber homotopy
equivalence ( f . h. e.) if there exists a f.p. map g : E--&#x3E; E such that fg
and gf are f.p. homotopic to their respective identities. We will

abbreviate ordinary homotopy equivalence by h.e.
If f : E - B is any map, where B is path connected, then we define

(Bj is the space of paths in B.) Define p : 6(f) - B by p(e, w) = 03C9 (1).
p : E(f) ---&#x3E; B is the mapping path fibration of f: E --&#x3E; B. There is a h.e.

g : E ---&#x3E; E(f) such that pg ~ f. For any bo E B, the fiber of E(f) over bo
is

F(f ) is called the homotopy fiber of f : E ---&#x3E; B.

The following result will be used several times in the sequel. For a
proof see [8] for the case in which B is a countable complex and see
[14] for the general case.

THEOREM 2.1: Let p: E-B, p’: E’----&#x3E; B be Hurewicz fibrations,
where B is a connected ANR, and let h: E- E’ be a f.p. map such
that hbo: Eb0 ---&#x3E; Ebo is a h.e., for some bo E B. Then h is a f.h.e.

The above result gives us the following useful theorem.

THEOREM 2.2: Let p: E ---&#x3E;B, p’: E’---&#x3E; B be Hurewicz fibrations,
where E, B and all the fibers have the homotopy types of countable
complexes. If f: E ---), E’ is a h.e. such that p’f = p, then f is homotopic
to a f.h.e.

PROOF: Assume that B is connected and choose bo E B, eo E Ebo.
The condition p’f ~ p gives us a homotopy H : E x I ---&#x3E; B such that

Ho = p and Hl = p’ f. Lifting H we get a homotopy H : E x I ----&#x3E; E’ for

which Û, = f. Then g = Ho: E ---&#x3E; E’ is homotopic to f and g is f . p. The
homotopy exact sequences of the two fibrations give us a com-

mutative diagram,
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Here e’= g(eo) and by the five lemma (g 1 bo)* is a h.e. Then we apply
Theorem 2.1. ·

In the sequel we will need a considerable amount of Q-manifold
machinery. Our basic reference for this is [3]. It would be time

consuming to give a complete description of the material from [3]
which we will need, but here is a list of some of the highlights.

1. Z-sets and Z-set unknotting ([3, Theorem 19.4]).
2. The classification theorem for simple equivalences in terms of

homeomorphisms on Q-manifolds ([3, Theorem 38.1]).
3. The triangulation theorem for Q-manifolds ([3, Theorem 36.2]).
4. The ANR theorem, which says that every locally compact ANR

times Q is a Q-manifold ([3, Theorem 44.1]).
It will be convenient to know how to change bases in fibering
problems.

THEOREM 2.3: Consider f: M - B, where M is a compact Q-mani-
fold, and B is a compact ANR, and let g: B ---&#x3E; B’ be a simple
equivalence of B to another compact ANR. Then f fibers iff gf fibers.

PROOF: Since g: B ---&#x3E; B’ is a simple equivalence we have a

homeomorphism 0: B x Q --&#x3E; B’x Q which is homotopic to g x ld.

Choose a homeomorphism a: M x Q --&#x3E; M homotopic to the pro-

jection map. Assuming that f fibers we have a fiber bundle projection
map p : M ---&#x3E; B. It is easy to check that the composition

is a fiber bundle projection homotopic to gf..

In a similar fashion we can establish the following [0, 1 )-stable
result.

THEOREM 2.4: Consider f: M - B, where M is a Q-manifold and B
is a locally compact ANR, and let g: B ---&#x3E; B’ be a h.e. of B to another
locally compact

Here is a mild generalization of Anderson’s result [1] ] to fiber

bundles over ANRs. The result is also true for ANR Hurewicz

fibrations over ANRs.

THEOREM 2.5: Let p 1: Ej- B and P2: E2 ---&#x3E; B be compact Q-mani-
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fold fiber bundles such that B is a compact connected ANR and let
f: E1 ---&#x3E; E2 be a f.h.e. If bo E B, then r(f) = i*x(B)r(f 1 (EI)bo), where
x(B) is the Euler characteristic of B and i is the inclusion (E2)bo 4 E2,
and r denotes Whitehead torsion.

