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Abstract

The classical Hardy classes Hp (1 ~ p  ~) regarded as Banach

spaces are investigated. It is proved: (1) Every reflexive subspace of
L’ is isomorphic to a subspace of H1. (2) A complemented reflexive
subspace of H 

1 is isomorphic to a Hilbert space. (3) Every infinite
dimensional subspace of H 

1 which is isomorphic to a Hilbert space
contains an infinite dimensional subspace which is complemented in
Hl. The last result is a quantitative generalization of a result of Paley
that a sequence of characters satisfying the Hadamard lacunary
condition spans in H1 a complemented subspace which is isomorphic
to a Hilbert space.

Introduction

The purpose of the- present paper is to investigate some linear
topological and metric properties of the Banach spaces HP, 1 ~ p  00
consisting of analytic functions whose boundary values are p-

absolutely integrable. The study of Hp spaces seems to be interesting
for a couple of instances: (1) it requires a new technique which
combines classical facts on analytic functions with recent deep results
on LI-spaces; several classical results on the Hardy classes seem to
have natural Banach-space interpretation. (2) The spaces Hp and the
Sobolev spaces are the most natural examples of "Lp-scales" essen-
tially different from the scale LP.

*Research of the second named author was partially supported by NSF Grant MPS
74-07509-A-02.
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Boas [4] has observed that, for 1  p  00, the Banach space Hp is

isomorphic to LP. The situation in the "limit case" of H 1 is quite
different. For instance H1 is not isomorphic to any complemented
subspace of LB more generally-to any L1-space (cf. [16], Pro-

position 6.1); Hl is a dual of a separable Banach space (cf. [14]) while
L’ is not embeddable in any separable, dual cf. [23]; in contrast with
L1, by a result of Paley (cf. [21], [31], [7] p. 104), H’ has com-

plemented hilbertian subspaces hence it fails to have the Dunford-

P ettis property.
On the other hand in Section 2 of the present paper we show that

every reflexive subspace of L’ is isomorphic to a subspace of H1.
Furthermore an analogue of the profound result of H. P. Rosenthal
[27] on the nature of an embedding of a reflexive space in L’ is also
true for H1. This implies that a complemented reflexive subspace of
H is necessarily isomorphic to a Hilbert space. In Section 3 we study
hilbertian (= isomorphic to a Hilbert space) subspaces of Hl. We
show that H1 contains "very many" complemented hilbertian sub-
spaces. Precisely: every subspace of H 1 which is isomorphic to t 2
contains an infinite dimensional subspace which is complemented in
Hl. This fact is a quantitative generalization of a result of Paley,
mentioned above, on the boundedness in H1 of the orthogonal
projection from H1 onto the closed linear subspace generated by a
lacunary sequence of characters.

Section 4 contains some open problems and some results on the
behaviour of the Banach-Mazur distance d(HP, Lp) as p ~ 1 and as
p ~ ~.

1. Preliminaries

Let 0  p ~ oo. By LI (resp. LI) we denote the space of 21T-periodic
complex-valued (resp. real-valued) measurable functions on the real
line which are p-absolutely integrable with respect to the Lebesgue
measure on [0, 21r] for 0  p  00, and essentially bounded for p = 00.
C203C0 stands for the space of all continuous 21r-periodic complex-valued
functions. We admit
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The n-th character Xn is defined by

Given f E L we put

If 0  p  00, then Hp is the closed linear subspace of Lp which is

generated by the non-negative characters, {Xn : n ~ 0}. We define

By A we denote the closed linear subspace of HOO generated by the
non-negative characters. We put Hp0 = {f ~ Hp: (0) = 0} and Ao =
U EA: f(O) = 01.

Let f E HP. We denote by f a unique analytic function on the unit
disc {z: Izi  1} such that

for almost all t.

For u E LR we define X(u) = v to be the unique real 203C0-periodic
function such that for f = u + iv there exists an f analytic on the unit
disc satisfying (1.1) and such that f (0) = 203C0-1 f203C00 u(t)dt. Recall (cf.
[33], Chap. VII and Chap. XII).

PROPOSITION 1.1: (i) X is a linear operator of weak type (1, 1).
(ii) For every p E (0, 1) there exists a constant pp such that

(iii) For every p E (1, ~) there exists a constant 03C1p ~ C max (p,
pl(p - 1)), where C is an absolute constant, such that

Next, for f E LI, we define B(f) to be the unique function in ~0p1 HP
such that
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Clearly B is a one to one operator and if g = B(f), then

Combining Proposition 1.1 with the above formulae we get (cf.
Boas [4]).

