COMPOSITIO MATHEMATICA

S. KWAPIEŃ A. PELCZYŃSKI Some linear topological properties of the hardy spaces H^p

Compositio Mathematica, tome 33, nº 3 (1976), p. 261-288 <http://www.numdam.org/item?id=CM 1976 33 3 261 0>

© Foundation Compositio Mathematica, 1976, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 33, Fasc. 3, pag. 261–288 Noordhoff International Publishing Printed in the Netherlands

SOME LINEAR TOPOLOGICAL PROPERTIES OF THE HARDY SPACES H^p

S. Kwapień and A. Pelczyński*

Abstract

The classical Hardy classes H^p $(1 \le p < \infty)$ regarded as Banach spaces are investigated. It is proved: (1) Every reflexive subspace of L^1 is isomorphic to a subspace of H^1 . (2) A complemented reflexive subspace of H^1 is isomorphic to a Hilbert space. (3) Every infinite dimensional subspace of H^1 which is isomorphic to a Hilbert space contains an infinite dimensional subspace which is complemented in H^1 . The last result is a quantitative generalization of a result of Paley that a sequence of characters satisfying the Hadamard lacunary condition spans in H^1 a complemented subspace which is isomorphic to a Hilbert space.

Introduction

The purpose of the present paper is to investigate some linear topological and metric properties of the Banach spaces H^p , $1 \le p < \infty$ consisting of analytic functions whose boundary values are *p*-absolutely integrable. The study of H^p spaces seems to be interesting for a couple of instances: (1) it requires a new technique which combines classical facts on analytic functions with recent deep results on L^p -spaces; several classical results on the Hardy classes seem to have natural Banach-space interpretation. (2) The spaces H^p and the Sobolev spaces are the most natural examples of " \mathcal{L}_p -scales" essentially different from the scale L^p .

^{*}Research of the second named author was partially supported by NSF Grant MPS 74-07509-A-02.

Boas [4] has observed that, for $1 , the Banach space <math>H^p$ is isomorphic to L^p . The situation in the "limit case" of H^1 is quite different. For instance H^1 is not isomorphic to any complemented subspace of L^1 , more generally—to any \mathcal{L}_1 -space (cf. [16], Proposition 6.1); H^1 is a dual of a separable Banach space (cf. [14]) while L^1 is not embeddable in any separable, dual cf. [23]; in contrast with L^1 , by a result of Paley (cf. [21], [31], [7] p. 104), H^1 has complemented hilbertian subspaces hence it fails to have the Dunford-Pettis property.

On the other hand in Section 2 of the present paper we show that every reflexive subspace of L^1 is isomorphic to a subspace of H^1 . Furthermore an analogue of the profound result of H. P. Rosenthal [27] on the nature of an embedding of a reflexive space in L^1 is also true for H^1 . This implies that a complemented reflexive subspace of H^1 is necessarily isomorphic to a Hilbert space. In Section 3 we study hilbertian (= isomorphic to a Hilbert space) subspaces of H^1 . We show that H^1 contains "very many" complemented hilbertian subspaces. Precisely: every subspace of H^1 which is isomorphic to ℓ^2 contains an infinite dimensional subspace which is complemented in H^1 . This fact is a quantitative generalization of a result of Paley, mentioned above, on the boundedness in H^1 of the orthogonal projection from H^1 onto the closed linear subspace generated by a lacunary sequence of characters.

Section 4 contains some open problems and some results on the behaviour of the Banach-Mazur distance $d(H^p, L^p)$ as $p \to 1$ and as $p \to \infty$.

1. Preliminaries

Let $0 . By <math>L^p$ (resp. L_R^p) we denote the space of 2π -periodic complex-valued (resp. real-valued) measurable functions on the real line which are *p*-absolutely integrable with respect to the Lebesgue measure on $[0, 2\pi]$ for $0 , and essentially bounded for <math>p = \infty$. $C_{2\pi}$ stands for the space of all continuous 2π -periodic complex-valued functions. We admit

$$\|f\|_{p} = \frac{1}{2\pi} \int_{0}^{2\pi} |f(t)|^{p} dt \quad \text{for } 0
$$\|f\|_{p} = \left(\frac{1}{2\pi} \int_{0}^{2\pi} |f(t)|^{p} dt\right)^{1/p} \quad \text{for } 1 \le p < \infty,$$

$$\|f\|_{\infty} = \underset{0 \le t \le 2\pi}{\text{ess sup}} |f(t)|.$$$$

The *n*-th character χ_n is defined by

$$\chi_n(t) = e^{int} \quad (-\infty < t < +\infty; \ n = 0, \pm 1, \pm 2, \ldots).$$

Given $f \in L^1$ we put

$$\hat{f}(n) = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-int} dt \quad (n = 0, \pm 1, \pm 2, \ldots)$$
$$f_0 = f - \hat{f}(0) \cdot \chi_0.$$

If $0 , then <math>H^p$ is the closed linear subspace of L^p which is generated by the non-negative characters, $\{\chi_n : n \ge 0\}$. We define

$$H^{\infty} = \{ f \in L^{\infty} : \hat{f}(n) = 0 \quad \text{for all } n < 0 \}.$$

By A we denote the closed linear subspace of H^{∞} generated by the non-negative characters. We put $H_0^p = \{f \in H^p : \hat{f}(0) = 0\}$ and $A_0 = \{f \in A : \hat{f}(0) = 0\}$.

Let $f \in H^{p}$. We denote by \tilde{f} a unique analytic function on the unit disc $\{z: |z| < 1\}$ such that

(1.1)
$$\lim_{r=1} \tilde{f}(re^{it}) = f(t) \text{ for almost all } t.$$

For $u \in L_R^1$ we define $\mathcal{H}(u) = v$ to be the unique real 2π -periodic function such that for f = u + iv there exists an \tilde{f} analytic on the unit disc satisfying (1.1) and such that $\tilde{f}(0) = 2\pi^{-1} \int_0^{2\pi} u(t) dt$. Recall (cf. [33], Chap. VII and Chap. XII).

PROPOSITION 1.1: (i) \mathcal{H} is a linear operator of weak type (1, 1). (ii) For every $p \in (0, 1)$ there exists a constant ρ_p such that

$$\|\mathscr{H}(u)\|_p \leq \rho_p \|u\|_1^p$$
 for $u \in L^1_R$

(iii) For every $p \in (1, \infty)$ there exists a constant $\rho_p \le C \max(p, p/(p-1))$, where C is an absolute constant, such that

$$\|\mathscr{H}(u)\|_p \leq \rho_p \|u\|_p$$
 for $u \in L_R^p$.

Next, for $f \in L^1$, we define B(f) to be the unique function in $\bigcap_{0 \le p \le 1} H^p$ such that

$$B(f) = \sum_{n\geq 0} \hat{f}(n)\tilde{\chi}_{2n} + \sum_{n<0} \hat{f}(n)\tilde{\chi}_{-2n-1}.$$

Let $\mathcal{H}(f) = \mathcal{H}(\operatorname{Re} f) + i\mathcal{H}(\operatorname{Im} f)$ for $f \in L^1$. Then

$$B(f)(t) = \frac{1}{2} \{ f_0(2t) + i \mathcal{H}(f_0)(2t) + [f_0(-2t) - i \mathcal{H}(f_0)(-2t)] e^{-it} \} + \hat{f}(0)$$

$$(-\infty < t < +\infty)$$

Clearly B is a one to one operator and if g = B(f), then

$$f(t) = \frac{1}{2} \left[g\left(\frac{t}{2}\right) + g\left(\frac{t}{2} + \pi\right) + (\chi_1 g)\left(-\frac{t}{2}\right) + (\chi_1 g)\left(-\frac{t}{2} + \pi\right) \right]$$
$$(-\infty < t < +\infty).$$

Combining Proposition 1.1 with the above formulae we get (cf. Boas [4]).

PROPOSITION 1.2: (i) B is a linear operator of weak type (1, 1) from L^1 into $\bigcap_{0 \le p \le 1} H^p$

(ii) For every $p \in (0, 1)$ there exists a constant β_p such that

$$\|B(f)\|_p \leq \beta_p \|f\|_1^p$$

(iii) For every $p \subset (1, \infty)$ B maps isomorphically L^p onto H^p ; there exists a constant $\beta_p \le 2\rho_p + 3$ such that

(1.2)
$$2^{-1} \|f\|_{p} \le \|B(f)\|_{p} \le \beta_{p} \|f\|_{p}.$$

A relative of B is the orthogonal projection \mathcal{Q} defined by

(1.3)
$$\mathscr{Q}(f)(t) = 2^{-1} [B(f) + (B(f))^{\pi}] \left(\frac{t}{2}\right) \quad \text{for } f \in L^{1},$$
$$-\infty < t < +\infty$$

where $g^{\pi}(t) = g(t + \pi)$. Clearly, by Proposition 1.2, $\mathcal{Q}(L^1) \subset \bigcap_{0$ $and, for <math>1 , <math>\mathcal{Q}$ regarded as an operator from L^p is a projection onto H^p with $\|\mathcal{Q}\|_p \le \|B\|_p$. In fact we have

$$\mathcal{Q}(f) = \sum_{n \ge 0} \hat{f}(n) \chi_n \quad \text{for } f \in L^p, \ 1$$

2. Reflexive subspaces of H^1

PROPOSITION 2.1: A reflexive Banach space is isomorphic to a subspace of H^1 if (and only if) it is isomorphic to a subspace of L^1 .

PROOF: By a result of Rosenthal (cf. [27]) every reflexive subspace of L^1 is isomorphic to a reflexive subspace of L^r for some r with $1 < r \le 2$. Therefore it is enough to prove that, for every r with $1 < r \le 2$, the space L^r is isomorphic to a subspace of H^1 . It is well known (cf. e.g. [27], p. 354) that, for $r \in [1, 2]$, there exists in $\bigcap_{0 a subspace <math>E_r$ which, for every fixed $p \in (0, r)$, regarded as a subspace of L^p is isometrically isomorphic to L^r . Moreover (if r > 1), for every p_1 and p_2 with $1 \le p_1 < p_2 < r$, there exists a constant γ_{p_1,p_2} such that

(2.1)
$$||f||_{p_1} = \gamma_{p_1,p_2} ||f||_{p_2}$$
 for $f \in E_r$.

