J. Van Mill

A pseudo-interior of λI

Compositio Mathematica, tome 36, n° 1 (1978), p. 75-82

<http://www.numdam.org/item?id=CM_1978__36_1_75_0>
A PSEUDO-INTERIOR OF λI^*

J. van Mill

Abstract

We show that the subspace λ_{comp}^R of λR is homeomorphic to the pseudo-boundary $B(Q) = \{x \in Q \mid \exists i \in \mathbb{N} : |x_i| = 1\}$ of the Hilbert cube Q. This answers a question of A. Verbeek raised in [9].

1. Introduction

If X is a topological space, then the superextension λX of X denotes the space of all maximal linked systems consisting of closed subsets of X (a system is called linked if every two of its members meet; a maximal linked system or mls is a linked system not properly contained in another linked system) topologized by taking $\{[M \in \lambda X \mid G \in M] \mid G = G^- \subset X\}$ as a closed subbase (De Groot [4]). In case (X, d) is a compact metric space, then λX also is compact metric (Verbeek [9]) and the topology of λX also can be described by the metric

$$\tilde{d}(\mathcal{M}, \mathcal{N}) = \sup_{S \in \mathcal{M}} \min_{T \in \mathcal{N}} d_H(S, T);$$

here $d_H(S, T)$ denotes the Hausdorff distance of S and T defined by $\inf\{\varepsilon > 0 \mid S \subset U_\varepsilon(T) \text{ and } T \subset U_\varepsilon(S)\}$, where as usual $U_\varepsilon(T)$ denotes the ε-neighborhood of T (Verbeek [9]). Reflecting on this metric, one sees that there must be a connection between λX and the hyperspace of all nonvoid closed subsets 2^X of X. The hyperspace 2^X is homeomorphic to the Hilbert cube Q if and only if X is a non-degenerate Peano continuum (Curtis & Schori [3]) and it was con-

* KEY WORDS & PHRASES: superextension, linked system, Hilbert cube, capset, pseudo-interior.
jectured by Verbeek [9] that λX is homeomorphic to Q if and only if X is a nondegenerate metrizable continuum. Earlier, De Groot conjectured that λI is homeomorphic to the Hilbert cube, where I denotes the real number interval $[-1, 1]$. This was shown to be true in [7]. If X is a noncompact metrizable space then λX is not metrizable, although it contains some interesting dense metrizable subspaces such as $\lambda_{\text{comp}} X$ (Verbeek [9]). This subspace of λX consists of all maximal linked systems which have a compact defining set, where an mls M is said to be defined on a set M if

$$\text{for all } S \in M \text{ there exists an } S' \in M \text{ such that } S' \subseteq S \cap M.$$

It is obvious that $\lambda_{\text{comp}} X$ equals λX in case X is compact, for then X is a compact defining set for all $M \in \lambda X$. In case X is noncompact there are many maximal linked systems which do not have a compact defining set, for example in case $X = \mathbb{R}$, the real line, $|\lambda_{\text{comp}} \mathbb{R}| = c$ while $|\lambda \mathbb{R}| = 2^c$. Verbeek [9] showed that $\lambda_{\text{comp}} \mathbb{R}$ is a dense, metrizable, contractible, separable, locally connected, strongly infinite dimensional subspace of $\lambda \mathbb{R}$ which is in no point locally compact; he conjectured that $\lambda_{\text{comp}} \mathbb{R}$ is homeomorphic to l_2, the separable Hilbert space. We will show that this is not true. In fact we will show that $\lambda_{\text{comp}} \mathbb{R}$ is homeomorphic to the pseudo-boundary $B(Q) = \{x \in Q \mid \exists i \in \mathbb{N} : |x_i| = 1\}$ of the Hilbert cube Q. As $\lambda_{\text{comp}} \mathbb{R}$ is homeomorphic to $\lambda_{\text{comp}} (-1, 1)$, which can be identified with the subspace of λI consisting of all maximal linked systems with a compact defining set in $(-1, 1)$ (Verbeek [9]), we can work in $\lambda I = Q$. We will show that $\lambda_{\text{comp}} (-1, 1)$ is a capset of λI (for definitions see section 3) so that $\lambda I \setminus \lambda_{\text{comp}} (-1, 1)$ is a pseudo-interior for λI and hence is homeomorphic to l_2 (Anderson [2]).

