MARJORIE BATCHelor

A decomposition theorem for comodules

Compositio Mathematica, tome 34, no 2 (1977), p. 141-146

<http://www.numdam.org/item?id=CM_1977__34_2_141_0>
A DECOMPOSITION THEOREM FOR COMODULES

Marjorie Batchelor*

Injective comodules over coalgebras can be decomposed as a direct sum of indecomposable injective comodules, in a fashion similar to the dual decomposition of projective modules over algebras, [1]. This paper gives an elementary proof of this theorem, avoiding the use of idempotents.

1. Preliminaries and definitions

Let k be a field of unspecified characteristic. A coalgebra (C, Δ, e) is a k-space C together with a comultiplication or diagonal map $\Delta : C \rightarrow C \otimes C$, and a counit (or augmentation) $e : C \rightarrow k$ such that the following properties are satisfied.

\begin{align*}
CA 1. \quad & (\Delta \otimes I)\Delta = (I \otimes \Delta)\Delta \quad \text{Coassociativity} \\
CA 2. \quad & (e \otimes I)\Delta = (I \otimes e)\Delta = I
\end{align*}

A comodule (W, T) for a coalgebra C is a k-space W together with a map $T : W \rightarrow W \otimes C$ such that the following properties are satisfied.

\begin{align*}
CM 1. \quad & (T \otimes I)T = (I \otimes \Delta)T \\
CM 2. \quad & (I \otimes e)T = I
\end{align*}

A subcomodule (subcoalgebra) is a subspace which has a comodule (coalgebra) structure under the restricted structure maps. If S is a subset of a comodule (coalgebra) the subcomodule (subcoalgebra) generated by S, denoted by $\langle S \rangle$, is defined to be the smallest subcomodule (subcoalgebra) containing S. If S is a finite set

*Supported by the Marshall Aid Commemoration Commission.
or spans a finite dimensional subspace, \(\langle S \rangle \) is in fact a finite dimensional subcomodule (subcoalgebra).

If \(W \) is a comodule and \(V \) is a subcomodule, then \(W/V \) has a comodule structure. If \((W, T) \) and \((W', T') \) are comodules and \(f: W \to W' \) is a \(k \)-map, then \(f \) is a comodule map if \((f \otimes I)T = T'f \). The usual isomorphism theorems hold.

A comodule (coalgebra) will be called simple if it contains no proper non-zero subcomodules (subcoalgebras). Every comodule contains a simple subcomodule, and every coalgebra contains a simple subcoalgebra. If \(W \) is a comodule for \(C \), define the socle of \(W, s(W) \) to be the sum of all simple subcomodules of \(W \). Define the coradical \(R \) of the coalgebra \(C \) to be the sum of all simple subcoalgebras of \(C \). If \(C \) is considered as the \(C \)-comodule \((C, \Delta) \), then \(s(C) = R \). If \(V \) is a subcomodule of \(W \) such that \(T(V) \subseteq V \otimes R \), then \(V \subseteq s(W) \). \(s(W) \) has the property that it decomposes as a direct sum of simple subcomodules. \(R \) decomposes as a direct sum of simple subcoalgebras.

The notion of the socle can be extended. Define \(s_n(W) \) inductively by setting \(s_0(W) = 0 \), and \(s_n(W)/s_{n-1}(W) = s(W/s_{n-1}(W)) \). Since every non-zero subcomodule contains a simple subcomodule, the chain \(s_0(W) \subseteq s_1(W) \subseteq s_2(W) \subseteq \ldots \) is strictly ascending unless \(s_k(W) \) is the whole of \(W \) for some \(k \). Since every element \(w \) of \(W \) is contained in the finite dimensional subcomodule \(\langle \langle w \rangle \rangle \), \(W = \bigcup_{n=1}^{\infty} s_n(W) \).

The socle can be described in another way. For subspaces \(X \subseteq W \), and \(Y \subseteq C \), define the wedge of \(X \) and \(Y \), \(X \wedge Y \) to be the kernel of the map

\[
W \xrightarrow{T} W \otimes C \longrightarrow W/X \otimes C/Y
\]

Thus \(X \wedge Y = T^{-1}(W \otimes Y + X \otimes C) \). It can be shown that \(0 \wedge R = s(W) \). If we define \(\wedge^0 R = 0 \) and \(\wedge^\alpha R = (\wedge^{\alpha-1} R) \wedge R \), then it follows that \(\wedge R = s_n(W) \).