Now fix p_1 and p_2 with $1 < p_1 < p_2 < r$. By Proposition 1.2(iii), the operator *B* embeds isomorphically E_r regarded as a subspace of L^{p_1} into H^{p_1} . Clearly we have the set theoretical inclusion $H^{p_1} \subset H^1$. Thus it suffices to prove that the norm $\|\cdot\|_1$ and $\|\cdot\|_{p_1}$ are equivalent on $B(E_r)$. By (1.2) and (2.1), for every $g \in B(E_r)$ we have $\|g\|_{p_2} \le k \|g\|_{p_1}$ where $k = \gamma_{p_1,p_2} \cdot 2\beta_{p_1}$. Letting $s = (p_1 - 1)(p_2 - 1)^{-1}$, in view of the logarithmic convexity of the function $p \to \|g\|_p^p$, we have

$$\|g\|_{p_1}^{p_1} \le \|g\|_{p_2}^{sp_2} \|g\|_1^{1-s} \le k^{sp_2} \|g\|_{p_1}^{sp_2} \|g\|_1^{1-s}$$

whence

$$\|g\|_1 \le \|g\|_{p_1} \le k^{p_2 s/1-s} \|g\|_1.$$

This completes the proof.

REMARK: Using the technique of [15] (cf. also [19]) instead of the logarithmic convexity of the function $p \to ||\cdot||_p^p$ one can show that on $B(E_r)$ all the norms $||\cdot||_p$ are equivalent for $0 (in fact equivalent to the topology of convergence in measure). Hence if <math>0 , then <math>H^p$ contains isomorphically every reflexive subspace of L^1 . We do not know any satisfactory description of all Banach subspaces of H^p for 0 .

Our next result provides more information on isomorphic embeddings of reflexive spaces into H^1 . It is a complete analogue of Rosenthal's Theorem on reflexive subspaces of L^1 (cf. [27]).

PROPOSITION 2.2: Let X be a reflexive subspace of H^1 . Then there exists a p > 1 such that for every r with p > r > 1 the natural embedding $j: X \to H^1$ factors through H^r , i.e. there are bounded linear operators $U: X \to H^r$ and $V: H^r \to H^1$ with VU = j. Moreover U and V can be chosen to be operators of multiplication by analytic functions.

PROOF: By a result of Rosenthal ([27], Theorem 5 and Theorem 9), there exists a p > 1 such that for every r with p > r > 1 there exist a K > 0 and a non-negative function φ with $1/2\pi \int_0^{2\pi} \varphi(t) dt = 1$ such that

$$\left(\frac{1}{2\pi}\int_0^{\pi} |x(t)|^r [\varphi(t)]^{1-r} dt\right)^{1/r} \le K ||x||_1 \quad \text{for } x \in X$$

(In this formula we admit 0/0 = 0). Let us set $\psi = \max(\varphi, 1)$. Let g be the outer function defined by

$$\tilde{g}(z) = \exp \frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + 2}{e^{it} - 2} \log \left[\psi(t) \frac{r - 1}{r} \right] dt \quad \text{for } |z| < 1$$

and let

$$g(t) = \lim_{\rho \to 1} \tilde{g}(\rho e^{it}) \quad \text{for } t \in [0, 2\pi]$$

Then (cf. [7], Chap. 2) $g \in H^{r/(r-1)}$, $|g(t)| = \psi(t)^{(r-1)/r}$ for t a.e., $|\tilde{g}(z)| \ge 1$ for |z| < 1 and $g^{-1} \in H^{\infty}$.

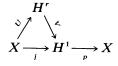
Let us set U(x) = x/g for $x \in X$ and $V(f) = g \cdot f$ for $f \in H^r$. Since $\|g\|_{t/(r-1)} \le 2^{(r-1)/r}$, V maps H^r into H^1 and $\|V\| \le 2^{(r-1)/r}$. Finally, for every $x \in X$, we have

$$\begin{aligned} \|U(x)\|_{r}^{r} &= \frac{1}{2\pi} \int_{0}^{2\pi} \left| \frac{x(t)}{g(t)} \right|^{r} dt = \frac{1}{2\pi} \int_{0}^{2\pi} |x(t)|^{r} [\psi(t)]^{1-r} dt \\ &\leq \frac{1}{2\pi} \int_{0}^{2\pi} |x(t)|^{r} [\varphi(t)]^{1-r} dt \leq K^{r} \|x\|_{1}^{r}. \end{aligned}$$

Thus $U(x) \in L'$. Therefore $U(x) \in H'$ because $U(x) \in H^1$ being a product of an $x \in H^1$ by $g^{-1} \in H^{\infty}$.

COROLLARY 2.1: A complemented reflexive subspace of H^1 is isomorphic to a Hilbert space.

PROOF: Let X be a complemented reflexive subspace of H^1 . Then, by Proposition 2.2, there exists a p > 1 such that for every r with p > r > 1 there are bounded linear operators U and V such that the following diagram is commutative



where $j: X \to H^1$ is the natural inclusion and $P: H^1 \xrightarrow[onto]{onto} X$ is a projection. Thus, for every $r \in (1, p)$, Pj = the identity operator on X admits a factorization through H'. Therefore X is isomorphic to a complemented subspace of L' because, by Proposition 1.2(iii), H' is isomorphic to L'. Since this holds for at least two different $r \in (1, p)$, we infer that X is isomorphic to a Hilbert space (cf. [16] and [18]).

REMARKS: (1) The following result has been kindly communicated to us by Joel Shapiro.

If $0 and if a Banach space X is isomorphic to a complemented subspace of <math>H^p$, then either X is isomorphic to ℓ^1 or X is finite dimensional.

266

The proof (due to J. Shapiro) uses the result of Duren, Romberg and Shields [8], sections 2 and 3:

(D.R.S) the adjoint of the natural embedding $g \rightarrow \tilde{g}$ of H^{p} into the space B^{p} is an isomorphism between conjugate spaces. Here B^{p} denotes the Banach space of holomorphic functions on the open unit disc with the norm

$$||f||_{B_p} = \iint_{x^2+y^2 \le 1} |f(x+iy)| (1-(x^2+y^2)^{1/2})^{(1/p)-2} dx dy.$$

It follows from (D.R.S) that a complemented Banach subspace of H^{p} ($0) is isomorphic to a complemented subspace of <math>B^{p}$. Next using technique similar to that of [17], Theorem 6.2 (cf. also [31]) one can show that B^{p} is isomorphic to ℓ^{1} . Now the desired conclusion follows from [22], Theorem 1.

Problem (J. Shapiro). Does H^p ($0) actually contain a complemented subspace isomorphic to <math>\ell^1$?

(2) Slightly modifying the proof of Proposition 2.2 one can show the following

PROPOSITION 2.2a: Let $1 \le p_0 \le 2$. Let X be a subspace of H^{p_0} which does not contain any subspace isomorphic to ℓ^{p_0} . Then there exists a $p \in (p_0, 2)$ such that, for every r with $p_0 \le r \le p$ there exists an outer $g \in H^{p_0r(r-p_0)^{-1}}$ with $g \ne 0$ such that j = VU where $U: X \rightarrow H^r$ and $V: H^r \rightarrow H^{p_0}$ are operators of multiplication by 1/g and g respectively and $j: X \rightarrow H^{p_0}$ denotes the natural inclusion.

The proof imitates the proof of Proposition 2.2; instead of Rosenthal's result we use its generalization due to Maurey (cf. [19], Théorème 8 and Proposition 97).

Our next result is in fact a quantitative version of Proposition 2.2a for hilbertian subspaces.

PROPOSITION 2.3: Let $K \ge 1$ and let $1 \le p \le 2$. Let X be a subspace of H^p and let $T: \ell^2 \xrightarrow[]{onto} X$ be an isomorphism with $||T|| ||T^{-1}|| \le K$. Then there exists an outer $\varphi \in H^1$ such that

(2.2)
$$|\tilde{\varphi}(z)| \ge 1$$
 for every z with $|z| < 1$

(2.3)
$$\frac{1}{2\pi} \int_0^{2\pi} |\varphi(t)| dt = 1$$

(2.4)
$$\left(\int_{0}^{2\pi} |f(t)|^{2} |\varphi(t)|^{-(2/p)+1} dt\right)^{1/2} \leq \gamma K ||f||_{p} \text{ for every } f \in X$$

where γ is an absolute constant, in fact $\gamma \leq 4/\sqrt{\pi}$.

PROOF: A result of Maurey ([19] Théorème 8, 50a, cf. also [20]), applied for the identity inclusion $X \to L^p$, yields the existence of a $g \in L^r$ where 1/r = 1/p - 1/2 such that $||g||_r = 1$ and

(2.5)
$$\left(\frac{1}{\pi}\int_0^{2\pi} \left|\frac{f(t)}{g(t)}\right|^2 dt\right)^{1/2} \le C \|f\|_p \quad \text{for every } f \in X$$

where C is the smallest constant such that

(2.6)
$$\left(\frac{1}{2\pi}\int_0^{2\pi} \left(\sum_j |f_j(t)|^2\right)^{p/2} dt\right)^{1/p} \le C\left(\sum_j \|f_j\|_p^2\right)^{1/2}$$

for every finite sequence (f_i) in X. A standard application of the integration against the independent standard complex Gaussian variables ξ_i gives

$$\begin{split} \sum_{j} \|f_{j}\|_{p}^{2} &\geq \|T^{-1}\|^{-2} \sum_{j} \|T^{-1}(f_{j})\|^{2} \\ &= \|T^{-1}\|^{-2} \int_{\Omega} \left\|\sum_{j} T^{-1}(f_{j})\xi_{j}(s)\right\|^{2} ds \\ &\geq (\|T^{-1}\|\|\|T\|)^{-2} \int_{\Omega} \left\|\sum_{j} f_{j}\xi_{j}(s)\right\|_{p}^{2} ds \\ &\geq K^{-2} \left(\int_{\Omega} \frac{1}{2\pi} \int_{0}^{2\pi} \left|\sum_{j} f_{j}(t)\xi_{j}(s)\right|^{p} dt ds\right)^{2/p} \\ &= K^{-2} k_{p}^{2} \left[\frac{1}{2\pi} \int_{0}^{2\pi} \left(\sum_{j} |f_{j}(t)|^{2}\right)^{p/2} dt\right]^{2/p} \end{split}$$

where $k_p = (1/\pi \int_{\infty}^{+\infty} \int_{-\infty}^{+\infty} (x^2 + y^2)^{p/2} e^{-(x^2+y^2)} dx dy)^{1/p}$. Since $k_p \ge k_1 = \sqrt{\pi}/2$, one can replace C in (2.5) and in (2.6) by $K/k_1 = 2K/\sqrt{\pi}$.