This paper is organised as follows: in the second section we give a retraction property of superextensions, which is needed to prove that $\lambda_{\text{comp}} (-1, 1)$ is a capset of λI. The third section shows that $\lambda_{\text{comp}} (-1, 1)$ is a capset of λI using a lemma of Kroonenberg [6].

2. A retraction property of superextensions

All topological spaces under discussion are assumed to be normal T_1; linked system will always mean linked system consisting of closed subsets of the topological space under consideration. If G is a closed subset of the topological space X, then we define G^+ as $G^+ = \{M \in \lambda X \mid G \in M\}$; λX is topologized by taking $\{G^+ \mid G$ is closed in $X\}$ as a closed subbase. This subbase has the property that each
linked subsystem of it has a nonvoid intersection so that by Alexander's subbase lemma, \(\lambda X\) always is compact. Moreover \(X\) can be embedded in it by means of the natural embedding \(i(x) = \{G \subseteq X \mid G\text{ is closed and } x \in G\}\). We will always identify \(X\) and \(\vec{i}[X]\). Every linked system is contained in at least one maximal linked system by Zorn's lemma. A linked system \(\mathcal{M}\) is called a pre-mls if it is contained in precisely one mls; this mls is then denoted by \(\overline{\mathcal{M}}\) and we say that \(\mathcal{M}\) is a pre-mls for \(\overline{\mathcal{M}}\). Obviously \(\mathcal{M}\) is a pre-mls iff for all closed sets \(S_0\) and \(S_1\) such that \(\mathcal{M} \cup \{S_i\}\) is linked \((i = 0, 1)\) we have \(S_0 \cap S_1 \neq \emptyset\). If \(S\) is a closed subset of the compact metric space \((X, d)\) then for each \(\epsilon > 0\) we define

\[B_\epsilon(S) = \{x \in X \mid d(x, S) \leq \epsilon\}.
\]

Lemma 2.1: Let \((X, d)\) be a compact metric space and let \(\mathcal{M}\) be a pre-mls for \(\overline{\mathcal{M}} \subseteq \lambda X\). Then for each \(\mathcal{N} \subseteq \lambda X\) we have that \(\overline{\alpha}(\mathcal{M}, \mathcal{N}) = \inf\{a \geq 0 \mid \forall S \in \mathcal{M} : B_a(S) \subseteq \mathcal{N}\}\).

Proof: Verbeek [9] proved the following

\[
\overline{\alpha}(\mathcal{M}, \mathcal{N}) = \min\{a \geq 0 \mid \forall S \in \mathcal{M} : B_a(S) \subseteq \mathcal{N}\text{ and } \forall T \in \mathcal{N} : B_a(T) \subseteq \mathcal{M}\}
= \min\{a \geq 0 \mid \forall S \in \mathcal{M} : B_a(S) \subseteq \mathcal{N}\}
\]

and therefore \(\inf\{a \geq 0 \mid \forall S \in \mathcal{M} : B_a(S) \subseteq \mathcal{N}\} \leq \overline{\alpha}(\mathcal{M}, \mathcal{N})\). Let us assume that \(\inf\{a \geq 0 \mid \forall S \in \mathcal{M} : B_a(S) \subseteq \mathcal{N}\} < \overline{\alpha}(\mathcal{M}, \mathcal{N})\). Then there exists an \(a_0\) such that \(0 \leq a_0 < \overline{\alpha}(\mathcal{M}, \mathcal{N})\) with the property that for all \(S \in \mathcal{M}\) we have that \(B_{a_0}(S) \subseteq \mathcal{N}\) while there exists a \(T \in \mathcal{N}\) such that \(B_{a_0}(T) \notin \mathcal{M}\). As \(\mathcal{M}\) is a pre-mls for \(\overline{\mathcal{M}}\) there is an \(M \in \mathcal{M}\) such that \(B_{a_0}(T) \cap M = \emptyset\). However \(B_{a_0}(M) \subseteq \mathcal{N}\), so that \(B_{a_0}(M) \cap T \neq \emptyset\). Now, as \(X\) is compact, this is a contradiction. \(\square\)

The distance between two maps \(f, g : X \to Y\), where \((Y, d)\) is compact metric, is defined by \(d(f, g) = \sup_{x \in X} d(f(x), g(x))\). The identity mapping on \(X\) is denoted by \(id_X\).