A comodule \((I, T) \) is injective if for every comodule \((W, T') \) and every subcomodule \(U \subseteq W \), every comodule map \(f: U \to I \) extends uniquely to a map \(f: W \to I \). \(C \) itself is an injective \(C \)-comodule. Direct summands of injective comodules are injective.

2. The theorem

Theorem: Let \((W, T) \) be an injective comodule. Let \(s(W) = \sum_{\mu \in M} X_\mu \) be a direct decomposition of the socle of \(W \) as a sum of

1For elementary properties of comodules and coalgebras, see Sweedler, [2].
simple subcomodules. This decomposition of \(s(W) \) can be extended to a direct decomposition of \(W \) as a sum of indecomposable injective subcomodules, \(W = \sum_{\mu \in M} J_\mu \) such that \(s(J_\mu) = X_\mu \).

The theorem is proved by constructing inductively a decomposition of \(s_n(W) \) which extends the decomposition of \(s_{n-1}(W) \).

For every \(\mu \) in \(M \), let \(J_\mu^1 = X_\mu \). Suppose we have \(J_\mu^{n-1} \) defined for some \(n \geq 2 \) such that

(i) \(s(J_\mu^{n-1}) = X_\mu \)

(ii) \(\sum_{\mu \in M} J_\mu^{n-1} = s_{n-1}(W) \)

(iii) The sum \(\sum_{\mu \in M} J_\mu^{n-1} \) is direct.

We wish to define \(J_\mu^n \). Set \(Z_\mu = \Sigma_{\lambda \in M \setminus \mu} X_\lambda \). Define

\[\mathcal{B}_\mu = \{ S \leq J_\mu^{n-1} \land R : S \geq J_\mu^{n-1}, S \cap Z_\mu = 0 \} \]

\(\mathcal{B}_\mu \) is nonempty, since \(J_\mu^{n-1} \) is in \(\mathcal{B}_\mu \), and by Zorn’s lemma \(\mathcal{B}_\mu \) has maximal elements. Choose \(J_\mu^n \) to be a maximal element of \(\mathcal{B}_\mu \). It remains to show that the set \(\{ J_\mu^n \}_{\mu \in M} \) satisfies the three conditions of the inductive hypothesis.

(i) \(s(J_\mu^n) \geq X_\mu \), since \(J_\mu^n \geq J_\mu^{n-1} \). If \(s(J_\mu^n) \not\geq X_\mu \), it follows that \(J_\mu^n \cap Z_\mu \neq 0 \), a contradiction. So \(s(J_\mu^n) = X_\mu \).

(ii) It is enough to show that the sum \(\Sigma_{\lambda \in \Lambda} J_\lambda^n \) is direct for all finite subsets \(\Lambda \leq M \). This can be done by induction on \(|\Lambda| \). Assume now that for any subset \(\Lambda \) of \(M \) with \(|\Lambda| < r \), the sum \(\Sigma_{\lambda \in \Lambda} J_\lambda^n \) is direct. If \(\Gamma \leq M, |\Gamma| = r \), and the sum \(\Sigma_{\lambda \in \Gamma} J_\lambda^n \) is not direct then there is some \(\lambda \) in \(\Gamma \) and some simple comodule \(U \leq J_\lambda^n \) such that \(U = X_\lambda \leq s(\Sigma_{\mu \in \Gamma \setminus \lambda} J_\mu^n) = \Sigma_{\mu \in \Gamma \setminus \lambda} s(J_\mu^n) \leq \Sigma_{\mu \in \Gamma \setminus \lambda} X_\mu \leq Z_\lambda \), which contradicts the directness of the decomposition of the socle, and completes the inductive step. (The second equality follows from the directness of the sum \(\Sigma_{\mu \in \Gamma \setminus \lambda} J_\mu^n \), by the inductive hypothesis.)

(iii) This condition is shown in three steps.