Now, by [14], p. 53, there exists an outer function $\varphi \in H^1$ satisfying (2.2), (2.3) and such that

(2.7)
$$|\varphi(t)| = \frac{\max(|g(t)|^r, 1)}{\left(\frac{1}{2\pi}\int_0^{2\pi}\max(|g(t)|^r, 1)dt\right)^{1/r}}$$
 for almost all t

It can be easily checked that (2.7) and (2.5) imply (2.4) with $\gamma = 2/k_1$.

Our last result in this section gives some information on reflexive subspaces of the quotient L^{1}/H_{0}^{1} .

PROPOSITION 2.4: Let X be a reflexive subspace of L^1 such that $\hat{f}(k) = 0$ for k > 0, $f \in X$. Then the sum $X + H_0^1$ is closed, equivalently the restriction of the quotient map $L^1 \rightarrow L^1/H_0^1$ to X is an isomorphic embedding.

PROOF: Let $\mathcal{P}(f) = f - \mathcal{Q}(f)$ for $f \in L^1$ where \mathcal{Q} is the projection

defined, by (1.3). It follows from Proposition 1.2(ii) that there exists a constant a > 0 such that

$$\|\mathscr{P}(f)\|_{1/2} \le a \|f\|_1^{1/2}$$
 for $f \in L^1$.

On the other hand if X is a reflexive subspace of L^1 , then X contains no subspace isomorphic to ℓ^1 . Hence (cf. [15], [19]) the norm topology in X coincides with the topology of convergence in measure, in particular

$$||f_n||_1 \to 0$$
 iff $||f_n||_{1/2} \to 0$ for every sequence $(f_n) \subset X$.

Thus there exists a constant $b_x = b > 0$ such that

$$||f||_1 \le b ||f||_{1/2}^2$$
 for $f \in X$.

Now fix $f \in X$ and $g \in H_0^1$. Then $\mathcal{P}(g) = 0$, and $\mathcal{P}(f) = f$ because $\hat{f}(k) = 0$ for k > 0. Hence

$$||f + g||_1 \ge a^2 ||\mathcal{P}(f + g)||_{1/2}^2 = a^2 ||\mathcal{P}(f)||_{1/2}^2 = a^2 ||f||_{1/2}^2 \ge \frac{a^2}{b} ||f||_1.$$

Thus the sum $X + H_0^1$ is closed.

REMARK: Proposition 2.4 yields, in particular, the following "classical" result.

If (n_k) is a sequence of negative integers such that the space

$$\mathscr{X} = \{ f \in L^1 : \hat{f}(n) = 0 \text{ for } n \neq n_k \ (k = 1, 2, \ldots) \}$$

is isomorphic to ℓ^2 (in particular if $\lim_k (n_{k+1}/n_k) > 1$) then the space $\mathscr{X} + H^1$ is closed or equivalently in the "dual language" the operator $A \to \ell^2$ defined by $f \to (\hat{f}(-n_k))$ is a surjection.

3. Hilbertian subspaces of H^1

The existence of infinite-dimensional complemented hilbertian subspaces of H^1 follows from the classical result of R.E.A.C. Paley (cf. [21], [29], [7] p. 104, [33], Chap. XII, Theorem 7.8) which yields (P). If $\lim_k (n_{k+1}/n_k) > 1$, then the closed linear subspace of H^1 spanned by the sequence of characters $(\chi_{n_k})_{1 \le k < \infty}$ is isomorphic to ℓ^2 and complemented in H^1 .

On the other hand there are subspaces of H^1 spanned by sequences of characters which are isomorphic to ℓ^2 but uncomplemented in H^1 (cf. Rudin [30] and Rosenthal [26]).

In this section we shall show that, in fact, H^1 contains "very many" complemented and "very many" uncomplemented hilbertian sub-

spaces not necessarily translation invariant. The situation is similar to that in L^{p} (and therefore H^{p} , by Proposition 1.2(iii)) for $1 (cf. [25], Theorem 3.1) but not in <math>L^{1}$ which contains no complemented infinite-dimensional hilbertian subspaces ([13], [22]).

If (x_n) is a sequence of elements of a Banach space X then $[x_n]$ denotes the closed linear subspace of X generated by the x_n 's.

Let $1 \le K < \infty$. Recall that a sequence (x_n) of elements of a Banach space is said to be K-equivalent to the unit vector basis of ℓ^2 provided there exist positive constants a and b with ab = K such that

$$a^{-1}\left(\sum_{n} |t_{n}|^{2}\right)^{1/2} \leq \left\|\sum_{n} t_{n} x_{n}\right\| \leq b\left(\sum_{n} |t_{n}|^{2}\right)^{1/2}$$

for every finite sequence of scalars (t_n) .

Now we are ready to state the main result of the present section

THEOREM 3.1: Let $1 \le K < \infty$. Let $(f_n)_{1\le n<\infty}$ be a sequence in H^1 which is K-equivalent to the unit vector basis of ℓ^2 . Then, for every $\epsilon > 0$, there exists an infinite subsequence (n_k) such that the closed linear subspace $[f_{n_k}]$ spanned by the sequence (f_{n_k}) is complemented in H^1 . Moreover, there exists a projection P from H^1 onto $[f_{n_k}]$ with $\|P\| < 4K + \epsilon$.

The proof of Theorem 3.1 follows immediately from Propositions 3.1, 3.2 and 3.3 given below. We begin with the following general criterion

PROPOSITION 3.1: Let X be a Banach space with separable conjugate X^* . Assume that there exists a constant $c = c_X$ such that every weakly convergent to zero sequence (y_m) in X contains an infinite subsequence (y_{m_k}) such that

(3.1)
$$\left\|\sum t_k y_{m_k}\right\| \le c \sup_m \|y_m\| \left(\sum |t_k|^2\right)^{1/2}$$

for every finite sequence of scalars (t_k) . Then, for every $K \ge 1$ and for every $\epsilon > 0$, every sequence (x_n^*) in X^* which is K-equivalent to the unit vector basis of ℓ^2 contains an infinite subsequence $(x_{n_k}^*)$ such that the closed linear subspace $[x_{n_k}^*]$ admits a projection $P: X^* \xrightarrow[\text{option}]{} [x_{n_k}^*]$ with $||P|| < 2Kc + \epsilon$.

PROOF: Define $V: \ell^2 \to X^*$ by $V((t_n)) = \sum_n t_n x_n^*$ for $(t_n) \in \ell^2$. Clearly V is an isomorphic embedding with $||V|| ||V^{-1}|| \le K$ (V⁻¹ acts from $V(\ell^2)$ onto ℓ^2). Since ℓ^2 is reflexive, V is weak-star continuous. Hence there exists an operator $U: X \to \ell^2$ whose adjoint is V. It is easy to check that the operator U is defined by $U(x) = (x_n^*(x))_{1 \le n < \infty}$ for $x \in X$. Since $||U^*((t_n))|| = ||V((t_n))|| \ge ||V^{-1}||^{-1}(\sum_n |t_n|^2)^{1/2}$ for every $(t_n) \in \ell^2$, the operator U is a surjection such that, for every $r > ||V^{-1}||$, the set $U(\{x \in X : ||x|| \le r\})$ contains the unit ball of ℓ^2 (cf. [32] Chap. VII, §5). Hence there exists a sequence (x_s) in X such that $\sup ||x_s|| \le r$ and $(U(x_s))$ is the unit vector basis of ℓ^2 , equivalently $x_n^*(x_s) = \delta_n^s$ for $n, s = 1, 2, \ldots$ Since X* is separable and $\sup_s ||x_s|| \le r$, there exists an infinite subsequence (x_{s_q}) which is a weak Cauchy sequence. Let us set $y_m = x_{s_{2m}} - x_{s_{2m-1}}$ for $m = 1, 2, \ldots$ Clearly the sequence (y_m) tends weakly to zero. Thus the condition imposed on X yields the existence of an infinite subsequence (y_{m_k}) satisfying (3.1). Let us set $n_k = s_{2m_k}$ for $k = 1, 2, \ldots$ and put

$$P(x^*) = \sum_{k=1}^{\infty} x^*(y_{m_k}) x_{n_k}^* \text{ for } x^* \in X^*.$$

Clearly we have

$$||P(x^*)|| \le ||V|| \left(\sum_{k=1}^{\infty} |x^*(y_{m_k})|^2\right)^{1/2}.$$

Thus, by (3.1),

$$\|P(x^*)\| \le \|V\| \sup_{\Sigma|t_k|^2 = 1} \left| \sum_{k=1}^{\infty} x^*(y_{m_k})t_k \right|$$

$$\le \|V\|\|x^*\| \sup_{\Sigma|t_k|^2 = 1} \left\| \sum_{k=1}^{\infty} t_k y_{m_k} \right\|$$

$$c \sup_k \|y_m\|\|V\|\|x^*\|.$$

Thus *P* is a linear operator with $||P|| \le 2cr||V||$ (because $\sup_{k} ||y_{m_k}|| \le 2 \sup_{s} ||x_s|| \le 2r$). Letting $r < ||V^{-1}|| + \epsilon (2c||V||)^{-1}$, we get $||P|| < 2K + \epsilon$. Since $P(x^*) \in [x^*_{n_k}]$ for every $x^* \in X^*$ and since $P(x^*_{n_k}) = x^*_{n_k}$ for k = 1, 2, ..., we infer that *P* is the desired projection.

REMARK: The assertion of Proposition 3.1 remains valid if we replace the assumption of separability of X^* by the weaker assumption that X does not contain subspace isomorphic to ℓ^1 . To extract a weak Cauchy subsequence from the sequence (x_s) we apply the result of Rosenthal [28].

To apply Proposition 3.1 we need a description of a predual of H^1 . Our next proposition is known. Its part (ii) is a particular case of the Caratheodory-Fejer Theorem, cf. [1]. **PROPOSITION 3.2:** (i) The conjugate space of the quotient $C_{2\pi}/A_0$ is isometrically isomorphic to H^1 .

(ii) The space $C_{2\pi}/A_0$ is isometrically isomorphic to a subspace of the space of compact operators on a Hilbert space.

PROOF: (i) The desired isometric isomorphism assigns to each $f \in H^1$ the linear functional x_f^* defined by

$$x_{f}^{*}(\{g+A_{0}\}) = \frac{1}{2\pi} \int_{0}^{\pi} f(t)g(t)dt \quad \text{for the coset } \{g+A_{0}\} \in C_{2\pi}/A_{0}$$

The fact that this map is onto $(C_{2\pi}/A_0)^*$ follows from the F. and M. Riesz Theorem. For details cf. [14], p. 137, the second Theorem.