PROPOSITION 1.2: (i) B is a linear operator of weak type (1, 1) from
L1 into ~0p1 H,

(ii) For every p E (0, 1) there exists a constant 03B2p such that

(iii) For every p C (1, ~) B maps isomorphically L’ onto Hp ; there
exists a constant 03B2p ~ 2pp + 3 such that

A relative of B is the orthogonal projection 9- defined by

where g03C0 (t) = g (t + 03C0). Clearly, by Proposition 1.2, 2(L1) c ~0p1Hp
and, for 1  p  -, 9, regarded as an operator from Lp is a projection
onto Hp with I/221/p ~ JIB Ilp. In fact we have

2. Reflexive subspaces of H1

PROPOSITION 2.1: A reflexive Banach space is isomorphic to a

subspace of Hl if (and only if) it is isomorphic to a subspace of LI.

PROOF: By a result of Rosenthal (cf. [27]) every reflexive subspace
of L1 is isomorphic to a reflexive subspace of Lr for some r with
1  r ::; 2. Therefore it is enough to prove that, for every r with

1  r~2, the space Lr is isomorphic to a subspace of Hl. It is well
known (cf. e.g. [27], p. 354) that, for r ~ [1, 2], there exists in

~0pr L’ a subspace Er which, for every fixed p E (0, r), regarded as
a subspace of LP is isometrically isomorphic to Lr. Moreover (if
r &#x3E; 1), for every p and P2 with 1 ~ p  P2  r, there exists a constant
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03B3p1,p2 such that

Now fix p 1 and p, with 1  p1  p2  r. By Proposition 1.2(iii), the

operator B embeds isomorphically Er regarded as a subspace of Lpl
into HP-. Clearly we have the set theoretical inclusion Hp1 ~H1. Thus
it suffices to prove that the norm ~·~1 and ~·~p1 are equivalent on B(Er).
By (1.2) and (2.1), for every g E B(Er) we have Ilgllp2::; kllgilpi where
k = 03B3p1,p2 · 203B2p1. Letting s = (pl - 1)(p2- 1)-1, in view of the logarithmic
convexity of the function p - ~g~pp, we have

whence

This completes the proof.

REMARK: Using the technique of [15] (cf. also [19]) instead of the

logarithmic convexity of the function p ~ ~·~pp one can show that on
B(Er) all the norms ~·~p are equivalent for 0  p  r (in fact equivalent
to the topology of convergence in measure). Hence if 0  p ~ 1, then
Hp contains isomorphically every reflexive subspace of L’. We do
not know any satisfactory description of all Banach subspaces of H’
for 0  p  1.

Our next result provides more information on isomorphic em-
beddings of reflexive spaces into H’. It is a complete analogue of
Rosenthal’s Theorem on reflexive subspaces of L’ (cf. [27]).

PROPOSITION 2.2: Let X be a reflexive subspace of Hl. Then there
exists a p &#x3E; 1 such that for every r with p &#x3E; r &#x3E; 1 the natural em-

bedding j : X ~ H1 factors through Hr, i.e. there are bounded linear

operators U : X ~ Hr and V : Hr ~ Hl with VU = j. Moreover U and
V can be chosen to be operators of multiplication by analytic func-
tions.

PROOF: By a result of Rosenthal ([27], Theorem 5 and Theorem 9),
there exists a p &#x3E; 1 such that for every r with p &#x3E; r &#x3E; 1 there exist a
K &#x3E; 0 and a non-negative function ç with 1/203C0 ~203C00 ’P (t)dt = 1 such
that
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(In this formula we admit 0/0 = 0). Let us set Ji = max (ç, 1). Let g be the
outer function defined by

and let

Then (cf. [7], Chap. 2) g ~ Hr/(r-1), |g(t)| = 03C8(t)(r-1)/r for t a.e.,

|(z)| ~ 1 for Izl  1 and g-’F- H=.
Let us set U (x ) = x/g for x E X and V(f) = g - f for f E H r. Since

~g~r/(r-1) ~ 2(r-1)/r, V maps Hr into H1 and Il VII ~ 2(r-1)/r. Finally, for every
x G X, we have

Thus U (x) ~ Lr. Therefore U (x ) E H 
r 

because U (x) ~ H1 being a
product of an x E H’ by g-1 E Hoo.