Theorem 2.2: Let \(X\) be a topological space and let \(\mathcal{M}\) be a linked system in \(X\). Then \(\cap\{M^+ \mid M \in \mathcal{M}\}\) is a retract of \(\lambda X\). Moreover, if \((X, d)\) is compact metric then the retraction map \(r\) can be chosen in such a way that \(\overline{d}(r, id_{\lambda X}) \leq \sup_{M \in \mathcal{M}} d_H(X, M)\).

Proof: Let \(\mathcal{M}\) be a linked system in \(X\). Notice that \(\cap\{M^+ \mid M \in \mathcal{M}\} \neq \emptyset\). Choose \(\mathcal{N} \subseteq \lambda X\) and define \(P\mathcal{N} = \{N \in \mathcal{N} \mid \{N\} \cup \mathcal{M}\text{ is linked}\}\). \(\mathcal{N}\).

(a) \(P\mathcal{N}\) is a pre-mls.
It is obvious that \(PN \) is linked; so assume to the contrary that it were not a pre-mls. Then there exist closed sets \(S_i \) such that \(PN \cup \{S_i\} \) is linked \((i = 0, 1)\) but \(S_0 \cap S_1 = \emptyset \). The normality of \(X \) implies that there exist closed sets \(G_i \) \((i = 0, 1)\) such that \(S_0 \cap G_1 = \emptyset = G_0 \cap S_1 \) and \(G_0 \cup G_1 = X \). Now, as \(N \) is a maximal linked system one of the sets \(G_i \) must belong to \(N \) (if \(G_i \notin N \) \((i = 0, 1)\) then there exist \(M_i \in N \) such that \(M_i \cap G_1 = \emptyset \) \((i = 0, 1)\) so that \(M_0 \cap M_1 = \emptyset \) contradicting the linkedness of \(N \)) so that we may assume that \(G_0 \in N \). Now, \(S_0 \subseteq G_0 \) implies that \(N \cup \{G_0\} \) is linked and consequently \(G_0 \in PN \). This is a contradiction since \(G_0 \cap S_1 = \emptyset \).

(b) Define \(r: \lambda X \rightarrow \lambda X \) by \(r(N) = PN \). Then \(r \) is continuous.

Let \(G \) be a closed set of \(X \) and assume that \(r^{-1}(G^+) \neq \emptyset \). We will show that \(r^{-1}(G^+) \) is closed in \(\lambda X \). Choose \(N \notin r^{-1}(G^+) \). Then \(r(N) \notin G^+ \) and consequently \(r(N) \cup \{G\} \) is not linked; therefore \(PN \cup \{G\} \) is not linked. Choose \(N \in PN \) so that \(N \cap G = \emptyset \). Now, if \(N \in M \), then \(r^{-1}(G^+) \) is void, which is a contradiction. Therefore \(N \notin N \). Choose closed sets \(S_i \) \((i = 0, 1)\) such that \(S_0 \cap N = \emptyset = G \cap S_1 \) and \(S_0 \cup S_1 = X \). Then \(N \in \lambda X \setminus S_0^\circ \subseteq S_1^\circ \), while moreover \(\lambda X \setminus S_0^\circ \cap r^{-1}(G^+) = \emptyset \). For assume to the contrary that there exists a \(x \in (\lambda X \setminus S_0^\circ) \cap r^{-1}(G^+) \). Then \(S_1 \in \xi \) and \(M \cup \{N\} \) is linked implies that \(M \cup \{S_i\} \) is linked and consequently \(S_1 \in P \xi \subseteq r(\xi) \). This is a contradiction, since \(G \in r(\xi) \) and \(S_1 \cap G = \emptyset \).

(c) \(r(\lambda X) = \cap \{M^+ \mid M \in M\} \) and \(r \) is a retraction.

Choose \(N \in \lambda X \). Then \(M \in PN \subseteq r(N) \) so that \(r(N) \in \cap \{M^+ \mid M \in M\} \). Moreover if \(N \in \cap \{M^+ \mid M \in M\} \) then \(PN = N \) and therefore \(r(N) = N \).

(d) If \((X, d)\) is compact metric, then \(\bar{d}(r, id_\lambda x) = \sup_{M \in \mu} d_H(X, M) \).