(ii) To each coset $\{f + A_0\}$ we assign the linear operator $T_f : H^2 \to H^2$ defined by

$$\langle T_f(g),h\rangle = \frac{1}{2\pi} \int_0^{2\pi} f(t)g(t)h\overline{(-t)dt} \quad (g,h\in H^2).$$

Clearly the definition of T_f is independent of the choice of a representative in the coset $\{f + A_0\}$. Moreover, for every $f_1 \in \{f + A_0\}$, we have

$$|\langle T_f(g), h \rangle| \leq ||f_1||_{\infty} ||g||_2 ||h||_2 \quad (g, h \in H^2).$$

Thus $||T_f|| \le \inf \{||f_1||_{\infty} : f_1 \in \{f + A_0\}\} = ||\{f + A_0\}||$.

Conversely, it follows from part (i) and the Hahn Banach Theorem that there exists a $\varphi \in H^1$ with $\|\varphi\|_1 = 1$ such that $1/2\pi \int_0^{2\pi} f(t)\varphi(t)dt =$ $\|\{f + A_0\}\|$. By the factorization theorem (cf. [14], p. 67), we pick functions g and h_1 in H^2 with $gh_1 = \varphi$ and $\|g\|_2 = \|h_1\|_2 = 1$ (cf. [14], p. 71), and we define $h \in H^2$ by $h(t) = \overline{h_1(-t)}$. Then $\langle T_f(g), h \rangle =$ $\|\{f + A_0\}\| = \|\{f + A_0\}\|\|g\|_2\|h\|_2$. Hence $\|T_f\| = \|\{f + A_0\}\|$. This shows that the map $\{f + A_0\} \to T_f$ is an isometrically isomorphic embedding of $C_{2\pi}/A_0$ into the space of bounded operators on H^2 . Finally observe that each operator T_f is compact because the cosets $\{\{\chi_{-n} + A_0\}: n = 0, 1, 2, \ldots\}$ are linearly dense in $C_{2\pi}/A_0$ (by the Fejer Theorem) and $T_{\chi-n} = \sum_{i=0}^n \langle \cdot, \chi_i \rangle \chi_{n-i}$ is an (n + 1)-dimensional operator $(n = 0, 1, \ldots)$. This completes the proof.

To complete the proof of Theorem 3.1 it is enough to show that the space $K(\hbar)$ of the compact operators on an infinite-dimensional Hilbert space \hbar (and therefore every subspace of $K(\hbar)$) satisfies the assumption of Proposition 3.1. Precisely we have

PROPOSITION 3.3: Let \hbar be an infinite-dimensional Hilbert space. Let (T_m) be a weakly convergent to zero sequence in $K(\hbar)$. Then, for every $\epsilon > 0$, there exists an infinite subsequence (m_k) such that

$$\left\|\sum_{k} t_{k} T_{m_{k}}\right\| \leq (2+\epsilon) \sup_{m} \left\|T_{m}\right\| \left(\sum |t_{k}|^{2}\right)^{1/2}$$

for every finite sequence of scalars (t_k) .

PROOF: The assumption that the sequence (T_m) converges weakly to zero in $K(\hbar)$ means

(3.2)
$$\lim_{m} \langle T_m(x), y \rangle = 0 \quad \text{for every } x, y \in \hbar.$$

Here $\langle \cdot, \cdot \rangle$ denotes the inner product in \hbar . Let $(e_{\alpha})_{\alpha \in \mathfrak{A}}$ be an orthonormal basis for \hbar . Since each T_m is compact, the ranges of T_m and its adjoint T_m^* are separable. Hence there exists a countable set \mathfrak{A}_0 such that $\langle T_m(x), e_{\alpha} \rangle = \langle T_m^*(x), e_{\alpha} \rangle = 0$ for every $m = 1, 2, \ldots$ for every $x \in \hbar$ and for every $\alpha \in \mathfrak{A} \setminus \mathfrak{A}_0$. Let $j \to \alpha(j)$ be an enumeration of the elements of \mathfrak{A}_0 . Let furthermore P_n denote the orthogonal projection onto the *n*-dimensional subspace generated by the elements $e_{\alpha(1)}$, $e_{\alpha(2)}, \ldots, e_{\alpha(n)}$. Since dim $P_n(\hbar) = n$, it follows from (3.2) that

(3.3)
$$\lim ||P_n T_m P_n|| = 0 \quad \text{for } n = 1, 2, \dots$$

Next the compactness of each T_m and the definition of the set \mathfrak{A}_0 yield

(3.4)
$$\lim_{n} ||T_m - P_n T_m P_n|| = 0 \quad \text{for } m = 1, 2, \dots$$

Let $\epsilon > 0$ be given. Assuming that $\sup_m ||T_m|| > 0$ we fix a positive sequence (ϵ_k) with $(\sum_{k=1}^{\infty} 4\epsilon_k^2) \le \epsilon \sup_m ||T_m||$. Now using (3.3) and (3.4) we define inductively increasing sequences of indices $(m_k)_{k\geq 0}$ with $m_1 = 1$ and $n_0 = 0$ so that (admitting $P_0 = 0$)

(3.5)
$$||P_{n_{k-1}}T_{m_k}P_{n_{k-1}}|| \le \epsilon_k \text{ for } k = 1, 2, \ldots$$

(3.6)
$$||T_{m_k} - P_{n_k} T_{m_k} P_{n_k}|| \le \epsilon_k \text{ for } k = 1, 2, \dots$$

Let us put, for k = 1, 2, ...,

$$B_k = (P_{n_k} - P_{n_{k-1}})T_{m_k}P_{n_k}, \quad C_k = P_{n_{k-1}}T_{m_k}(P_{n_k} - P_{n_{k-1}}).$$

Clearly (3.5) and (3.6) yield

$$||T_{m_k} - B_k - C_k|| = ||T_{m_k} - P_{n_k}T_{m_k}P_{n_k} + P_{n_{k-1}}T_{m_k}P_{n_{k-1}}|| \le 2\epsilon_k.$$

Let (t_k) be a fixed finite sequence of scalars. Since the projections $P_{n_k} - P_{n_{k-1}}$ (k = 1, 2, ...) are orthogonal and mutually disjoint, for every $x \in \hbar$, we have

$$\begin{split} \left\| \sum t_k B_k(x) \right\|^2 &= \left\| \sum t_k (P_{n_k} - P_{n_{k-1}}) [(T_{m_k} P_{n_k})(x)] \right\|^2 \\ &= \sum |t_k|^2 \| (P_{n_k} - P_{n_{k-1}}) [(T_{m_k} P_{n_k})(x)] \|^2 \\ &\leq \sum |t_k|^2 \| P_{n_k} - P_{n_{k-1}} \|^2 \| P_{n_k} \|^2 \| T_{m_k} \|^2 \| x \|^2 \\ &\leq \sum |t_k|^2 \sup_m \| T_m \|^2 \| x \|^2. \end{split}$$

Hence

$$\left\|\sum t_k B_k\right\| \leq \left(\sum_k |t_k|^2\right)^{1/2} \sup_m \|T_m\|$$

Similarly

$$\left\|\sum_{k} t_{k}C_{k}\right\| = \left\|\sum_{k} \bar{t}_{k}C_{k}^{*}\right\| = \left\|\sum_{k} \bar{t}_{k}(P_{n_{k}} - P_{n_{k-1}})T_{m_{k}}^{*}P_{n_{k-1}}\right\|$$
$$\leq \left(\sum_{k} |t_{k}|^{2}\right)^{1/2} \sup_{m} ||T_{m}||.$$

Thus

$$\begin{split} \left\| \sum_{k} t_{k} T_{n_{k}} \right\| &\leq \sum_{k} |t_{k}| \|T_{n_{k}} - B_{k} - C_{k}\| + \left\| \sum_{k} t_{k} B_{k} \right\| + \left\| \sum_{k} t_{k} C_{k} \right\| \\ &\leq \left(\sum_{k} |t_{k}|^{2} \right)^{1/2} \left(\left(\sum_{k=1}^{\infty} 4\epsilon_{k}^{2} \right)^{1/2} + 2 \sup_{m} \|T_{m}\| \right) \\ &\leq (2 + \epsilon) \sup_{m} \|T_{m}\| \left(\sum_{k} |t_{k}|^{2} \right)^{1/2}. \end{split}$$

This completes the proof of Proposition 3.3 and therefore of Theorem 3.1.

REMARKS: (1) Let us sketch a proof of Paley's result (P) which uses the technique of the proof of Theorem 3.1.

Assume first that (m_k) is a sequence of positive integers such that

(3.7)
$$m_{k+1} \ge 2m_k$$
 for $k = 1, 2, ...$

Let $T_m = T_{\chi_{-m}}$ for m = 0, 1, ... be the compact operator on H^2 which is the image of the coset $\{\chi_{-m} + A_0\}$ by the isometry $C_{2\pi}/A_0 \rightarrow K(H^2)$ defined in the proof of Proposition 3.2(ii). Then $\langle T_m\chi_i, \chi_k \rangle = 0$ for $j + k \neq m$ and $\langle T_m\chi_i, \chi_k \rangle = 1$ for j + k = m. Let $P_m : H^2 \xrightarrow[]{\text{onto}} \text{span}$ $(\chi_0, \chi_1, ..., \chi_{m-1})$ be the orthogonal projection. It follows from (3.7) that $P_{m_{k-1}}T_{m_k}P_{m_{k-1}} = 0$ and $T_{m_k} = P_{m_k}T_{m_k}P_{m_k}$ for k = 1, 2, ... (i.e. the sequences (P_{n_k}) and (T_{m_k}) satisfy (3.5) and (3.6) with $n_k = m_k$ and $\epsilon_k = 0$ for all k). Thus the argument used in the proof of Proposition 3.3 yields

$$\left\|\sum t_k T_{m_k}\right\| \leq 2 \left(\sum |t_k|^2\right)^{1/2}$$

for every finite sequence of scalars (t_k) . Obviously $(\Sigma t_k T_{m_k})(\Sigma \overline{t_k}\chi_{m_k}) = \sum_k |t_k|^2$. Hence

$$\left\|\sum t_k T_{m_k}\right\| \geq \left(\sum |t_k|^2\right)^{1/2}.$$

Thus the subspace $[T_{m_k}]$ is isomorphic to ℓ^2 . Moreover Q defined by $Q(S) = \sum_k \langle S(x_0), \chi_{m_k} \rangle T_{m_k}$ for $S \in K(H^2)$ is a projection onto $[T_{m_k}]$ with $||Q|| \leq 2$. Let us regard Q as an operator from $[T_m]$ (= the isometric image of $C_{2\pi}/A_0$) into itself and let P be the adjoint of Q. Then, by Proposition 3.1(ii), P can be regarded as an operator from H^1 into itself. Obviously $||P|| = ||Q|| \leq 2$. A direct computation shows that P is the orthogonal projection of H^1 onto $[\chi_{m_k}]$. To complete the proof of (P) in the general case observe that every lacunary sequence admits a decomposition into a finite number of sequences satisfying (3.7).

