M. G. SCHARLEMMANN
L. C. SIEBENMANN

The Hauptvermutung for C^∞ homeomorphisms II.
A proof valid for open 4-manifolds

<http://www.numdam.org/item?id=CM_1974__29_3_253_0>
THE HAUTVERMUTUNG FOR C^∞ HOMEOMORPHISMS II
A PROOF VALID FOR OPEN 4-MANIFOLDS

M. G. Scharlemann and L. C. Siebenmann

Introduction

It has often been observed that every twisted sphere $M^m = B^m_+ \cup_f B^m_-$ of Milnor is C^∞ homeomorphic to the standard sphere S^m, although in general it is not diffeomorphic to S^m. Recall that a twisted sphere is put together from copies of the standard hemispheres $B^m_{-\pm}$ of S^m by reidentifying boundaries $\partial B^m_- \cong \partial B^m_+$ under a diffeomorphism f. One obtains a homeomorphism $h: M^m \to S^m$ by setting $h|B^-_m = $ identity and $h|B^+_m = \{\text{cone on } f: S^{m-1} \to S^{m-1}\}$, the latter regarded as a self-homeomorphism of $B^+_m = \text{cone}(S^{m-1})$. This is C^∞ and non singular, except at the origin in $B^+_m (= \text{cone vertex})$. Composing h with a suitable C^∞ homeomorphism λ whose derivatives vanish at the origin of B^+_m yields a C^∞ homeomorphism $h: M^m \to S^m$ (Appendix A).

Since the twisted spheres represent the classical obstructions to smoothing a PL homeomorphism to a diffeomorphism, it is not surprising to find (§4 of preprint)\(^2\) that if M is any PL manifold and σ, σ' are two compatible smoothness structures on it, then one can obtain a C^∞ smooth homeomorphism $h: M^m_{\sigma} \to M^m_{\sigma'}$. It would be reasonable to guess that the same is true for arbitrary smoothings σ, σ' of M. However, we prove the following.

HAUTVERMUTUNG FOR C^∞ HOMEOMORPHISMS: Let $f: M^m' \to M^m$ be a C^∞ homeomorphism of connected metrizable smooth manifolds without boundary. If M and M' are of dimension 4 suppose they are non-compact. Let M and M' be given Whitehead compatible\(^3\) PL structures $[M^m_{\mu_2}]$.

\(^1\) Supported in part by NSF Grant GP-34006.
\(^2\) We there used classical smoothing theory and a TOP/C\(^{\infty}\) handle lemma for index ≥ 6. Surely a more direct proof exists?!
\(^3\) A PL manifold structure Σ on M is (C^∞) Whitehead compatible with the smooth (C^∞) structure of M if for some PL triangulation of M as a simplicial complex, the inclusion of each closed simplex is smooth and nonsingular as a map to M.
Then there exists a topological isotopy off to a PL homeomorphism.

Our purpose here is to give a handle by handle proof of this result which uses no obstruction theory and which does succeed with the specified four-manifolds.

Note that the singularities of the differential Df may form a nasty closed set in M' of dimension as high as $m - 1$. The one pleasant property which for us distinguishes f from a mere homeomorphism is the fact that the critical values are meager by the Sard-Brown Theorem [11], both for f and for the composition of f with any smooth map $M \to X$. In fact our result follows with astonishing ease from this fact.

In dimension ≤ 6 the PL homeomorphism asserted by the C^∞ Hauptvermutung is equivalent to diffeomorphism since there is no obstruction to smoothing a PL homeomorphism [12] [8].

Ordinary homeomorphism in dimension ≤ 6 does not imply diffeomorphism. Thus the following example may clarify the meaning of our theorem. The second author shows in [17, § 2] how to construct a homeomorphism

$$h: T(\beta) \to T^6$$

of a smooth\(^1\) manifold $T(\beta)$ that is known not to be diffeomorphic to T^6. By construction h is a diffeomorphism\(^2\) over the complement of a standard subtorus $T^3 \subset T^6$, and also over T^3 itself. The C^∞ Hauptvermutung shows that there is no way of making h smooth – say by squeezing towards the singularity set T^3 as one does for twisted spheres. The homeomorphisms that disprove the Hauptvermutung are thus measurably more complex than those known previously.

The C^∞ Hauptvermutung lends credence to the following seemingly difficult conjecture due to Kirby and Scharlemann [5]. Consider the least pseudo-group $MCCC_n$ of homeomorphisms on R^n which contains all C^∞ homeomorphisms of open subsets of R^n.

Conjecture: The isomorphism classification of $MCCC_n$ manifolds coincides naturally with the isomorphism classification of PL n-manifolds without boundary.