PROOF: For the moment assume that B is a finite complex. Choose
any other basepoint b, E B. We will first prove that j*T(f ) 1 (EI)b) ==
i.,(f 1 (E1)bo)’ where j : (E2)bl 4 E2. Choose a path (1J: I ---&#x3E; B from bo to

bl. Over w(I) we have trivial bundles. This induces homeomorphisms
a:(EI)b,-(EI)b, and 8:(E2)b,-(E2)b, so that a is homotopic to

(EI)bo 4 E, and 03B2 is homotopic to (E2)bo 4 E2. Thus we have a homo-
topy commutative diagram,

simplex in B we can also prove that T(f 1 (EI)b,) and T(f 1 
have the same image in Wh 7r,(E,). This follows because if

then we have a homotopy commutative diagram

where the inclusions are simple equivalences.
We now begin the proof. Let dim B = n and let B’ be the (n - 1)-

skeleton of B, where bo E B’. Then we get restricted fiber bundles

be the n-simplexes of B. Using the Sum Theorem

where we have omitted obvious inclusion-induced maps. Since
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we are done for the case in which B is a finite complex. For the
remainder of the proof we show how to reduce the general case to
this case.

Our first observation is that if B is any compact Q-manifold, then
the above proof goes through. We just replace B by K x Q, for some
finite complex K, and argue inductively over the skeleta of K times
Q. More generally, if we multiply everything by Q we obtain Q-
manifold fiber bundles Ei x Q -&#x3E; B x Q, where B x Q must be a Q-
manifold. We get a f. h. e. f x ld : El x Q ---&#x3E; E2 X Q. The above special
case implies that

where i’ is inclusion. Projecting back to E2 we get r(f) =
1*x(B)T(f ) 1 (EI)bo) and we are done..

COROLLARY 2.6: With pi: Ei --&#x3E; B as above let g : E1 --&#x3E; E2 be a map
such that p2g = pi and assume that Wh irl«EI)b,) = 0. If g is a h.e.,
then g is a simple equivalence.

PROOF: Using Theorem 2.2 we have g ~ g’, where g’ is a f.h.e.
Then

We will also need the notion of a mapping torus. For any com-

pactum X and map p: X ---&#x3E; X, the mapping torus of ~ is the com-

pactum

where -- is the equivalence relation generated by (x, 0) -- (cp (x), 1). It

is clear that there is a natural map T(,c) --&#x3E; S’ so that each point-
inverse is naturally identified with X.

Finally we introduce the group P(M) needed in Theorem 7. For

any compact Q-manifold M let P(M) denote the group of isotopy
classes of homeomorphisms of M which are homotopic to the iden-

tity. Here are some facts about P(M) which appear either explicitly
or implicitly in [4].

1. If M is 1-connected, then P(M) is trivial.
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If h: M ---&#x3E; M is a homeomorphism homotopic to the identity, then h
determines an isotopy class of homeomorphisms in P(M). To save
notation we will identify h with this isotopy class in P(M). Thus in §8
a statement such as f = g actually means that f is isotopic to g, where
f and g are homeomorphisms homotopic to the identity.

3. Proofs of Theorems 1 and 2

We begin with the proof of Theorem 1. The basic step is the

following result.

LEMMA 3.1: Let N be a Q-manifold, E - Sn be a fiber bundle with
fiber N x [0, 1), and let f: Sn x N x [0, 1) E E be a f.h.e. Then f is fiber
homotopic to a homeomorphism.

PROOF: Using Theorem 4.1 1 of [5] there is a f.p. embedding g: Sn x
N x [0, 1) ---&#x3E; E such that each gx : N x [0, 1 ) - Ex is a Z-embedding and
such that g is fiber homotopic to f. Let Sn x N x [0, 1) be identified
with Sn x N x [0, 1) x 101 in Sn x N x [0, 1 ) x I. Our strategy is to show
that we have a f . p. homeomorphism of pairs,

This implies that the inclusion g(S" x N x [0, 1)) 4 E is fiber homo-
topic to a homeomorphism, thus completing the proof of our lemma.
Let Dn C Sn be any n -cell.

ASSERTION: There exists a f.p. homeomorphism of Dn x N x

[0, 1) x I onto E 1 Dn which agrees with g on Dn x N x [0, 1).