(2) A similar argument gives also the following relative result.

Let (f_n) be a sequence in H^1 . Assume that $+\infty > \sup_n ||f_n||_{\infty} \ge \inf_n ||f_n||_1 > 0$ and

$$\lim \hat{f}_n(j) = 0 \quad \text{for every } j = 0, 1, \dots$$

Then there exists an infinite subsequence (n_k) and a $1 \le K < \infty$ such that the sequence (f_{n_k}) is K-equivalent to the unit vector basis of ℓ^2 and the orthogonal projection from H^1 onto $[f_{n_k}]$ is a bounded operator.

Our next aim is to give a quantitative generalization of Theorem 3.1 to the case of H^p spaces (1 .

THEOREM 3.2: Let $1 and let <math>K \ge 1$. Then there exists an absolute constant c (independent of K and p) such that if (f_n) is a sequence in H^p which is K-equivalent to the unit vector basis of ℓ^2 , then there exists a subsequence (n_k) such that there exists a projection P from H^p onto $[f_{n_k}]$ —the closed linear span of (f_{n_k}) with $||P|| \le cK^2$.

PROOF: Let $X = [f_n]$. By the assumption, there exists an isomorphism $T: \ell^2 \xrightarrow[]{onto} X$ with $||T|| ||T^{-1}|| \le K$. Hence, by Proposition 2.3, there exists a $\varphi \in H^1$ which satisfies an outer (2.2), (2.3), (2.4). Let us set $||f||_{\varphi,q} = (1/(2\pi) \int_0^{2\pi} |f(t)|^q |\varphi(t)| dt)^{1/q}$ for f measurable and for $1 \le q < \infty$. It follows from (2.2) that there exists in the open unit disc a

holomorphic function, say \tilde{g} , such that $\tilde{\varphi} = e^{p\tilde{g}}$. Let us set

$$\varphi^{-1/p}(t) = \lim_{r=1} e^{-\tilde{g}(re^{it})} \text{ for } t \in [0, 2\pi].$$

Since $0 \neq \varphi \in H^1$, the limit exists for almost all t and $\varphi^{1/p} = 1/\varphi^{-1/p \in H^p}$. Furthermore observe that (2.4) is equivalent to

(3.8)
$$||f\varphi^{-1/p}||_{\varphi,2} \le \gamma K ||f\varphi^{-1/p}||_{\varphi,p}$$
 for $f \in X$,

where γ is the absolute constant appearing in Proposition 2.2. On the other hand, by the logarithmic convexity of the function $q \rightarrow ||f\varphi^{-1/p}||_q^q$, we get

$$\|f\varphi^{-1/p}\|_{\varphi,p} \le \|f\varphi^{-1/p}\|_{\varphi,1}^{(2/p)-1}\|f\varphi^{-1/p}\|_{\varphi,2}^{2-(2/p)} \text{ for } f \in X.$$

Thus

(3.9)
$$||f\varphi^{-1/p}||_{\varphi,p} \le (\gamma K)^{(2p-2)/(2-p)} ||f\varphi^{-1/p}||_{\varphi,1} \text{ for } f \in X.$$

Now, let H^1_{φ} denote the Banach space being the completion of the trigonometric polynomials $\sum_{n\geq 0} c_n\chi_n$ in the norm $\|\cdot\|_{1,\varphi}$. It easily follows from (2.2) and (2.3) that H^1_q is isometrically isomorphic to H^1 . The desired isometry is defined by $f \rightarrow f\varphi$ for $f \in H^1_{\varphi}$. Next (3.9) and the obvious relation

$$||f||_p = ||f\varphi^{-1/p}||_{\varphi,p} \ge ||f\varphi^{-1/p}||_{\varphi,1} \text{ for } f \in H^p$$

imply that the sequence $(f_n \varphi^{-1/p})$ belongs to H_{φ}^1 and in H_{φ}^1 is $K^{(2p-2)/(2-p)+1}\gamma^{(2p-2)/(2-p)}$ —equivalent to the unit vector basis of ℓ^2 . Hence, by Theorem 3.1 which we apply to H_{φ}^1 —the isometric image of H^1 , there exists a subsequence (n_k) and a projection

$$Q: H_{\varphi}^{1} \longrightarrow [f_{n_{k}} \varphi^{-1/p}] \text{ with } \|Q\| \leq 5\gamma^{(2p-2)/(2-p)} K^{p/(2-p)}.$$

Let us set

$$P(f) = \varphi^{1/p} Q(f \varphi^{-1/p}) \quad \text{for } f \in H^p.$$

To see that P is well defined observe first that if $f \in H^p$, then, by the Hölder inequality and by (2.3),

$$||f\varphi^{-1/p}||_{\varphi,1} = ||f|\varphi|^{(p-1)/p}||_1 \le ||f||_p ||\varphi||_1^{(p-1)/p} = ||f||_p.$$

Thus, by (3.9), for every $f \in H^{p}$, we have

$$\begin{split} \|P(f)\|_{p} &= \|\varphi^{1/p}Q(f\varphi^{-1/p})\|_{p} = \|Q(f\varphi^{-1/p})\|_{\varphi,p} \\ &\leq (\gamma K)^{(2p-2)/(2-p)} \|Q(f\varphi^{-1/p})\|_{\varphi,1} \\ &\leq 5[\gamma^{(2p-2)/(2-p)}]^{2} K^{(3p-2)/(2-p)} \|f\varphi^{-1/p}\|_{\varphi,1} \\ &\leq 5\gamma^{(4p-4)/(2-p)} K^{(3p-2)/(2-p)} \|f\|_{p}. \end{split}$$

Thus P is bounded. Obviously $P(H^p) \subset X$ and P(f) = f for $f \in [f_{n_k}]$. Hence P is a projection. Now, for $p \leq \frac{6}{5}$ we get (remembering that $\gamma \geq 1$ and $K \geq 1$)

$$||P|| \le 5\gamma^{(4p-4)/(2-p)}K^{(3p-2)/(2-p)} \le 5\gamma K^2.$$

If $p > \frac{6}{5}$, then an inspection of the proof of Proposition 2.1 shows that there exists an isomorphism T from L^p onto a subspace of H^1 with $||T|| ||T^{-1}|| \le k = \gamma_{11/10,6/5} \cdot 2\beta_{11/10}$ (we put in (2.1) and further $p_2 = \frac{6}{5}$, $p_1 = \frac{11}{10}$). Thus, by Theorem 3.1, we infer that every sequence in L^p $(p > \frac{6}{5})$ (particularly in H^p) which is K-equivalent to the unit vector basis of ℓ^2 contains an infinite subsequence whose closed linear span is the range of a projection from L^p of norm $\le 5k \cdot K$. This completes the proof.

COROLLARY 3.1: There exists an absolute constant $c \ge 1$ such that, for $1 \le p \le 2$, every infinite-dimensional hilbertian subspace of H^p contains an infinite dimensional subspace which is the range of a projection from H^p of norm $\le c$ and which is a range of an isomorphism from ℓ^2 , say T, with $||T|| ||T^{-1}|| \le c$.

PROOF: Combine Theorems 3.1 and 3.2 with the recent result of Dacunha-Castelle and Krivine [5] from which, in particular, follows that every infinite-dimensional hilbertian subspace of L^{p} contains, for every $\epsilon > 0$, a subspace which is $(1 + \epsilon)$ —isomorphic to ℓ^{2} .

Since the argument of Dacunha-Castelle and Krivine is quite involved, to make the paper self contained we include a proof of a slightly weaker Proposition 3.4 (which suffices for the proof of Corollary 3.1). This result and the argument below is due to H. P. Rosenthal¹ and is published here with his permission.

PROPOSITION 3.4: There exists an absolute constant c such that every infinite-dimensional hilbertian subspace X of L^p $(1 \le p \le 2)$ contains an infinite dimensional subspace E such that there exists an isomorphism $T: \ell^2 \xrightarrow[]{\text{onto}} E$ with $||T|| ||T^{-1}|| \le c$.

PROOF: Since L^p is isometrically isomorphic to a subspace of L^1 (1 , it is enough to consider the case <math>p = 1. For $X \subset L^1$ and X

[17]

^{&#}x27;It was presented at the Functional Analysis Seminar in Warsaw in October 1973.

isomorphic to ℓ^2 we put

$$d(X, \ell^2) = \inf \{ \|S\| \|S^{-1}\| : S : \ell^2 \xrightarrow[]{onto}]{onto} X \text{ isomorphism} \}$$
$$I_2(X) = \inf \left\{ \sup_{x \in X, \|x\|_1 = 1} \|T(x)\|_2 : T : L^1 \xrightarrow[]{onto}]{onto} L^1 \text{ positive isometry} \right\}.$$
$$\tilde{I}_2(X) = \inf \{ I_2(Y) : Y \subset X, \dim X/Y < \infty \}.$$

Recall that, for the complex L^1 , if $Z \subset L^1$ and Z is isomorphic to ℓ^2 , then

(3.10)
$$I_2(Z) \leq \frac{2}{\sqrt{\pi}} d(Z, \ell^2).$$

(This is a result of Grothendieck [12], cf. also Rosenthal [27]. It can be easily deduced from a result of Maurey [20], cf. the proof of our Proposition 2.3). Clearly

$$I_{2}(Z) = \inf \left\{ \sup_{x \in \mathbb{Z}: \|x\|_{1}=1} \left(\frac{1}{2\pi} \int_{0}^{2\pi} |x(t)|^{2} g^{-1}(t) dt \right)^{1/2} : g > 0, \ \|g\|_{1} = 1 \right\}$$

Now fix X isomorphic to ℓ^2 and pick $Y \subset X$ with dim $X/Y < \infty$ so that $I_2(Y) < 2\tilde{I}_2(X)$. Replacing, if necessary X by T(X) for an appropriate positive isometry T (depending only on Y but not on subspaces of Y of finite codimension), one may assume without loss of generality that

(3.11)
$$I_2(Z) = \sup_{y \in Z : \|y\|_1 = 1} \|y\|_2 < 2\tilde{I}_2(X) \text{ for every } Z \subset Y$$

with dim $Y/Z < \infty$

We claim that (3.11) implies

(3.12) for every $Z \subset Y$ with dim $Y/Z < \infty$ there exists a $y \in Z$ such that

$$1 = \|y\|_1 \le \|y\|_2 < \frac{4}{\sqrt{\pi}}.$$

Indeed, let $m = \inf \{ \|y\|_2 : y \in Z \text{ and } \|y\|_1 = 1 \}$. Then, by (3.11), $m \|y\|_1 \le \|y\|_2 < 2\tilde{I}_2(X) \|y\|_1$ for every $y \in Z$. Thus

$$\frac{2\tilde{I}_2(X)}{m} > d(Z, \ell^2).$$

Hence, by (3.10),

$$\frac{2\tilde{I}_2(X)}{m} > \frac{\sqrt{\pi}}{2} I_2(Z) \ge \frac{\sqrt{\pi}}{2} \tilde{I}_2(X).$$

Hence $m < 4/\sqrt{\pi}$ and this proves (3.12).