Step 1. \(J_\mu^{n-1} \land R = J_\mu^n \oplus Z_\mu \)

Step 2. \(\sum_{\mu \in M} J_\mu^n = \sum_{\mu \in M} (J_\mu^{n-1} \land R) \)

Step 3. \(\sum_{\mu \in M} (J_\mu^{n-1} \land R) = \left(\sum_{\mu \in M} J_\mu^{n-1} \right) \land R = s_{n-1}(W) \land R = s_n(W) \).
Step 1. Clearly \(J^n_\mu + Z_\mu \leq J^{n-1}_\mu \land R \). To see the converse, it is sufficient to show that if \(U \supseteq J^{n-1}_\mu \) is a subcomodule of \(W \) such that \(U/J^{n-1}_\mu \) is simple, then \(U \leq J^n_\mu + Z_\mu \). Suppose that \(U \supseteq J^n_\mu + Z_\mu \). Then \(U + J^n_\mu \nleq J^{n-1}_\mu \land R \), so by the maximality of \(J^n_\mu \) in \(\mathcal{B}_\mu \), it must be that \((U + J^n_\mu) \cap Z_\mu \neq 0 \). We may pick \(z \neq 0 \) in \(Z_\mu \) such that \(z = u + j \) with \(u \) in \(U \) and \(j \) in \(J^n_\mu \). Now \(u \) is not in \(J^{n-1}_\mu \) (otherwise \(z \) would be in \(J^n_\mu \cap Z_\mu \) contrary to the conditions in \(\mathcal{B}_\mu \)) and hence not in \(J^{n-1}_\mu \). Therefore \(u + J^{n-1}_\mu \) must generate \(U/J^{n-1}_\mu \). Thus

\[
U = \langle \langle u \rangle \rangle + J^{n-1}_\mu \leq \langle \langle j \rangle \rangle + J^{n-1}_\mu \leq J^n_\mu + Z_\mu
\]

which is a contradiction. Thus it must be that \(U \leq J^n_\mu + Z_\mu \), and therefore \(J^n_\mu + Z_\mu = J^{n-1}_\mu \land R \). Since \(J^n_\mu \) is in \(\mathcal{B}_\mu \), \(J^n_\mu \cap Z_\mu = 0 \) and the sum is direct.

Step 2. This is a direct consequence of step 1 and the definition of \(J^n_\mu \).

Step 3. The last equality is a property of the wedge, the second uses the inductive hypothesis, that \(\Sigma_{\mu \in M} J^{n-1}_\mu = S_{n-1}(W) \). Since \(J^{n-1}_\mu \leq \Sigma_{\lambda \in M} J^{n-1}_\lambda \), we have that \(J^{n-1}_\mu \land R \leq (\Sigma_{\lambda \in M} J^{n-1}_\lambda) \land R \) for all \(\mu \) in \(M \), and \(\Sigma_{\mu \in M} (J^{n-1}_\mu \land R) \leq (\Sigma_{\mu \in M} J^{n-1}_\mu) \land R \).

Now let \(U \leq (\Sigma_{\mu \in M} J^{n-1}_\mu) \land R \). We may assume that \(U \) is finite dimensional. Then

\[
U + \sum_{\mu \in M} J^{n-1}_\mu \bigg/ \sum_{\mu \in M} J^{n-1}_\mu \equiv U/\bigcup_{\mu \in M} J^{n-1}_\mu \equiv U + \sum_{\mu \in M'} J^{n-1}_\mu \bigg/ \sum_{\mu \in M'} J^{n-1}_\mu
\]

Where \(M' \) is a finite subset of \(M \) such that \(U \cap (\Sigma_{\mu \in M} J^{n-1}_\mu) \leq \Sigma_{\mu \in M'} J^{n-1}_\mu \). Since \(U \leq (\Sigma_{\mu \in M} J^{n-1}_\mu) \land R \), \(U + \sum_{\mu \in M'} J^{n-1}_\mu/\Sigma_{\mu \in M'} J^{n-1}_\mu \) is completely reducible. Let

\[
U + \sum_{\mu \in M'} J^{n-1}_\mu \bigg/ \sum_{\mu \in M'} J^{n-1}_\mu \equiv \sum_{i=1}^k \left(U_i \bigg/ \sum_{\mu \in M'} J^{n-1}_\mu \right)
\]

be a direct decomposition as simple comodules. It is sufficient to show each \(U_i \) is contained in \(\Sigma_{\mu \in M}(J^{n-1}_\mu \land R) \).