COROLLARY 2.1: A complemented reflexive subspace of Hl is

isomorphic to a Hilbert space.

PROOF: Let X be a complemented reflexive subspace of H1. Then,
by Proposition 2.2, there exists a p &#x3E; 1 such that for every r with

p &#x3E; r &#x3E; 1 there are bounded linear operators U and V such that the

following diagram is commutative

where j : X ~ H 1 is the natural inclusion and P : H1 ~ X is a

projection. Thus, for every r E (1, p), P j = the identity operator on X
admits a factorization through Hr. Therefore X is isomorphic to a
complemented subspace of Lr because, by Proposition 1.2(iii), Hr is
isomorphic to Lr. Since this holds for at least two different r E (1, p),
we infer that X is isomorphic to a Hilbert space (cf. [16] and [18]).
REMARKS: (1) The following result has been kindly communicated

to us by Joel Shapiro.
If 0  p  1 and if a Banach space X is isomorphic to a comple-

mented subspace of Hp, then either X is isomorphic to ~1 or X is
finite dimensional.
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The proof (due to J. Shapiro) uses the result of Duren, Romberg
and Shields [8], sections 2 and 3:

(D.R.S) the adjoint of the natural embedding g ~  of Hp into the
space BP is an isomorphism between conjugate spaces. Here BP

denotes the Banach space of holomorphic functions on the open unit
disc with the norm

It follows from (D.R.S) that a complemented Banach subspace of Hp
(0  p  1) is isomorphic to a complemented subspace of Bp. Next
using technique similar to that of [17], Theorem 6.2 (cf. also [31]) one
can show that BP is isomorphic to ~1. Now the desired conclusion

follows from [22], Theorem 1.

Problem (J. Shapiro). Does Hp (0  p  1) actually contain a com-

plemented subspace isomorphic to ~1?
(2) Slightly modifying the proof of Proposition 2.2 one can show

the following

PROPOSITION 2.2a: Let 1 ~ po  2. Let X be a subspace of HP- which
does not contain any subspace isomorphic to tl-. Then there exists a

p E (po, 2) such that, for every r with po  r  p there exists an outer

g E Hp0r(r-p0)-1 with g ~ 0 such that j = VU where U : X - Hr and

V : Hr ~ Hp0 are operators of multiplication by l/g and g respectively
and j : X ~ Hp0 denotes the natural inclusion.

The proof imitates the proof of Proposition 2.2; instead of Rosen-
thal’s result we use its generalization due to Maurey (cf. [19], Théorème
8 and Proposition 97).

Our next result is in fact a quantitative version of Proposition 2.2a
for hilbertian subspaces.

PROPOSITION 2.3: Let K ~ 1 and let 1 s p ~ 2. Let X be a subspace
of HP and let T : ~2 ~ X be an isomorphism with ~T~ ~T-1~ ~ K.
Then there exists an outer cp E Hl such that

where y is an absolute constant, in fact 03B3 ~ 4/Y;.
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PROOF: A result of Maurey ([19] Théorème 8, 50a, cf. also [20]),
applied for the identity inclusion X ~ Lp, yields the existence of a
g e Lr where 1/r = 1/p - 1/2 such that Ilglir = 1 and

where C is the smallest constant such that

for every finite sequence (f;) in X. A standard application of the
integration against the independent standard complex Gaussian vari-
ables ei gives

where kp = (1/03C0 ~+~-~ ~+~-~ (x2 + y2)p/2e-(x2+y2)dxdy)1/p. Since kp ~ k1 =

V77/2, one can replace C in (2.5) and in (2.6) by KIkI = 2K/Vn-.
Now, by [14], p. 53, there exists an outer function ~ E H satisfying

(2.2), (2.3) and such that

for almo st all t

It can be easily checked that (2.7) and (2.5) imply (2.4) with y = 2/k,.
Our last result in this section gives some information on reflexive

subspaces of the quotient L1/H10.

PROPOSITION 2.4: Let X be a reflexive subspace of LI such that
(k) = 0 for k &#x3E; 0, f E X. Then the sum X + Hô is closed, equivalently
the restriction of the quotient map L1 ~ L’lHo’ to X is an isomorphic
embedding.