Let \(a = \sup_{M \in \mu} d_H(X, M) \) and choose \(N \in \lambda X \). Take \(N \in PN \) and consider \(B_\delta(N) \). If \(N \in N \) then also \(B_\delta(N) \in N \); if \(N \notin N \) then \(N \in M \) and therefore \(B_\delta(N) = X \) which also is an element of \(N \). It now follows that

\[
\bar{d}(N, r(N)) = \inf \{a \geq 0 \mid \forall S \in PN : B_\delta(S) \subseteq N\}
\]

(lemma 2.2)

\[
\leq \sup_{M \in \mu} d_H(X, M).
\]

If \(Y \) is a closed subset of \(X \), then \(\lambda Y \) can be embedded in \(\lambda X \) by the natural embedding \(j_{\lambda Y} \) defined by

\[
j_{\lambda Y}(M) := \{G \subseteq X \mid G \text{ is closed and } G \cap Y \in M\}
\]

(Verbeek [9]). It should be noticed that \(j_{\lambda Y}(M) \) is indeed a maximal linked system. We will always identify \(\lambda Y \) and \(j_{\lambda Y}(\lambda Y) \).
LEMMA 2.3: Let \(Y \) be a closed subset of \(X \). Then \(\mathcal{M} \in \lambda X \) is an element of \(\lambda Y \) if and only if \(\{ M \cap Y \mid M \in \mathcal{M} \} \) is linked.

PROOF: If \(\mathcal{M} \in \lambda Y \), then \(\{ M \cap Y \mid M \in \mathcal{M} \} \) is a maximal linked system in \(Y \) and if \(\{ M \cap Y \mid M \in \mathcal{M} \} \) is linked, then it is easy to see that it is also maximal linked (in \(Y \)) and that \(j_{YX}(\{ M \cap Y \mid M \in \mathcal{M} \}) = \mathcal{M} \).

The importance of Theorem 2.2 now is demonstrated in the proof of the following theorem.

THEOREM 2.4: Let \((X, d) \) be a compact connected metric space and let \(Y \) be a nonempty closed proper subset of \(X \). Then for each \(\epsilon > 0 \) there exists a continuous map \(f : \lambda X \to \lambda X \setminus \lambda Y \) such that \(d(f, id_{\lambda X}) < \epsilon \).

PROOF: Choose \(\epsilon > 0 \) and choose two disjoint finite sets \(G_0 \) and \(G_1 \) such that \(d_{H}(G_i, X) < \epsilon \) \((i = 0, 1)\). Let \(p \in X \setminus Y \) and define \(F_i = G_i \cup \{ p \} \). Let \(f_{\epsilon} \) be the retraction of \(\lambda X \) onto \(F_0^+ \cap F_1^+ \) as defined in Theorem 2.2. Then \(\tilde{d}(f_{\epsilon}, id_{\lambda X}) \leq \max\{ d_{H}(F_0, X), d_{H}(F_1, X) \} < \epsilon \) and moreover \(f_{\epsilon}(\lambda X) \cap \lambda Y = \emptyset \). For take \(N \in f_{\epsilon}(\lambda X) \); then \(F_i \in N \) \((i = 0, 1)\) and \((F_0 \cap Y) \cap (F_1 \cap Y) = \emptyset \) and consequently, by Lemma 2.3, \(\forall \in \lambda Y \).

3. A Pseudo-interior of \(\lambda I \)

By the Hilbert cube \(Q \) we mean the countable infinite product of intervals \([-1, 1]^\omega\) with the product topology. The topology is generated by the metric

\[
d(x, y) = \sum_{i=1}^{\infty} 2^{-i} |x_i - y_i|.
\]

A closed subset \(A \) of \(Q \) is called a Z-set (Anderson [1]) if for each \(\epsilon > 0 \) there exists a continuous map \(f : Q \to Q \setminus A \) such that \(d(f, id_Q) < \epsilon \). In addition, a subset \(M \) of \(Q \) is called a capset for \(Q \) (Anderson [2]) if \(M \) can be written as \(M = \bigcup_{i=1}^{\infty} M_i \), where each \(M_i \) is a Z-set in \(Q \), \(M_i \subseteq M_{i+1} \) \((i \in \mathbb{N})\) and such that the following absorption property holds: for each \(\epsilon > 0 \) and \(i \in \mathbb{N} \) and every Z-set \(K \subset Q \) there exists a \(j > i \) and an embedding \(h : K \to M_j \) such that \(h \mid K \cap M_i = id_{K \cap M_i} \) and \(d(h, id_K) < \epsilon \). It is known that every capset of \(Q \) is equivalent to \(B(Q) = \{ x \in Q \mid \exists i \in \mathbb{N} : |x_i| = 1 \} \), the pseudo-boundary of \(Q \), under an autohomeomorphism of \(Q \) [2]). The complement of a capset is called a pseudo-interior of \(Q \) and is homeomorphic to \(l_2 \), the separable Hilbert space ([2]). We will show that \(\lambda_{\text{comp}}(-1, 1) \) is a capset of \(\lambda I \),
using the fact that $\lambda I = Q$ ([7]). It then follows that $\lambda I \setminus \lambda_{\text{comp}}(-1, 1)$ is a pseudo-interior for λI. In [6] an alternative characterization of capsets is given and we will make use of that characterization.