Take \(U = U_i \), and set \(Q = \Sigma_{\mu \in M} J^{n-1}_\mu \), and \(Q_\mu = \Sigma_{\lambda \in M', \lambda \neq \mu} J^{n-1}_\lambda \), for all \(\mu \) in \(M' \). We have projections (which are comodule maps)

\[
p_\mu: U \to U/Q_\mu \text{ for all } \mu \text{ in } M'.
\]
These can be used to get a comodule homomorphism

$$p: U \to \sum_{\mu \in M'} \frac{U}{Q_\mu} \text{ (external direct sum)}.$$

If a is in ker(p), then $p_\mu(a) = 0$ for all μ in M'. That is, a is in Q_μ for all μ in M'. But the sum $\Sigma_{\mu \in M'} J_\mu$ is direct, and so $\cap_{\mu \in M'} Q_\mu = 0$, whence $a = 0$ and p is injective.

Let $U' = \text{im}(p)$ in $\Sigma_{\mu \in M'} \frac{U}{Q_\mu}$. p is an isomorphism of U onto U'. Let $\varphi: U' \to W$ be the inverse to p on U'. Since W is injective we can extend φ_0 to a map

$$\varphi: \sum_{\mu \in M'} \frac{U}{Q_\mu} \to W$$

$\text{Im}(\varphi) \supseteq U$ and $\text{Im}(\varphi) \subseteq \Sigma_{\mu \in M'} r(U/Q_\mu)$.

It remains to show that $r(U/Q_\mu)$ is contained in $J_\mu^{-1} \wedge R$. We have a series

$$U/Q_\mu \subseteq Q/Q_\mu \subseteq 0$$

The bottom factor is isomorphic to J_μ^{-1} and the top factor $(U/Q_\mu)/(Q/Q_\mu)$ is simple. Moreover,

$$r(Q/Q_\mu) = r_\mu(p(J_\mu^{-1})) = J_\mu^{-1}$$

(Notice that $p_\mu(J_\mu^{n-1}) = 0$ if $\lambda \neq \mu$, and thus $p(J_\mu^{n-1}) \subseteq Q/Q_\mu \subseteq U/Q_\mu$.)

We have an induced homomorphism

$$\tilde{r}: U/Q_\mu \to r(U/Q_\mu)/r(Q/Q_\mu) = r(U/Q_\mu)/J_\mu^{-1}$$

Thus $r(U/Q_\mu)$ is a homomorphic image of a simple comodule and must therefore be simple or 0. If $r(U/Q_\mu)$ is simple, then $r(U/Q_\mu) \leq J_\mu^{-1} \wedge R$, by a property of the wedge. If $r(U/Q_\mu)$ is 0, then $r(U/Q_\mu) \leq J_\mu^{-1} \wedge R$.

Thus $r(U/Q_\mu) \leq J_\mu^{-1} \wedge R$ for all μ in M' and $U \leq \Sigma_{\mu \in M'} r(U/Q_\mu) \leq \Sigma_{\mu \in M}(J_\mu^{-1} \wedge R)$, which completes step 3.

Let $J_\mu = \bigcup_{n=1}^\infty J_\mu^n$. The sum $\Sigma_{\mu \in M} J_\mu$ is direct, since the sum $\Sigma_{\mu \in M} J_\mu^n$ is direct for all n, and it is the whole of W since $\Sigma_{\mu \in M} J_\mu^n = s_n(W)$ and $\bigcup_{n=1}^\infty s_n(W) = W$. $s(J_\mu) = (\Sigma_{\lambda \in \mu} J_\mu) \cap J_\mu = J_\mu$, by directness of the sum $\Sigma_{\lambda \in \mu} J_\mu$. The J_μ are indecomposable since each J_μ contains a unique
simple subcomodule. Each J_μ is injective since direct summands of injective comodules are injective.

REFERENCES

(Oblatum 29-9-1975) University of Warwick
Coventry
England