PROOF : Let 9 (f) = f - 2(f) f or f E L 
1 where 21 is the projection
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defined, by (1.3). It follows from Proposition 1.2(ii) that there exists a
constant a &#x3E; 0 such that

On the other hand if X is a reflexive subspace of L’, then X contains
no subspace isomorphic to ~1. Hence (cf. [15], [19]) the norm topology
in X coincides with the topology of convergence in measure, in

particular

for every sequence

Thus there exists a constant bx = b &#x3E; 0 such that

Now fix f E X and g E Hô. Then 9P(g) = 0, and 9P(f) = f because
(k) = 0 for k &#x3E; 0. Hence

Thus the sum X + Hô is closed.

REMARK: Proposition 2.4 yields, in particular, the following "clas-
sical" result.

If (nk) is a sequence of negative integers such that the space

is isomorphic to (2 (in particular if lim (nk+llnk) &#x3E; 1) then the space
~ + H1 is closed or equivalently in the "dual language" the operator
A ~ ~2 defined by f ~ ((- nk)) is a surjection.

3. Hilbertian subspaces of H’

The existence of infinite-dimensional complemented hilbertian

subspaces of H1 follows from the classical result of R.E.A.C. Paley
(cf. [21], [29], [7] p. 104, [33], Chap. XII, Theorem 7.8) which yields
(P). If lim (nk+1/nk) &#x3E; 1, then the closed linear subspace of H1 spanned
by the sequence of characters (~nk)1~k~ is isomorphic to e2 and

complemented in Hl.
On the other hand there are subspaces of H1 spanned by sequences

of characters which are isomorphic to t2 but uncomplemented in H 1

(cf. Rudin [30] and Rosenthal [26]).
In this section we shall show that, in fact, H contains "very many"

complemented and "very many" uncomplemented hilbertian sub-
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spaces not necessarily translation invariant. The situation is similar to
that in LI (and therefore HI, by Proposition 1.2(iii)) for 1  p  2 (cf.
[25], Theorem 3.1) but not in L’ which contains no complemented
infinite-dimensional hilbertian subspaces ([13], [22]).

If (xn) is a sequence of elements of a Banach space X then [xn]
denotes the closed linear subspace of X generated by the xn’s.
Let 1 ~ K  00. Recall that a sequence (xn) of elements of a Banach

space is said to be K-equivalent to the unit vector basis of

provided there exist positive constants a and b with ab = K such that

for every finite sequence of scalars (tn).
Now we are ready to state the main result of the present section

THEOREM 3.1: Let 1 ~ K  ~. Let (fn)1~n~ be a sequence in Hl
which is K-equivalent to the unit vector basis of (2. Then, for every
E &#x3E; 0, there exists an infinite subsequence (nk) such that the closed
linear subspace [fnk] spanned by the sequence (fnk) is complemented in
H’. Moreover, there exists a projection P from Hl onto [fnk] with

JIP Il  4K + E.

The proof of Theorem 3.1 follows immediately from Propositions
3.1, 3.2 and 3.3 given below. We begin with the following general
criterion

PROPOSITION 3.1: Let X be a Banach space with separable con-
jugate X*. Assume that there exists a constant c = cx such that every
weakly convergent to zero sequence (ym) in X contains an infinite
subsequence (ymk) such that

for every finite sequence of scalars (tk). Then, for every K ~ 1 and for
every E &#x3E; 0, every sequence (x*n) in X* which is K-equivalent to the
unit vector basis of (2 contains an infinite subsequence (x*nk) such that
the closed linear subspace [x *nk] admits a projection
P : X* ~ [x*nk] with IIP Il 2Kc + E.

onto

PROOF : Define V : ~2 ~ X* by V((tn)) = 03A3n tnx*n for (tn) E e2. Clearly
V is an isomorphic embedding with ~V~ ~V-1~ ~ K (V-1 acts from
V(~2) onto ~2). Since e2 is reflexive, V is weak-star continuous.
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Hence there exists an operator U : X ~ ~2 whose adjoint is V. It is

easy to check that the operator U is defined by U(x) = (x*n(x))1~n~
for x E X. Since ~U*((tn))~ = ~V((tn))~ ~ ~V-1~-1(03A3n|tn|2)1/2 for every