Let (h_i) denote the Haar orthonormal basis. It follows from (3.12)

that one can define inductively a sequence (y_n) in Y so that, for all n,

$$1 = \|y_n\|_2 \ge \|y_n\|_1 > \frac{\sqrt{\pi}}{4},$$

y_n is orthogonal to y₁, y₂,..., y_{n-1} and h₁, h₂,..., h_{n-1}.

By a result of [2], passing again to a subsequence (if necessary) we may also assume that (y_n) is equivalent to a block basic sequence with respect to the Haar basis regarded as a basis in $L^{3/2}$. Now using the Orlicz inequality (cf. e.g. [25], p. 283), for arbitrary finite sequence of scalars (t_n) we get

$$\begin{split} \left\| \sum t_{n} y_{n} \right\|_{2} &\geq \left\| \sum t_{n} y_{n} \right\|_{3/2} \geq a \left(\sum |t_{n}|^{2} ||y_{n}||^{2} \right)^{1/2} \\ &\geq a \left(\sum |t_{n}|^{2} ||y_{n}||^{2} \right)^{1/2} \geq \frac{a \sqrt{\pi}}{4} \left(\sum |t_{n}|^{2} \right)^{1/2} \\ &= \frac{a \sqrt{\pi}}{4} \left\| \sum t_{n} y_{n} \right\|_{2}. \end{split}$$

where a is an absolute constant depending only on the unconditional constant of the Haar basis in $L^{3/2}$ and the constant in the Orlicz inequality for $L^{3/2}$. Thus, for every $f \in \text{span}(y_n)$,

$$\|f\|_2 \ge \|f\|_{3/2} \ge \frac{a\sqrt{\pi}}{4} \|f\|_2.$$

Hence by the logarithmic convexity of the function $r \rightarrow ||f||_r^r$

$$||f||_2 \ge ||f||_1 \ge \left(\frac{a\sqrt{\pi}}{4}\right)^3 ||f||_2 \text{ for } f \in \text{span}(y_n).$$

Thus the same inequality holds for $f \in [y_n]$. Therefore $[y_n]$ is a subspace of X with $d([y_n], \ell^2) \leq (4/(a\sqrt{\pi}))^3$. This completes the proof.

It is interesting to compare Corollary 2.1 with the following fact

PROPOSITION 3.5: Let $1 \le p < 2$, let Y be a hilbertian subspace of H^p . Then there exists a non complemented hilbertian subspace X of H^1 which contains Y.

PROOF: Observe first that there exists a non complemented hilbertian subspace of H^p $(1 \le p < 2)$. This follows from Proposition 1.2(iii) and from the corresponding fact for L^p (1 (If <math>1then, by an observation of Rosenthal [26], p. 52, a result of Rudin [30]yields the existence of a non-complemented hilbertian subspace. If $<math>\frac{4}{3} , then the same fact for <math>L^p$ was very recently observed by several mathematicians (cf. Bennet, Dor, Goodman, Johnson and Newman [9]), finally H^1 contains an uncomplemented hilbertian subspace because, by Proposition 2.1, H^1 contains H^p isomorphically for 2 > p > 1.

Now Proposition 3.5 is an immediate consequence of the following general fact

PROPOSITION 3.6: If a Banach space Z contains a non complemented hilbertian subspace, say E, then every hilbertian subspace of Z is contained in a non complemented hilbertian subspace.

PROOF: Let Y be a hilbertian subspace of Z. If Y is finite dimensional, then the desired subspace is Y + E. If Y is uncomplemented then there is nothing to prove. In the sequel suppose that Y is infinite dimensional and that there exists a projection $P: Z \xrightarrow{} Y$. Let E_1 denote any subspace of E with dim $E/E_1 < \infty$. Let P_{E_1} denote the restriction of P to E_1 . If P_{E_1} were an isomorphic embedding, then the formula SQP would define a projection from Z onto E_1 where Q is a projection from a hilbertian subspace Y onto its closed subspace $P_{E_1}(E_1)$ and $S: P_{E_1}(E_1) \rightarrow E_1$ —the inverse of P_{E_1} . Since E is uncomplemented in Z, so is E_1 . Hence the restriction of P to no subspace of E of finite codimension is an isomorphism. Combining this fact with the standard gliding hump procedure and the block homogeneity of the unit vector basis in ℓ^2 (cf. [2]) we define a sequence (e_n) in E which is equivalent to the unit vector basis of ℓ^2 and satisfies the condition $||P(e_n)|| < 2^{-n} ||e_n||$ for n = 1, 2, ... This implies that, for some n_0 , the perturbed sequence $(e_n - P(e_n))_{n > n_0}$ is equivalent to the unit vector basis of ℓ^2 ; hence the space $F = [e_n - P(e_n)] \subset \ker P$ is hilbertian. If F is not complemented in Z, then the desired subspace is F + Y. If F is complemented in Z and therefore in ker P, then the standard decomposition method (cf. [22]) yields that ker P is isomorphic to Z. Thus ker P contains a non complemented hilbertian subspace, say F_1 . The desired subspace can be defined now as $F_1 + Y$.

A modification of the above argument gives

PROPOSITION 3.7: Let Z be a separable Banach space such that (i) there exists a non complemented hilbertian subspace of Z, (ii) every infinite dimensional hilbertian subspace of Z contains an infinite dimensional subspace which is complemented in Z. Then

(*) given infinite dimensional complemented hilbertian subspaces of Z, say Y_1 and Y_2 , there exists an isomorphism of Z onto itself which carries Y_1 onto Y_2 .

In particular H^p satisfies (*) for $1 \le p < 2$.

PROOF: Let P_j be a projection from Z onto Y_j (j = 1, 2). Using (i) we construct similarly as in the proof of Proposition 3.6 subspaces F_j of ker P_j which are isomorphic to ℓ^2 . By (ii) we may assume without loss of generality that F_j are complemented in Z and therefore in ker P_j (j = 1, 2). Now the decomposition technique gives that ker P_j is isomorphic to Z for j = 1, 2. This allows to construct an isomorphism of Z onto itself which carries ker P_1 onto ker P_2 and $P_1(Z)$ onto $P_2(Z)$.

4. Remarks and open problems

We begin this section with a discussion of the behavior of the Banach Mazur distances $d(L^{p}, H^{p})$, $d(L^{p}, L^{p}/H_{0}^{p})$, $d(H^{p}, L^{p}/H_{0}^{p})$ for $p \to \infty$ and for $p \to 1$.

Recall that if X and Y are isomorphic Banach spaces, then $d(X, Y) = \inf \{ \|T\| \| \|T^{-1}\| : T : X \xrightarrow[onto]{onto} Y, T - isomorphism \}; if X and Y are not isomorphic, then <math>d(X, Y) = \infty$. Let $p^* = p(p-1)^{-1}$. Then

$$(H^{p})^{\perp} = \left\{ f \in L^{p^{*}} : \int_{0}^{2\pi} f(t)g(t)dt = 0 \text{ for } g \in H^{p} \right\} = H_{0}^{p^{*}}$$

Hence the map $\{f + H_0^{p^*}\} \rightarrow x_f^*$ where $x_f^*(g) = 1/(2\pi) \int_0^{2\pi} f(t)g(t)dt$ for $g \in H^p$ is a natural isometric isomorphism from $L^{p^*}/H_0^{p^*}$ onto the conjugate $(H^p)^*$. Thus, for 1 ,

(4.1)
$$d(L^{p}, H^{p}) = d(L^{p^{*}}, L^{p^{*}}/H_{0}^{p^{*}}); d(H^{p}, L^{p}/H_{0}^{p}) = d(H^{p^{*}}, L^{p^{*}}/H_{0}^{p^{*}}).$$

The formulae (4.1) allow us to restrict our attention to the case where $p \rightarrow 1$. In the sequel we assume that $1 \le p \le 2$.

The results enlisted in section 1 give upper estimates for the distances in question. We have

PROPOSITION 4.1: There exists an absolute constant K such that

$$\max(d(L^{p}, H^{p}), d(L^{p}, L^{p}/H_{0}^{p}), d(H^{p}, L^{p}/H_{0}^{p})) \leq K \frac{p}{p-1} (1$$

PROOF: By Proposition 1.1(iii) and 1.2(iii), $d(L^p, H^p) \le K(p/p-1)$ and $d(L^{p^*}, H^{p^*}) \le Kp^* = Kp/(p-1)$. Hence, by (4.1), $d(L^p, L^p/H_0^p) \le Kp/(p-1)$. Let $\overline{H}^p = f \in L^p : \overline{f} \in H^p$ and let V denote the restriction to \overline{H}^p of the quotient map $L^p \to L^p/H_0^p$. Clearly

[21]

 $\|V(f)\|_{L^{p}/H_{0}^{p}} \leq \|f\|_{p} \text{ for } f \in \overline{H}^{p}. \text{ Since } Q(\overline{g}) \text{ for } g \in H_{0}^{p} \text{ (cf. section 1 for the definition of } Q), we have, for <math>f \in \overline{H}^{p}$ and $g \in H_{0}^{p}, \|f\|_{p} = \|\overline{f}\|_{p} = \|Q(\overline{f}-g)\|_{p} \leq \|Q\|_{p}\|f-g\|_{p}.$ Thus $\|V(f)\|_{L^{p}/H_{0}^{p}} = \inf_{g \in H_{0}^{p}} \|f-g\|_{p} \geq \|Q\|_{p}^{-1}\|f\|_{p} \text{ for } f \in \overline{H}^{p}. \text{ Therefore the range of } V \text{ is closed in } L^{p}/H_{0}^{p} \text{ and since } \overline{H}^{p} + H_{0}^{p} \text{ is dense in } L^{p}, V(\overline{H}^{p}) \text{ maps } \overline{H}^{p} \text{ onto } L^{p}/H_{0}^{p}. \text{ Since } \overline{H}^{p} \cap H_{0}^{p} = \{0\}, \text{ we infer that } V \text{ is one to one. Thus } d(\overline{H}^{p}, L^{p}/H_{0}^{p}) \leq \|V\|\|V^{-1}\| \leq \|Q\|_{p} \leq \|B\|_{p} \leq Kp/(p-1). \text{ To complete the proof observe that } \overline{H}^{p} \text{ is isometrically isomorphic to } H^{p} \text{ via the map } f \to f^{*} \text{ where } f^{*}(t) = f(-t).$

PROBLEM 4.1: Does there exist an absolute constant k > 0 such that, for 1 ,

$$\min(d(L^{p}, H^{p}), d(L^{p}, L^{p}/H_{0}^{p}), d(H^{p}, L^{p}/H_{0}^{p})) > k \frac{p}{p-1}.$$

We are able to prove only

PROPOSITION 4.2: There exists an absolute constant k > 0 such that

(a)
$$d(L^{p}, H^{p}) \ge k \sqrt{\frac{p}{p-1}}$$
 $(1$

(b)
$$d(H^p, L^p/H_0^p) \ge k \sqrt{\frac{p}{p-1}}$$
 $(1$

(c)
$$\lim_{p \to -1} d(L^p, L^p/H_0^p) = \infty.$$

PROOF: (a) is an immediate consequence of the following stronger result.