PROOF oF ASSERTION: Choose any f.p. homeomorphism a : Dn x
N x [o, 1) x I - E 1 Dn. We must replace a by a’ so that a’ 1 Dn x N x
[0, 1) = g. Consider the f.p. Z-embedding

It will suffice to construct a f . p. homeomorphism of D" x N x [0, 1] x I
onto itself which extends gi.
We now use the fact that g, is a f.h.e. Choose any bo E Dn and

consider (gl)b,: N &#x3E; [0, 1) ---&#x3E; N &#x3E; [0, 1) &#x3E; I, which is a h.e. It follows

from [3, Theorem 21.2] that there exists a homeomorphism u : N x[0, 1) x I - N x [0, 1] x I extending (gl)bo. D fine 92: D" x N x [0, 1) ---&#x3E;

Dn x N x [0, 1) x I by (92)b = (g,)bo, for all b’ E D". Then g2 is a "con-
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stant" f.p. Z-embedding. Using the homeomorphism u it is clear that

g2 extends to a f . p. homeomorphism of D" x N x [0, 1) x I onto itself.
So, to finish, all we need is a f . p. homeomorphism of D" x N x [0, 1) x
I onto itself which composes with gl to give g2.
To see this, let 0,: D" ---&#x3E; Dn be a homotopy such that 03B80 = id and

03B81(Dn) = lb,l. Then define a f . p. homotopy

by (03B2t)b = (g.)Ot(b). Clearly /3o= gi and 03B21 = g2. Moreover, this is a f.p.
proper homotopy. By Theorem 5.1 of [5] we conclude that there
exists a f.p. homeomorphism r of D" x N x [0, 1) x I onto itself such
that rg, = g2. This completes the proof of the assertion.

Now let G be the homeomorphism group :Je(N x [0, 1) x 1, N x
[0, 1)), the space of all homeomorphisms of N x [0, 1) x I onto itself
which are the identity on N x [0, 1). For each b E S" let 0(b) be the
space of all homeomorphisms cp : N x [0, 1) x I - Eb such that cp = gb
on N x [0, 1). This makes E ---&#x3E; S" into a fiber bundle with structure

group G, which we call a G-bundle (see [16, p. 90]). We will show that
E is trivial as a G-bundle. This will imply that there is a f.p.
homeomorphism of pairs,

as was our strategy. To show that E is trivial for all n, all we have to

do is prove that G is contractible.

Choose any h E G. If f : [0, 1) x 1 - [0, 1) x I is any homeomorphism
which is the identity on [0, 1) x 101, then it is easy to isotope f to a
homeomorphism f’rel[0, 1) x {0}, where f’ is also the identity on
101 x L This same idea easily shows that h is isotopic to h’rel N x

[0, 1), where h’ is the identity on N x 101 x I. Using a variation of the
well known Alexander trick define h 1 = ld and for 0 - t  1 define

where cpt : N x [ t, 1 ) x I N x [o, 1 ) x I is defined by linearly
homeomorphing [t, 1) to [0, 1). Then h defines an isotopy of h’ to ld
rel(N x 101 x I ) U (N x [0, 1)). All of these isotopies depend continu-
ously on h. Thus G is contractible. ·

REMARK: The above method of proof can be used to prove that a

f.h.e. between any two fiber bundles, with fiber N x [0, 1), is fiber

homotopic to a homeomorphism.
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We now use Lemma 3.1 to prove the following result.

LEMMA 3.2: Let 6 - B be a Hurewicz fibration over a countable
complex and assume that all the fibers are h.e. to countable com-

plexes. Then î is f . h. e. to a fiber bundle over B with fiber a Q-
manifold.

PROOF: Without loss of generality assume that B is connected and
use [3, Theorem 28.1] to choose a Q-manifold N which is h.e. to the
fibers of 6 -B. We will induct over the n-skeleta of B, Bn, to

inductively build our fiber bundle. For n = 0 it is clear that 6 ) I Bo is
f.h.e. to a fiber bundle over Bo with fiber N x [0, 1). Passing to the
inductive step as sume n &#x3E;0 and let f 1: î 1 B,---&#x3E; E, be a f. h. e., where
Ei - Bn is a fiber bundle with fiber N x [0, 1). We will extend f to a
f.h.e. f: e 1 Bnll ---&#x3E; E, where E-Bn+i is a fiber bundle extending
Ei - Bn. For simplicity of notation we assume that Bn+l = Bn ~~,
where à is a single (n + 1)-simplex.

By restriction we get a f.h.e. fo: 6 ) 1 dà ---&#x3E;El 1 dà. By Theorem 2.1 it

suffices to extend f o to a f . p. map f2: e 1 à ---&#x3E; E2, where E2 is a
fiber bundle extending El 1 dà ---&#x3E; ad. Since 6 ) I ad is f . h. e. to ad x N x

[0, 1), we may replace e laà by dà x N x [0, 1) and consider the

following reduction of the problem: If fo: dà x N x [0, 1) --- &#x3E; El 1 dà is a
f.h.e., then fo extends to a f . p. map f2: à x N x [0, 1) - E2.

To see how this reduction implies the general case choose a f.h.e.

