ROBERT E. DRESSLER

A property of the φ and σ_j functions

Compositio Mathematica, tome 31, n° 2 (1975), p. 115-118

<http://www.numdam.org/item?id=CM_1975__31_2_115_0>
A PROPERTY OF THE \(\varphi \) AND \(\sigma_j \) FUNCTIONS

Robert E. Dressler

1. Introduction

As usual, \(\varphi \) stands for Euler's function and \(\sigma_j \) stands for the sum of the \(j^{th} \) powers of the divisors function. The purpose of this note is to answer the following very natural question: If \(t \) is a positive integer and \(f \) is \(\varphi \) or \(\sigma_j \), when does \(t \) divide \(f(n) \) for almost all positive integers \(n \)? We also answer this question for the Jordan totient function, \(\varphi_j \), a generalization of the \(\varphi \) function.

We will use the well known formulas:

\[
\varphi(n) = n \prod_{p|n} \frac{p-1}{p}
\]

\[
\sigma_j(n) = \prod_{p^e||n} (p^{ej} + p^{(e-1)j} + \ldots + p^j + 1).
\]

Here \(p^e||n \) means \(p^e|n \) and \(p^{e+1} \not| n \).

2. Results

Our first theorem concerns the \(\varphi \) function.

Theorem (1): For any prime \(p_0 \) and any positive integer \(k \) we have \(p_0^k|\varphi(n) \) for almost all \(n \). That is, the set of integers \(n \) for which \(p_0^k|\varphi(n) \) has natural density zero.

Proof: If \(p_0^k|\varphi(n) \) then by (1), no prime divisor \(p \) of \(n \) satisfies \(p \equiv 1 \pmod{p_0^k} \). In the case of \(\varphi_j, j \) arbitrary, and \(\sigma_j, j \) odd, somewhat stronger results than the ones we give may be obtained by much deeper methods, cf. \cite[pg. 167]{2}. In the case of \(\sigma_j, j \) even, our results are new. In all cases, our methods appear to be much simpler than those of \cite{2}.

\[1\]
(mod p_0^k). Now, if N and M satisfy $N > p'_1 p'_2 \cdots p'_M$ where the p'_i ($i = 1, \ldots, M$) are the first M primes congruent to 1 (mod p_0^k), then the number of positive integers not exceeding N, none of whose prime divisors is congruent to 1 (mod p_0^k) is

$$\leq 2N \prod_{i=1}^{M} \frac{p'_i - 1}{p'_i}.$$

If we let N and M vary together to infinity, then we have, by a strong form of Dirichlet's theorem, that

$$\left(2N \prod_{i=1}^{M} \frac{p'_i - 1}{p'_i}\right)/N \to 0.$$

This establishes our result.

Since the finite union of sets of natural density zero is a set of natural density zero we may state the following:

Corollary (1): Let t be any positive integer. Then $t|\phi(n)$ for almost all n.

It is also worth noting that the ϕ_j function where

$$\phi_j(n) = n^j \prod_{p|n} (1 - p^{-j})$$

also satisfies the conclusions of Theorem 1 and Corollary 1. To see this, observe that if $p \equiv 1$ (mod p_0^k) then also $p^j \equiv 1$ (mod p_0^k).

The situation for the σ_j functions is more complicated. We first need the following two lemmas:

Lemma (1): [3, pg. 58]. Let $(c, q) = 1$ where q is any integer having primitive roots. The congruence $x^j \equiv c$ (mod q) is solvable if and only if

$$c^{\phi(q)/(\phi(q), j)} \equiv 1 \pmod{q}.$$

Lemma (2): Given any prime p_0 and r such that $(r, p_0) = 1$ and any positive integer k, then almost all n are such that n is divisible by only the first power of some prime congruent to r (mod p_0^k).