Lemma 3.1 ([6]): Suppose M is a σ-compact subset of Q such that

(i) For every $\epsilon > 0$, there exists a map $h : Q \to Q \setminus M$ such that $d(h, \text{id}_Q) < \epsilon$.

(ii) M contains a family of compact subsets $M_1 \subseteq M_2 \subseteq \cdots$ such that each M_i is a copy of Q and M_i is a Z-set in M_{i+1} ($i \in \mathbb{N}$), and such that for each $\epsilon > 0$ there exists an integer $i \in \mathbb{N}$ and a map $h : Q \to M_i$ with $d(h, \text{id}_Q) < \epsilon$.

Then M is a capset for Q.

First we will show that $\lambda_{\text{comp}}(-1, 1)$ is σ-compact.

Lemma 3.2: $\lambda_{\text{comp}}(-1, 1) = \bigcup_{n=2}^{\infty} \lambda [-1 + 1/n, 1 - 1/n]$.

Proof: Choose $\mathcal{M} \in \lambda_{\text{comp}}(-1, 1)$ and let $M \subseteq (-1, 1)$ be a compact defining set for \mathcal{M}. Then choose $n_0 \geq 2$ such that $M \subseteq [-1 + 1/n_0, 1 - 1/n_0]$; from Lemma 2.3 it now follows that $\mathcal{M} \subseteq \lambda[-1 + 1/n_0, 1 - 1/n_0]$.

Moreover, if $\mathcal{M} \in \lambda[-1 + 1/n, 1 - 1/n]$ then for all $M \in \mathcal{M}$ we have that also $M \cap [-1 + 1/n, 1 - 1/n]$ belongs to \mathcal{M}, showing that $[-1 + 1/n, 1 - 1/n]$ is a defining set for \mathcal{M}. For assume to the contrary that for some $M \in \mathcal{M}$ it would be true that $M \cap [-1 + 1/n, 1 - 1/n] \notin \mathcal{M}$; then there would exist an $M_0 \in \mathcal{M}$ such that $M_0 \cap [-1 + 1/n, 1 - 1/n] \cap M = \emptyset$, contradicting the linkedness of $\{M \cap [-1 + 1/n, 1 - 1/n] \mid M \in \mathcal{M}\}$ (Lemma 2.3).

Lemma 3.3: For each $\epsilon > 0$ there exists a map $f_\epsilon : \lambda I \to \lambda I \setminus \lambda_{\text{comp}}(-1, 1)$ such that $\tilde{d}(f_\epsilon, \text{id}_{\lambda I}) < \epsilon$.

Proof: Choose $\epsilon > 0$. For each $n \geq 2$, let $F_{n,0}$ and $F_{n,1}$ be finite subsets of I such that

(i) $d_H(I, F_{n,i}) < \frac{\epsilon}{4} (i = 0, 1)$

(ii) $F_{n,0} \cap F_{n,1} \cap [-1 + 1/n, 1 - 1/n] = \emptyset$

(iii) $(-1, 1) \subset F_{n,0} \cap F_{n,1}$,

and let f_ϵ be the retraction map, given by Theorem 2.2, of λI onto $\bigcap_{n=2}^{\infty} (F_{n,0}^+ \cap F_{n,1}^+)$. Then $\tilde{d}(f_\epsilon, \text{id}_{\lambda I}) \leq \sup\{d_H(I, F_{n,i}) \mid n \geq 2, \ i = 0, 1\} \leq \frac{\epsilon}{4} < \epsilon$, while moreover the image of λI is disjoint from $\lambda_{\text{comp}}(-1, 1)$.
For choose \(N \in f_2(\lambda I) \) and \(n \geq 2 \); then \(F_{n,i} \in N \) \((i = 0, 1)\) and \(F_{n,0} \cap F_{n,1} \cap [-1 + 1/n, 1 - 1/n] = \emptyset \). Therefore \(N \) is not an element of \(\lambda [-1 + 1/n, 1 - 1/n] \) by Lemma 2.3. Consequently \(N \not\subset \lambda_{\text{comp}}(-1, 1) \) (Lemma 3.2). \(\square \)

THEOREM 3.4: \(\lambda_{\text{comp}}(-1, 1) \) is a capset for \(\lambda I \).