,6: e 1 dà ---&#x3E; ad x N x [0, 1) be a fiber homotopy inverse of ao. Given a
f . h. e. fo: î 1 dà ---&#x3E; El 1 dà, we get a f . h. e. foao.B: e ad - E1 1 as. The
reduction implies that foao extends, and since (3 extends it follows
that f003B1003B2 extends. Since f o is fiber homotopic to foaof3 we conclude
that fo extends.

To verify the reduction we first use Lemma 3.1 to see that f o is fiber
homotopic to a homeomorphism a : ad x N x [0, 1) ---&#x3E; El 1 dà. Thus all
we have to do is show how to extend a to a f.p. map 03B1:~ x N x

[0, 1) ---&#x3E; E2. Define

where the attaching is made by a. Then a automatically extends to a
f.p. map of ~ x N x [0, 1) onto E2. ·

Finally, we will need the following result.
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LEMMA 3.3: If f : M ~ B is a map between locally compact ANRs,
where B is connected, then the homotopy fiber of f has the homotopy
type of a countable complex.

PROOF: For definiteness choose a basepoint bo E B. Let a: M ~
Q x [0,1) be any closed embedding and define f’: M ~ B x Q x [0, 1)
by f’ = (f, a). Choose the basepoint bo == (bo, 0, 0) in B x Q x [0,1) and
consider the homotopy fiber F(f’).

ASSERTION 1: F(f) is h.e. to F(f’).

PROOF: Define ç : @(f) - W(f’) by ç(x, w ) = (x, w ’), where w ’ fol-

lows a straight-line path from ( f (x ), a(x) to ( f (x ), 0, 0)), for 0 ~ t ~ 1/2,
and for %= t = 1, w’ follows the path w in B x {0} x {0} == B from

w" = projo w (proj: B x Q x [0, 1) ---&#x3E; B). We leave it as an easy exer-

cise for the reader to prove that cp and 03C8 are homotopy inverses.

ASSERTION 2: F(f’) is an ANR.

PROOF: Observe that f’ is a closed embedding. Consider the space

the space of paths ending at b’. It follows from [13] that ,f2 is an ANR.

Clearly F(f’) is a closed subset of M x fl. Choose (x, ù» Ei M &#x3E; f2
which is close to F(f’). Then we must have w(0) close to f’(x). If they
are sufficiently close, then there is a canonical path in B x Q x [0, 1)
from f’(x) to w(0). By composing this canonical path with w we
obtain a new path w’ E il which starts at f’(x) and ends at b’. Thus

(x, w) - (x, w’) defines a retraction r: U --&#x3E; F(f ’), for U some suitable

neighborhood of F(f’) in M x fl. Therefore F(f’) is an ANR.
Finally, it follows from [15] that the ANR F(f’) has the homotopy

type of a countable complex. M

PROOF OF THEOREM 1: We are given a map f : M ---&#x3E; B, where B is a

locally compact ANR. It follows from [15] that B is a h.e. to a

countable complex, and therefore by Theorem 2.4 we may assume
that B is a countable complex. Without loss of generality assume that
B is connected. Let p : 6 - B be the mapping path fibration with fiber

F(f), and let g : M - 6 be a h.e. such that pg = f. Using Lemma 3.2
there is a fiber bundle q : E - B, with fiber a Q-manifold N, which is

f.h.e. to p: î --&#x3E; B. We therefore obtain a h. e. g’: M E such that
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qg’::::::: f. Then g’x id: M &#x3E; [0, 1) --&#x3E;, E x [0, 1) is homotopic to a

homeomorphism h : M x [0, 1) - E x [0, 1) by [3]. Clearly

is a fiber bundle projection homotopic to fo proj: M x [0, 1) ---&#x3E; B. B

PROOF oF THEOREM 2: The machinery we have used for the proof
of Theorem 1 has analogues for l2-manifolds. The knowledgeable
reader can easily supply the details..

4. Proof of Theorem 3 and its Corollary

For the proof of Theorem 3 we will first need the following result.

LEMMA 4.1: Let N be a compact Q-manifold, E ---&#x3E; Sn be a fiber
bundle with fiber N, and let f; Sn x N ---&#x3E; E be a f.h.e. If N is (n + 1)-
connected, then f is fiber homotopic to a homeomorphism. Moreover,
if n = 0 we only need assume that Wh 7TI(N) = 0, and if n = 1 we only
need assume that N is 1-connected.

PROOF: Following the proof of Lemma 3.1, f is homotopic to a f.p.
Z-embedding g : S" x N - E. It suffices to show that we have a f . p.
homeomorphism of pairs,

If n = 0 it follows from the assumption Wh 1TI(N) = 0 that each

inclusion gb(N) 4 Eb is homotopic to a homeomorphism. Since Sn -
{bh b2l this is all we need for our desired f.p. homeomorphism of
pairs.