It can be shown that every PL homeomorphism of open subsets of R^n is in $MCCC_n$, see [5], []\(^3\). Thus $MCCC$ can be regarded as an enlargement of PL to contain DIFF, an enlargement which might eventually be useful in dynamics, group action theory, smoothing theory, etc. – espe-

1. In [17, § 2] one can replace PL everywhere by DIFF with no essential change in proofs.
2. In [17, § 2] one should choose the DIFF pseudo-isotopy $H: (I; 0, 1) \times B^2 \times T^n$ to be used to build h constant near 0 and 1 so as to prevent unwanted kinks in h.
3. Mistrust this assertion, as no proof has been written down. (Oct. 1974).
cially at points where mere homeomorphism seems too coarse a notion.

The organization of this article is as follows:
Section 1. A C^∞/DIFF handle lemma for index ≤ 3 in any dimension;
Section 2. A weak C^∞/DIFF handle lemma for index 4 in dimension 4;
Section 3. Proof of an elaborated C^∞ Hauptvermutung;
Appendix A. C^∞-smoothing an isolated singularity;
Appendix B. Potential counterexamples in dimension 4.

1. A C^∞/DIFF handle lemma for index ≤ 3

The proof of the C^∞ Hauptvermutung will be based on two handle-
smoothing lemmas 1.1 and 2.1 below.

DATA: Let B^k be the unit ball in R^k and let $f: M \to B^k \times R^n$ be a C^∞
homeomorphism which is nonsingular near the boundary.

DEFINITION: A C^∞ isotopy f_t, $0 \leq t \leq 1$, of f will be called allowable if
it fixes all points outside some compactum in $(\text{int } B^k) \times R^n$—i.e. it has
compact support in $(\text{int } B^k) \times R^n$.

1.1. C^∞/DIFF HANDLE LEMMA (index ≤ 3): For $f: M \to B^k \times R^n$ as
above and $k = 0, 1, 2, 3$, there is an allowable isotopy of f to a C^∞ homeo-

morphism f_1 which is non-singular near $f^{-1}(B^k \times \{0\})$.

Recall that for index $k = 3$, the C^0 version of this lemma is false, a key
failure of the C^0 Hauptvermutung [6].

PROOF of 1.1: Our first step is to allowably isotop f so that $0 \in R^n$ is a
regular value of the projection $p_2 f: M \to R^n$. Choose a regular value y_0
in R^n with $|y_0| < \frac{1}{2}$. Let ψ_t, $0 \leq t \leq 1$, be a diffeotopy (non-singular C^∞
isotopy) of $\text{id}|R^n$ with support in B^n carrying y_0 to 0. Let $\gamma: B^k \to [0, 1]$ be
a C^∞ map such that $\gamma = 0$ near ∂B^k and f is nonsingular over $\{\gamma^{-1}[0, 1]\}$
$\times B^n$. Now

$$\Psi_t: B^k \times R^n \to B^k \times R^n$$

defined by $\Psi_t(x, y) = (x, \psi_{t,\gamma}(y))$ for $0 \leq t \leq 1$ gives an allowable isotopy
$f_t = \Psi_t f$ as desired. See figure 1a, which illustrates this manoeuvre for
$k = n = 1$.

Revert to f as notation for $f_1 = \Psi_1 f$.

As a second step we will allowably isotop f by a squeeze so that the
structure imposed by f on $B^k \times R^n$ is a product along R^n near $B^k \times 0$.
Choose a small closed ε-ball B_{ε} about 0 in R^n such that $p_2 f$ is nonsingular
over B_{ε}, hence a (trivial) smooth bundle projection over B_{ε}. Choose a
trivialization ϕ of this bundle in a commutative diagram.
With the help of a collar of ∂N we can arrange that on a neighborhood of $\partial N \times B_r$, Φ coincides with f^{-1}. See figure 1b, which illustrates the behavior of $f_\Phi(x \times B_r)$ for 5 values of x in N.

Let $\Phi: [0, \infty) \to [0, \infty)$ be a smooth map such that $\Phi([0, \varepsilon/2]) = 0$ while $\Phi: (\varepsilon/2, \infty) \to (0, \infty)$ is a diffeomorphism equal to the identity on $[\varepsilon, \infty)$; then define a C^∞ homotopy $\lambda_t: R^n \to R^n$, $0 \leq t \leq 1$, by

$$\lambda_t(y) = (1-t)y + t \frac{A(|y|)}{|y|} y$$

where $A(|y|)/|y|$ is understood to be zero for $y = 0$. Define an allowable isotopy (see figure 1c) $f_1: M \to B^k \times R^n$

to be fixed outside $f^{-1}(B^k \times B_\varepsilon)$ and to send $\varphi(x, y) \in \varphi(N \times B_r) = f^{-1}(B^k \times B_r)$ to $(p_1 f(x, \lambda_t(y)), y) \in B^k \times R^n$. It is not difficult to see that this completes the second step. Again revert to f as notation for f_1.