Proof: Let p'_1, p'_2, \ldots, p'_M be the first M primes congruent to r (mod p_0^k).
Let N be greater than $(p'_1p'_2 \cdots p'_M)^2$. Now for any subset

$$\{p'_1, p'_2, \ldots, p'_T\} \text{ of } \{p'_1, p'_2, \ldots, p'_M\}$$

the number of integers $\leq N$ which are not divisible by any $q \in \{p'_1, \ldots, p'_M\} \setminus \{p'_1, \ldots, p'_T\} = \{q_1, \ldots, q_{M-T}\}$ and are divisible by $p'_{i_1}^2 \cdots p'_{i_T}^2$ is less than

$$2N \cdot \frac{1}{p'_{i_1}^2 \cdots p'_{i_T}^2} \left(\frac{q_1-1}{q_1}\right) \cdots \left(\frac{q_{M-T}-1}{q_{M-T}}\right).$$

Thus, the number of integers $\leq N$ which are divisible by some p'_i ($i = 1, \ldots, M$) only to the first power is greater than

$$N - 2N \sum_{\text{all subsets } \{p'_1, \ldots, p'_T\} \text{ of } \{p'_1, \ldots, p'_M\}} \frac{1}{p'_{i_1}^2 \cdots p'_{i_T}^2} \left(\frac{q_1-1}{q_1}\right) \cdots \left(\frac{q_{M-T}-1}{q_{M-T}}\right)$$

$$= N - 2N \prod_{i=1}^{M} \left(1 + \frac{p'_i - 1}{p'_i}\right).$$

If we now let $M, N \to \infty$ then by a strong form of Dirichlet’s theorem we have

$$(N - 2N) \prod_{i=1}^{M} \left(1 + \frac{p'_i - 1}{p'_i}\right) / N \to 1.$$

This completes the proof.

Theorem (2): Let p_0 be an odd prime and let k and j be any positive integers. Then $p_0^k | \sigma_j(n)$ for almost all n if and only if $\varphi(p_0^k)/(\varphi(p_0^k), j)$ is even.

Proof: Since p_0 is odd, p_0^k has primitive roots. If $\varphi(p_0^k)/(\varphi(p_0^k), j)$ is even then, by Lemma 1, $x^j \equiv -1 \pmod{p_0^k}$ is solvable. Thus we can find an x_0 such that $x_0^j \equiv -1 \pmod{p_0^k}$. If a prime p satisfies $p \equiv x_0 \pmod{p_0^k}$ and if $p|n$, then by (2) we have $p_0^k | \sigma_j(n)$. To complete this proof we apply Lemma 2 with $r = x_0$.

Now, suppose $\varphi(p_0^k)/(\varphi(p_0^k), j)$ is odd. Since $\varphi(p_0^k) = p_0^{k-1}(p_0-1)$, it follows that $\varphi(p_0^k)/(\varphi(p_0^k), j)$ is odd, for an odd prime p_0, if and only if

$$\frac{p_0 - 1}{(p_0-1, j)} = \frac{\varphi(p_0)}{(\varphi(p_0), j)}.$$
is odd. Thus, by Lemma 1, \(x^l \equiv -1 \pmod{p_0} \) is not solvable. Thus for any square-free integer \(n \) (since \(\sigma_j(n) = \prod_{p|n}(p^j + 1) \)) we have \(p_0 \nmid \sigma_j(n) \). Since the square-free integers have natural density \(6/\pi^2 > 0 \) we are done.

In addition, we have

Theorem (3): For any positive integers \(k \) and \(j \), \(2^k|\sigma_j(n) \) for almost all \(n \).

Proof: It is known \([1]\) that for any positive integer \(k \), almost all integers \(n \) have the property that they are divisible only to the first degree by at least \(k \) distinct odd primes. For these integers \(n \) it follows, from (2), that \(2^k|\sigma_j(n) \) and the proof is complete.

We may now encapsulate Theorems 2 and 3 with

Theorem (4): Let \(p_0 \) be any prime and let \(k \) and \(j \) be any positive integers. Then \(p_0^{k}|\sigma_j(n) \) for almost all integers \(n \) if and only if

\[
\frac{p_0(p_0 - 1)}{(p_0 - 1, j)}
\]

is even.

Finally, we state

Corollary (2): Let \(t \) and \(j \) be any positive integers. Then \(t|\sigma_j(n) \) for almost all \(n \) if and only if for each prime divisor \(p \) of \(t \) we have \(p(p - 1)/(p - 1, j) \) is even.

REFERENCES