If n ? 1 we proceed as in Lemma 3.1 and show that E ----&#x3E; Sn may be

regarded as a G-bundle, where G is the homeomorphism group
H(N x I, N). All we need to do is show that E ---&#x3E; Sn is trivial as a

G-bundle. For this it suffices to prove that G is (n - 1 )-connected. It
follows from [4] and [11] that 7To(G) == 0 for N 1-connected, and in

general 7Tk-l( G) = 0 for N (k + 1)-connected..

LEMMA 4.2: Let 6 - B be a Hurewicz fibration over a finite n-
complex and assume that all the fibers are h.e. to a compact Q-
manifold N. If N is n -connected, then Z is f . h. e. to a fiber bundle over
B with fiber N. Moreover, if n = 1 we only need assume Wh 7r,(N) = 0,
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and if n = 2 we only need assume N to be 1-connected.

PROOF: Using Lemma 4.1 we can prove Lemma 4.2 just as Lemma
3.2 followed from Lemma 3.1. ·

PROOF oF THEOREM 3: We are given a map f : M ---&#x3E; B, of a com-
pact Q-manifold to a compact, connected ANR B which is simple
equivalent to a finite n-complex. By Theorem 2.3 we may assume that
B is a finite n-complex. Let 6 - B be the mapping path fibration and
use Lemma 4.2 to conclude that î is f . h. e. to a fiber bundle p : E ---&#x3E; B,
whose fiber is a compact Q-manifold. Thus we have a homotopy
equivalence g: E - M such that fg = p. We define our obstruction to
be T(g) E Wh 7TI(M).

To see that T(g) is well-defined we assume that there is another
such h. e. g, : El ---&#x3E; M, where Ei - B is a fiber bundle whose fiber is a

compact Q-manifold. It follows from Corollary 2.6 that the torsion of
the composition g-’gi: Ei - E is zero, thus r(g)= r(gl).

If T(g) = 0, then g is homotopic to a homeomorphism h: E ~ M,
and f is therefore homotopic to the bundle projection M E - B.
On the other hand assume that f is homotopic to a bundle projection
M -&#x3E; B. The h. e. g: E - M must have zero torsion by Corollary
2.6. ·

PROOF OF THE COROLLARY: The homotopy sequence of f : M - B

gives us an exact sequence

thus 7TI(M) = 0 and Wh irl(M) = 0. This implies that our obstruction
to fibering is zero. ·

5. Proof of Theorem 4

We first introduce some notation which will be used throughout this
section. Let E ~ B represent a Hurewicz fibration, where B is a

compact ANR h.e. to a wedge of n 1-spheres. Choose a basepoint
bo E B and assume that eb, is h. e. to a finite connected complex. Let

{a;}i=l be a collection of maps, ai: (SI, *)---&#x3E;(B, bo), such that t[aillï.1
freely generates iri(B, bo). Each map ai may be regarded as a map of

(I, aI ) to (B, bo), and the homotopy lifting criterion implies that ai can
be covered by a map 03B1i: Ebo X I ---&#x3E; e such that (ai)O = id. We call
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a characteristic map corresponding to ai. It is

well-known that cpi is a h.e. and its homotopy class is uniquely
determined.

DEFINITION OF THE OBSTRUCTION: Define a homomorphism

by sending T in Wh 03C01(Eb0) to ((ld - (cp,)*)T, ... , (ld-(cpn)*)T), where *
as usual indicates induced homomorphisms on Whitehead groups.
Choose any h.e. h of Eb0 to a finite complex K. We define our
obstruction, O1(E), to be the image of

is a homotopy inverse of h.)

LEMMA 5.1: : ûl(î) is well defined.

PROOF: Let g : eb,, ---&#x3E; L be any other h.e. from Eb0 to a finite com-

where the last equality follows from the formula for the torsion of a
composition (see [6, p. 72]). The same formula gives us r(k) +
k*T(k-’) = 0. Substituting this into the above equation gives us

lies in Image (03B8) ~

We will need the following classification result.

LEMMA 5.2: Let e ---&#x3E; B and E’ ~ B be Hurewicz fibrations of the
type described at the beginning of this section, with characteristic

maps cp;: Ebo ~ Ebo and cpi: Eb0 ---&#x3E; Ebo. Then a h.e. h : eb ---&#x3E; Ebo extends to a
f.h.e. of e onto E’ ifl h homotopy commutes with all of the charac-
teristic maps, i.e. ç )h = hcp; for each i.