(tn) E ~2, the operator U is a surjection such that, for every r &#x3E; Il V-’ll,
the set U((x E X : ~x~ ~ rl) contains the unit ball of ~2 (cf. [32] Chap.
VII, §5). Hence there exists a sequence (xs) in X such that sup ~xs~ ~ r
and ( U(xs )) is the unit vector basis of ~2, equivalently x*n(xs) = Sn for

n, s = 1, 2,.... Since X* is separable and sup ~xs~ ~ r, there exists an
infinite subsequence (xsq) which is a weak Cauchy sequence. Let us
set Y- = xs2m -’xs2m-l for m = 1, 2,.... Clearly the sequence (ym) tends
weakly to zero. Thus the condition imposed on X yields the existence
of an infinite subsequence (ymk) satisfying (3.1). Let us set nk = S2mk
for k = 1, 2,... and put

Clearly we have

Thus, by (3.1),

Thus P is a linear operator with IIP ~ ~ 2cr ~ VII (because
sup ~ymk~ ~ 2 sup ~xs~ ~ 2r). Letting r  ~V-1~ + ~(2c~V~)-1, we get

~P~  2K + ~. Since P(x*) ~ [x*nk] for every x* E X* and since

P(x*nk) = x*nk for k = 1, 2,..., we infer that P is the desired pro-

jection.

REMARK: The assertion of Proposition 3.1 remains valid if we

replace the assumption of separability of X* by the weaker assump-
tion that X does not contain subspace isomorphic to ~1. To extract a
weak Cauchy subsequence from the sequence (xs) we apply the result
of Rosenthal [28].
To apply Proposition 3.1 we need a description of a predual of H 1.

Our next proposition is known. Its part (ii) is a particular case of the
Caratheodory-Fejer Theorem, cf. [1].
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PROPOSITION 3.2: (i) The conjugate space of the quotient C27TIAo is
isometrically isomorphic to Hl.

(ii) The space C27TIAo is isometrically isomorphic to a subspace of
the space of compact operators on a Hilbert space.

PROOF: (i) The desired isometric isomorphism assigns to each

f E H the linear functional x*f defined by

for the coset

The fact that this map is onto (C2,IA,,,)* follows from the F. and M.
Riesz Theorem. For details cf. [14], p. 137, the second Theorem.

(ii) To each coset {f+A0} we assign the linear operator Tf : H2 ~ H2
defined by

Clearly the definition of Tf is independent of the choice of a re-
presentative in the coset {f + A0}. Moreover, for every f, E {f + A0},
we have

Thus ~Tf~ ~ inf {~f1~~: f, E lf + A0}} = Iltf + Aolll.
Conversely, it follows from part (i) and the Hahn Banach Theorem

that there exists a ç E H with Il’P III = 1 such that 1/203C0 ~203C0 f(t)~ (t )dt =
~{f + A0}~. By the factorization theorem (cf. [14], p. 67), we pick
functions g and hl in H2 with ghl = ç and IIgll2 = ~h1~2 = 1 (cf. [14], p.
71), and we define h E H2 by h(t) = hl(- t). Then (Tf(g), h) =
~{f + A0~ = ~{f + A0}~~g~2~h~2. Hence ~Tf~ litf + A0}~. This shows that
the map {f + A0} ~ Tf is an isometrically isomorphic embedding of
C203C0/A0 into the space of bounded operators on H2. Finally observe
that each operator Tf is compact because the cosets {{~-n + A0}: n = 0,
1, 2,...} are linearly dense in C2jr/Ao (by the Fejer Theorem) and
Tx-n = 03A3nj=0 (., Xj)Xn -j is an (n + 1)-dimensional operator (n = 0, 1, ...).
This completes the proof.
To complete the proof of Theorem 3.1 it is enough to show that the

space K(h) of the compact operators on an infinite-dimensional
Hilbert space h (and therefore every subspace of K(h)) satisfies the
assumption of Proposition 3.1. Precisely we have

PROPOSITION 3.3: Let h be an infinite-dimensional Hilbert space.
Let (Tm) be a weakly convergent to zero sequence in K(h). Then, for
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every E &#x3E; 0, there exists an infinite subsequence (mk) such that

for every finite sequence of scalars (tk).