(a') There exists an absolute constant k > 0 such that if X is a subspace of H^p ($1), if X contains a subspace isomorphic to <math>\ell^2$, and if $X \xrightarrow{S} L^p \xrightarrow{T} X$ is a factorization of identity (i.e. TS = the identity on X), then $||T|| ||S|| \ge k \sqrt{p/(p-1)}$.

PROOF Applying Corollary 3.1: we can choose a subspace $E \subset X$ an isomorphism $U: E \xrightarrow[]{onto} \ell^2$ and a projection $P: X \xrightarrow[]{onto} E$ so that $\|U\| \|U^{-1}\| \leq c$ and $\|P\| \leq c$ where c is an absolute constant. Let $S_1 = SU^{-1}$ and $T_1 = UPT$. Then $\ell^2 \xrightarrow[]{S_1} L^p \xrightarrow[]{T_1} \ell^2$ is a factorization of identity with $\|S_1\| \|T_1\| \leq \|S\| \|T\| \cdot c^2$. Now the desired conclusion follows from a result of Gordon, Lewis and Retherford [11], Remark (1) to Corollary 5.7 which asserts that there exists an absolute constant k_1 such that if $\ell^2 \xrightarrow[]{S_1} L^p \xrightarrow[]{T_1} \ell^2$ is any factorization of identity, then $\|T_1\| \|S_1\| \geq k_1 \sqrt{p/(p-1)}$ (1 . This completes the proof of (a'). (b) is an immediate consequence of a slightly stronger result.

(b') There exists an absolute constant k > 0 such that if U is an isomorphism from L^p/H_0^p onto a subspace X of H^p $(1 then <math>||U|| ||U^{-1}|| \ge k \sqrt{p/(p-1)}$.

PROOF: Let X_p denote the closed linear subspace of L^p (1 $generated by the sequence <math>(\chi_{-2^k})$. Let $I_p : L^p \to L^1$ and $j_p : L^p / H_0^p \to L^1/H_0^p$ denote natural embeddings (i.e. $j_p(\{f + H_0^p\}) = \{f + H_0^1\})$ and let $q_p : L^p \to L^p / H_0^1$ denote the quotient map. Clearly $||q_p|| \le 1$ and, we have $j_p q_p = q_1 I_p$. A direct computation shows that $||f||_4 \le 2^{1/4} ||f||_2$ for $f \in X_2$. Thus the logarithmic convexity of the function $p \to ||f||_p$ yields

$$||f||_2 \ge ||f||_p \ge ||f||_1 \ge 2^{-1/2} ||f||_2$$
 for $f \in X_p$.

It follows from the above inequality and from the proof of Proposition 2.4 that the operator V_p - the restriction of q_p to X_p is invertible and $||V_p^{-1}|| \le c$ where c is an absolute constant independent of p. Since X_p is isomorphic to ℓ^2 , so is $UV_p(X_p)$. Hence, by Corollary 3.1, there exist a subspace E of $UV_p(X_p)$ an isomorphism $T: E \xrightarrow[onto]{} \ell^2$ and a projection $P: X \xrightarrow[onto]{} E$ with $||T|| ||T^{-1}|| \le c_1$ and $||P|| \le c_1$ where c_1 is an absolute constant. Now we consider the factorization of identity.

$$\ell^2 \xrightarrow{T^{-1}} E \xrightarrow{U^{-1}} V_p(X_p) \xrightarrow{V_p^{-1}} L^p \xrightarrow{q_p} L^p/H_0^p \xrightarrow{U} X \xrightarrow{P} E \xrightarrow{T} \ell^2$$

By a result of [11], Remark (1) to Corollary 5.7, there exists an absolute constant $k_1 > 0$ such that

$$k_{1} \sqrt{\frac{p}{p-1}} \leq \|V_{p}^{-1}U^{-1}T^{-1}\| \|TPUq_{p}\|$$
$$\leq \|T\| \|T^{-1}\| \|V_{p}^{-1}\| \|q_{p}\| \|P\| \|U\| \|U^{-1}\|$$
$$\leq c_{1}^{2}c \|U\| \|U^{-1}\|.$$

Thus $||U|| ||U^{-1}|| \ge k\sqrt{(p/p-1)}$ for $k = k_1 c_1^{-2} c^{-1}$. This completes the proof of (b').

To prove (c), in view of the fact that, for $1 <math>H^p \subset L^p$ is isometrically isomorphic to a subspace of L^1 (cf. e.g. [27], p. 354), it is enough to show

(c') Let $d_p = \inf \{ d(L^p/H_0^p, X) : X \subset L^1 \} (1 . Then <math>\lim_{p \ge 1} d_p = \infty$.

PROOF of (c'): Fix $\epsilon > 0$ and a finite-dimensional subspace B of L^{1}/H_{0}^{1} . Since the continuous 2π -periodic functions are dense in L^{1} , the standard perturbation argument (cf. e.g. [2]) yields the existence of a

(dim B)-dimensional subspace G of $C_{2\pi}$ with $G \cap H_0^1 = \{0\}$ such that

$$d(B, (G + H_0^1)/H_0^1) < (1 + \epsilon)^{1/2}$$

 $(G + H_0^1$ is regarded as a subspace of L). Let us put

$$|||g|||_p = \inf \{||g+h||_p : h \in H_0^p\} \quad (g \in G, p \ge 1)$$

and let G_p stand for G equipped with the norm $\||\cdot\||_p$. We claim that

(4.2) If $g \downarrow p$, then $|||g|||_q \downarrow |||g|||_p$ $(g \in G, p \ge 1)$.

To see (4.2) observe first that

 $|||g|||_{p} = \inf \{||g+h||_{p} : h \in A_{0}\} (g \in G, p \ge 1),$

because A_0 is dense in each H_0^p . Next note that, for every $g \in G$ and $h \in A_0$, the function $p \to ||g + h||_p$ is (finite) continuous and non decreasing. Thus

$$\lim_{q \to p} |||g|||_q \le |||g|||_p \text{ and } |||g|||_q \ge |||g|||_p \quad (g \in G, 1 \le p < q)$$

which yield (4.2).

Let $S_G^{\perp} = \{g \in G : |||g|||_1 = 1\}$. Since G is finite-dimensional, S_G^{\perp} is compact. Hence Dini's Theorem combined with (4.2) implies that $|||g|||_p \rightarrow |||g|||_1 = 1$ uniformly on S_G^{\perp} as $p \rightarrow 1$. Therefore there exists a $p_0 = p_0(B, \epsilon) > 1$ such that

$$(1 + \epsilon)^{1/2} \ge |||g|||_p \ge 1$$
 for $g \in S_G^1$ and for $1 .$

Equivalently the formal identity map $j_p: G_p \to G_1$ is an isomorphism with $||j_p|| ||j_p^{-1}|| \le (1+\epsilon)^{1/2}$. Clearly G_p is isometrically isomorphic to the subspace $(G + H_p)/H_p$ of L^p/H_p^p . Using this fact for p = 1 we get

$$(4.3) d(B, G_p) \le 1 + \epsilon \quad (1$$

Now suppose to the contrary that there exist a sequence (p(n)) with $\lim_{n} p(n) = 1$, a constant $\lambda > 0$ and a sequence (\mathscr{X}_{n}) of subspaces of L^{1} such that

$$d(L^{p(n)}/H_0^{p(n)}, \mathcal{H}_n) < \lambda$$
 for all n .

Then (4.3) would imply that for every finite-dimensional subspace B of L^1/H_0^1 there exists a subspace B_1 in L^1 with $d(B, B_1) < \lambda$. Hence, by [16], Proposition 7.1, L^1/H_0^1 would be isomorphic to a subspace of some $L^1(\mu)$ -space which contradicts [24]. This completes the proof of (c') and therefore of Proposition 4.2.

There are several problems related to Proposition 2.1.

PROBLEM 4.2: Does there exist an absolute constant $\lambda \ge 1$ such that, for every p and q with $1 \le q , there exists a subspace <math>X_{p,q}$ of H^q such that $d(H^p, X_{p,q}) \le \lambda$? In particular is H^p isometrically isomorphic to a subspace of H^q ?

The recent result of Dacunha-Castelle and Krivine [5] yields that, for every p with $1 \le p < \infty$ and for every $\lambda > 1$, there exists a subspace Xof H^p such that $d(X, \ell^2) < \lambda$. In fact a subspace X with the above property can be defined as the closed linear span of a sequence $(\sum_{j=mk+1}^{(m+1)k} \chi_{n_j})_{m=1,2...}$ where k and the "lacunary" sequence (n_j) depend on p and q. We do not know, however, whether ℓ^2 is isometrically isomorphic to a subspace of H^p for any $p \ne 2$? On the other hand there is no subspace of H^p which is isometrically isomorphic to the 2-dimensional space ℓ_2^p ($p \ne 2$). Otherwise there would exist in H^p functions f_1 and f_2 of norm one such that $||f_1+f_2||^p + ||f_1-f_2||^p =$ $2(||f_1||^p + ||f_2||^p)$. Then (cf. e.g. [22]) $f_1 \cdot f_2 = 0$. Thus the analyticity of the f_j 's would imply that either f_1 or f_2 is zero, a contradiction. This remark answers negatively a question of Boas [4] who asked whether H^p is isometrically isomorphic to L^p for some $p \ne 2$.