PROOF: Choose \(\varepsilon > 0 \) and let \(n \geq 2 \) such that \(1/n < \varepsilon \). Define a retraction \(r: [-1, 1] \rightarrow [-1 + 1/n, 1 - 1/n] \) by

\[
r(x) = \begin{cases}
-1 + 1/n & \text{if } -1 \leq x \leq -1 + 1/n \\
x & \text{if } -1 + 1/n \leq x \leq 1 - 1/n \\
1 - 1/n & \text{if } 1 - 1/n \leq x \leq 1
\end{cases}
\]

This map can be extended to a map \(\bar{r}: \lambda I \rightarrow \lambda [-1 + 1/n, 1 - 1/n] \) in the following manner

\[
\bar{r}(M) = \{G \subset [-1 + 1/n, 1 - 1/n] \mid G \text{ is closed and } r^{-1}(G) \in M\}
\]

(Verbeek [9]). Let \(j: \lambda [-1 + 1/n, 1 - 1/n] \rightarrow \lambda I \) be the natural embedding defined by \(j(M) = M = \{G \subset I \mid G \text{ is closed and } G \cap [-1 + 1/n, 1 - 1/n] \in M\} \). The composition \(g = j \circ \bar{r}: \lambda I \rightarrow \lambda I \) can be described by

\[
g(M) = (G \subset I \mid G \text{ is closed and } r^{-1}(G \cap [-1 + 1/n, 1 - 1/n]) \in M) .\]

We will show that \(g \) moves the points less than \(\varepsilon \). It is clear that \(g(\lambda I) = \lambda [-1 + 1/n, 1 - 1/n] \). Choose \(M \in \lambda I \) and assume that \(\bar{d}(M, g(M)) > 1/n \). Then there exists an \(M \in M \) such that \(B_{1/n}(M) \notin g(M) \) (Lemma 2.1). Consequently there exists a \(G \in g(M) \) such that \(r^{-1}(G \cap [-1 + 1/n, 1 - 1/n]) \in M \) and \(B_{1/n}(M) \cap G = \emptyset \). Now take a \(p \in M \cap r^{-1}(G \cap [-1 + 1/n, 1 - 1/n]) \). Then \(d(r(p), p) \leq 1/n \) and hence \(r(p) \in G \cap [-1 + 1/n, 1 - 1/n] \cap B_{1/n}(M) \subset G \cap B_{1/n}(M) \), which is a contradiction. It now follows that \(\bar{d}(g, id_M) \leq 1/n < \varepsilon \).

It is obvious that \(\lambda [-1 + 1/n, 1 - 1/n] \subset \lambda [-1 + 1/n + 1, 1 - 1/n + 1] \) \((n \geq 2)\), so that by Theorem 2.4, Lemma 3.2, Lemma 3.3 and the fact that \(\lambda [-1 + 1/n, 1 - 1/n] = \lambda I = Q \) the family \(\{\lambda [-1 + 1/n, 1 - 1/n] \mid n \geq 2\} \) satisfies all conditions of Lemma 3.1. Therefore \(\lambda_{\text{comp}}(-1, 1) \) is a capset for \(\lambda I \). \(\square \)

COROLLARY 3.5: \(\lambda_{\text{comp}}^{\mathbb{R}} \) is homeomorphic to \(B(Q) = \{x \in Q \mid \exists i \in \mathbb{N} : |x_i| = 1\} \). \(\lambda I \setminus \lambda_{\text{comp}}(-1, 1) \) is homeomorphic to \(l_2 \).

The space \(\lambda^{\mathbb{R}} \) now turns out to be a very strange space. It is a connected, locally connected (super)compact Hausdorff space of cardinality \(2^c \) and weight \(c \), which possesses a dense subset.
homeomorphic to $B(Q)$. The closure of \mathbb{R} in $\lambda\mathbb{R}$ is $\beta\mathbb{R}$, its Čech-Stone compactification (Verbeek [9]).

REFERENCES