PROOF: The assumption that the sequence (Tm) converges weakly
to zero in K(h) means

Here (·,·) denotes the inner product in h. Let (e03B1)03B1~H be an or-
thonormal basis for h. Since each Tm is compact, the ranges of Tm and
its adjoint Tm are separable. Hence there exists a countable set 9to
such that Tm(x), e03B1&#x3E; = T*m(x), e03B1&#x3E; = 0 for every m = 1, 2, ... for every
x ~ h and for every a E H/H0. Let j~ 03B1(j) be an enumeration of the
elements of 9to. Let furthermore Pn denote the orthogonal projection
onto the n-dimensional subspace generated by the elements e03B1(1),

ea(2), ..., ea(n). Since dim Pn (h) = n, it follows from (3.2) that

Next the compactness of each Tm and the definition of the set H0
yield

Let E &#x3E; 0 be given. Assuming that supm IITml1 &#x3E; 0 we fix a positive
sequence (Ek) with (03A3~k=1 4~2k) ~ ~ sup- Il T,. il. Now using (3.3) and (3.4)
we define inductively increasing sequences of indices (mk)k~1 and

(nk)kao with m1 = 1 and no = 0 so that (admitting Po = 0)

Let us put, for k = 1, 2,...,

Clearly (3.5) and (3.6) yield
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Let (tk) be a fixed finite sequence of scalars. Since the projections
Pnk - Pnk-1 (k = 1, 2,...) are orthogonal and mutually disjoint, for
every x E h, we have

Hence

Similarly

Thus

This completes the proof of Proposition 3.3 and therefore of Theorem
3.1.

REMARKS: (1) Let us sketch a proof of Paley’s result (P ) which
uses the technique of the proof of Theorem 3.1.
Assume first that (mk) is a sequence of positive integers such that

Let Tm = Tx-m for m = 0, 1,... be the compact operator on H2
which is the image of the coset {~-m + A0} by the isometry C203C0/A0 ~
K(H2) defined in the proof of Proposition 3.2(ii). Then (TmXh Xk) = 0
for j + k ~ m and (T-Xi, ~k&#x3E; = 1 for j + k = m. Let Pm : H2 ~ span
(~0, ~1, ..., Xm-1) be the orthogonal projection. It follows from (3.7)
that Pmk-ITm,l’mk-1 = 0 and Tmk = PmkTm,l’mk for k = 1, 2,... (i.e. the
sequences (Pnk) and (Tmk) satisfy (3.5) and (3.6) with nk = mk and
Ek = 0 for all k). Thus the argument used in the proof of Proposition
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3.3 yields

for every finite sequence of scalars (tk). Obviously (1 tkTmk)(03A3 tk~mk) =
03A3k Itkl2. Hence

Thus the subspace [ Tmk] is isomorphic to ~2. Moreover Q defined by
Q(S) = 03A3k S(x0), Xmk)Tmk for S E K(H2) is a projection onto [Tmk]
with ~Q~ ~ 2. Let us regard Q as an operator from [Tm] (= the
isometric image of C203C0/A0) into itself and let P be the adjoint of Q.
Then, by Proposition 3.1(ii), P can be regarded as an operator from
H into itself. Obviously IIP ~ = ~Q~ ~ 2. A direct computation shows
that P is the orthogonal projection of H’ onto [~mk]. To complete the
proof of (P ) in the general case observe that every lacunary sequence
admits a decomposition into a finite number of sequences satisfying
(3.7).

(2) A similar argument gives also the following relative result.
Let (fn) be a sequence in H1. Assume that + 00 &#x3E; supn ~fn~~ ~

infn ~fn~1 &#x3E; 0 and

Then there exists an infinite subsequence (nk) and a 1 ~ K  00 such
that the sequence (fnk) is K-equivalent to the unit vector basis of t2
and the orthogonal projection from H’ onto [fnk] is a bounded

operator.
Our next aim is to give a quantitative generalization of Theorem 3.1

to the case of HP spaces (1  p ~ 2).

THEOREM 3.2: Let 1  p ~ 2 and let K ~ 1. Then there exists an
absolute constant c (independent of K and p) such that if (fn) is a

sequence in HP which is K-equivalent to the unit vector basis of t2,
then there exists a subsequence (nk) such that there exists a projection
P from HP onto [fnk]-the closed linear span of (fnk) with IIP ~ ~ cK2.

PROOF: Let X = [fn]. By the assumption, there exists an isomor-
phism T : ~2 ~ X with ~T~~T-1~ ~ K. Hence, by Proposition 2.3,
there exists a cp E H 1 which satisfies an outer (2.2), (2.3), (2.4).
Let us set ~f~~,q = (1/(203C0) ~203C00 |f(t)|q |~(t)|dt)1/q for f measurable and for
1 S q  00. It follows from (2.2) that there exists in the open unit disc a