Finally we would like to mention the well known open problems concerning the existence of unconditional structures in H^1 .

PROBLEM 4.3: (a) Does H^1 have an unconditional basis?

(b) Is H^1 isomorphic to a subspace of a Banach space with an unconditional basis? (c) Does H^1 have a local unconditional structure either in the sense of [6] or of [10]?

Let us mention that the basis for H^1 which has been constructed by Billard [3] is conditional.

Let us recall briefly Billard's construction. Let H_R^1 denote the real Banach space of functions $f \in L_R^1$ such that $\mathcal{H}(f) \in L_R^1$ equipped with the norm $|||f_1|||_1 = \sqrt{||f||^2 + ||\mathcal{H}(f)||_1^2}$. It is easy to see that the complexification of H_R^1 is isomorphic to H^1 . Therefore every basis for H_R^1 induces a basis for H^1 . Billard [3] has proved that the classical Haar system $(h_k)_{0 \le k < \infty}$ is a basis for H_R^1 . (In our convention the h_k 's are defined on the whole real line, are 2π -periodic, and restricted to $[0, 2\pi)$ consist the Haar orthonormal system i.e. $h_0 \equiv 1$ and for j = 0, $1, \ldots, r = 0, 1, \ldots, 2^j - 1$,

$$h_{2^{j+r}}(t) = 2^{j/2} (I_{\Delta(j+1,2r)} - I_{\Delta(j+1,2r+1)})(t) \text{ for } 0 \le t < 2\pi$$

where $\Delta(j+1, k) = \{t \in R : 2\pi k 2^{-j-1} < t < 2\pi (k+1) 2^{-j-1} \text{ and } I_A \text{ denotes the characteristic function of a set } A \subset R.\}$

PROPOSITION: The sequence $(h_k)_{0 \le k < \infty}$ is a conditional basis for H^1_R .

PROOF: Let us set $g_0 = 2h_1$, $g_0^* = 2h_1$,

$$g_n = 2h_1 + \sum_{j=1}^n 2^{j/2} (h_{2^j} + h_{2^{j+1}-1}),$$

$$g_n^* = 2h_1 + \sum_{k=1}^{k \le n/2} 2^{(2k+1)/2} (h_{2^{2k+1}} + h_{2^{2k+2}-1}).$$

Since $|||g_n^*|||_1 \ge ||g_n^*||_1 \ge n/4$ for all *n* (an easy computation), to complete the proof it suffices to show that $\sup_n |||g_n|||_1 < \infty$. Observe that, for all *n*,

$$g_n(t) = 2^{n+1} (I_{\Delta(n+1,0)} - I_{\Delta(n+1,2^{n+1}-1)})(t) \text{ for } 0 \le t < 2\pi.$$

Thus $||g_n||_1 = 2$ for all *n*. Therefore our task is to show that $\sup_n ||\mathcal{H}(g_n)||_1 < \infty$.

We have almost everywhere (cf. [33], [7])

$$\mathcal{H}(g_n)(t) = \frac{1}{2\pi} \lim_{\epsilon \to 0} \int_{\epsilon}^{\pi} ctg\left(\frac{s}{2}\right) [g_n(t-s) - g_n(t+s)] ds$$
$$= \frac{1}{2\pi} \lim_{\epsilon \to 0} \int_{\epsilon}^{\pi} \left[ctg\left(\frac{s}{2}\right) - \frac{2}{s} \right] [g_n(t-s) - g_n(t+s)] ds$$
$$+ \frac{1}{2\pi} \lim_{\epsilon \to 0} \int_{\epsilon}^{\pi} \frac{2}{s} [g_n(t-s) - g_n(t+s)] ds.$$

Since

$$\left| ctg \frac{s}{2} - \frac{2}{s} \right| < \frac{2}{\pi}$$
 for $0 < s < \pi$ and $||g_n||_1 = 2$,

we infer that

•

$$\frac{1}{2\pi}\lim_{\epsilon\to 0}\int_{\epsilon}^{\pi}\left[ctg\left(\frac{s}{2}\right)-\frac{2}{s}\right]\left[g_n(t-s)-g_n(t+s)\right]ds\|_1\leq c_1$$

for some constant c_1 independent of n. On the other hand, evaluating the second integral, we get

$$\frac{1}{2\pi} \lim_{\epsilon \to 0} \int_{\epsilon}^{\pi} \frac{2}{s} \left[g_n(t-s) - g_n(t+s) \right] = \frac{2^n}{\pi} \ln \left| \frac{(t-2^{-n}\pi)(t+2^{-n}\pi)}{t^2} \right|$$
$$= \frac{2^n}{\pi} \ln \left| 1 - \frac{\pi^2}{(2^n t)^2} \right|.$$

Since

$$2^n \int_0^{2\pi} \ln \left| 1 - \frac{\pi^2}{(2^n t)^2} \right| dt = c_2 < +\infty,$$

we infer that $\|\mathscr{H}(g_n)\|_1 \le c_1 + c_2$ for all *n*. This completes the proof.

286

REFERENCES

- V. M. ADAMIAN, D. Z. AROV and M. G. KREIN: On infinite Hankel matrices and generalized problems of Caratheodory-Fejer and F. Riesz. *Funkt. Analiz i Prilož.*, vol. 2, No 1 (1968) 1-19 (Russian).
- [2] C. BESSAGA and A. PELCZYŃSKI: On bases and unconditional convergence of series in Banach spaces. Studia Math. 17 (1958) 151-164.
- [3] P. BILLARD: Bases dans H et bases de sous espaces de dimension finie dans A, Linear Operators and approximation. Proc. Conference in Oberwolfach August 14-22 (1971) Edited by P. L. Butzer, J.-P. Kahane and B. Sz.-Nagy, Birkhäuser Verlag, Basel und Stuttgart (1972) 310-324.
- [4] R. P. BOAS: Isomorphism between H^p and L^p. Amer. J. Math., 77 (1955) 655-656.
- [5] D. DACUNHA-CASTELLE et L. KRIVINE: Sous-Espaces de L¹. Universite Paris XI. Preprint No 142 (1975).
- [6] E. DUBINSKY, A. PELCZYŃSKI and H. P. ROSENTHAL: On Banach spaces for which $\Pi_2(\mathscr{L}_{\alpha}, X) = B(\mathscr{L}_{\alpha}, X)$. Studia Math. 44 (1972) 617-648.
- [7] P. L. DURAN: Theory of H^p spaces. Academic Press, New York and London 1970.
- [8] P. L. DUREN, B. W. ROMBERG and A. L. SHIELDS: Linear functionals on H^p spaces with 0 . J. Reine Angew. Math. 238 (1969) 32-60.
- [9] G. BENNET, L. E. DOR, V. GOODMAN, W. B. JOHNSON and C. M. NEWMAN: On uncomplemented subspaces of $L^{p}(1 . Israel J. Math. (to appear).$
- [10] Y. GORDON and D. R. LEWIS: Absolutely summing operators and local unconditional structures. Acta Math. 133 (1974) 27-47.
- [11] Y. GORDON, D. R. LEWIS and J. R. RETHERFORD: Banach ideals of operators with applications. J. Functional Analysis 14 (1973) 295-306.
- [12] A. GROTHENDIECK: Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Matem., Sao Paulo 8 (1956) 1–79.
- [13] A. GROTHENDIECK: Sur les applications lineares faiblement compactes d'espaces du type C(K). Canadian J. Math. 5 (1953) 129–173.
- [14] K. HOFFMAN: Banach spaces of analytic functions. Prentice-Hall, Englewood Cliffs, N.J. 1962.
- [15] M. I. KADEC and A. PELCZYŃSKI: Bases, lacunary sequences and complemented subspaces in the spaces L_p. Studia Math., 21 (1962) 161–176.
- [16] J. LINDENSTRAUSS and A. PELCZYŃSKI: Absolutely summing operators in \mathcal{L}_p spaces and their applications. *Studia Math.* 29 (1968) 275–326.
- [17] J. LINDENSTRAUSS and A. PELCZYŃSKI: Contributions to the theory of the classical Banach spaces. J. Funct. Analysis, 8 (1971) 225-244.
- [18] J. LINDENSTRAUSS and H. P. ROSENTHAL: The \mathcal{L}_p spaces. Israel J. Math., 7 (1969) 325–349.
- [19] B. MAUREY: Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L^p. Astérisque 11 (1974) 1-163.
- [20] B. MAUREY: Expose No 15, Seminaire Maurey-Schwartz Espaces L^p et applications radonifiantes. Ecole Polytechnique, Paris 1972–1973.
- [21] R. E. A. C. PALEY: On the lacunary coefficients of power series. Ann. of Math., 34 (1933) 615-616.
- [22] A. PELCZYŃSKI: Projections in certain Banach spaces. Studia Math., 19 (1960) 209-228.
- [23] A. PELCZYŃSKI: On the impossibility of embedding of the space L in certain Banach spaces. Coll. Math., 8 (1961) 199-203.
- [24] A. PELCZYŃSKI: Sur certaines propriétés isomorphiques nouvelles des espaces de Banach de fonctions holomorphes A et H[∞]. C.R. Acad. Sc. Paris, t. 279 (1974) Série A, 9–12.
- [25] A. PELCZYŃSKI and H. P. ROSENTHAL: Localization techniques in L^p spaces. Studia Math., 52 (1975) 263–289.

- [26] H. P. ROSENTHAL: Projections onto translation-invariant subspaces of $L_p(G)$. Memoirs AMS 63 (1966).
- [27] H. P. ROSENTHAL: On subspaces of L^p. Annals of Math., 97 (1973) 344-373.
- [28] H. P. ROSENTHAL: A characterization of Banach spaces containing ℓ¹. Proc. Nat. Acad. Sci. USA, vol. 7 (1974) 2411–2413.
- [29] W. RUDIN: Remarks on a theorem of Paley. J. London Math. Soc., 32 (1957) 307-311.
- [30] W. RUDIN: Trigonometric series with gaps. J. Math. Mech., 9 (1960) 203-227.
- [31] A. L. SHIELDS and D. L. WILLIAMS: Bounded projections, duality, and multipliers in spaces of analytic functions. *Trans. Amer. Math. Soc.*, 162 (1971) 287-302.
- [32] KOSAKU YOSIDA: Functional Analysis. Springer Verlag, New York, Heidelberg, Berlin 1965.
- [33] A. ZYGMUND: Trigonometric series I, II. Cambridge University Press, London and New York 1959.

(Oblatum 10-X-1975)

Department of Mathematics Warsaw University

Institute of Mathematics Polish Academy of Sciences

and

The Ohio State University Columbus, Ohio 43210, USA