The handle lemma is now clearly reduced to the handle problem posed by $f^{-1}(B^k \times 0) \to B^k \times 0$. Thus it remains only to prove
1.2. **Lemma:** If \(f : M \to B^k, k = 0, 1, 2, 3, \) is a \(C^\infty \) homeomorphism which is nonsingular near \(\partial M \), then \(f \) is \(C^\infty \) isotopic rel \(\partial M \) to a diffeomorphism.

Proof of Lemma 1.2: By relative uniqueness of smooth structures in dimension \(\leq 3 \), there is a diffeomorphism \(\phi : B^k \to M \) which is inverse to \(f \) near the boundary. Then \(f' = f\phi : B^k \to B^k \) extends by the identity map to a \(C^\infty \)-homeomorphism \(S^k \to S^k \) where we identify \(B^k \) to \(B^k+ \) in \(S^k \). This map in turn extends to a \(C^\infty \)-homeomorphism \(B^{k+1} \to B^{k+1} \) by the smoothing lemma of Appendix A.

We now have a \(C^\infty \)-homeomorphism \(B^{k+1} \to B^{k+1} \) which is the identity near \(B^k_\subset \subset \partial B^{k+1} \) and \(f\phi \) on \(B^k_\subset \subset \partial B^{k+1} \). Let \(\theta : B^{k+1} \to B^k \times I \) be a homeomorphism which sends \(B^k_+ \) onto \(B^k \times \{0\} \) and is a diffeomorphism except where corners are added in \(B^k \). Then \(\theta f\theta^{-1} : B^k \times I \to B^k_\times I \) is the identity near \(B^k \times \{0\} \cup \partial B^k \times I \) and hence a \(C^\infty \)-homeomorphism everywhere. Now \(\theta f\theta^{-1}(\alpha^{-1} \times \text{id}_I) \) is the required \(C^\infty \)-isotopy from \(f \) to a diffeomorphism.

This completes the proof of Lemma 1.2 and with it the proof of the \(C^\infty_\text{DIFF} \) handle lemma for index \(\leq 3 \).

Assertion: In the above proofs the use of relative uniqueness theorems for smooth structures in dimension \(\leq 3 \) can be replaced by the smooth Alexander-Schoenflies theorems in dimension \(\leq 3 \) (the latter are easily proved, c.f. Cerf [1, Appendix]).

Proof of Assertion: First note that these Schoenflies theorems suffice to prove Lemma 1.2 in case \(M \) is known to embed smoothly and nonsingularly in \(R^k \).

Next suppose the assertion established for index \(< k \). (It is trivial for index 0.) Then deal with index \(k \) by establishing Lemma 1.2 for index \(k \) using the smooth Schoenflies theorem in dimension \(k \), as follows. Smoothly triangulate \(B^k \) so finely that

\((*) \) For each \(k \)-simplex \(\sigma \) of \(B^k \), \(f^{-1}(\sigma) \) lies in a co-ordinate chart of \(M \).

The index \(< k \) case suffices to get a \(C^\infty \) isotopy of \(f \) rel \(\partial M \) to an \(f_1 \) that is nonsingular over the \((k-1) \)-skeleton and still satisfies \((*) \). Then the smooth Schoenflies theorem suffices, by our first remark, to establish Lemma 1.2 for index \(k \).

2. **A weak \(C^\infty_\text{DIFF} \) handle lemma for index 4**

The \(C^\infty_\text{DIFF} \) handle problem for index 4 and dimension 4 admits a
weak solution based on the weak Schoenflies theorem for dimension 4 (given by Rourke and Sanderson [14, 3.38]):

Theorem: Let \(S \subset R^4 - 0 \) be a smoothly embedded 3-sphere, and let \(T \) be the closure of the bounded component of \(R^4 - S \). Then \(T - 0 \) is diffeomorphic to \(B^4 - 0 \).

Definition: We call a homotopy \(h_t, 0 \leq t \leq 1 \), *almost compact* if, for each \(\tau < 1 \), the homotopy \(h_t, 0 \leq t \leq \tau \), has compact support.

2.1. **Proposition:** Suppose \(M^4 \) is a smooth submanifold of \(R^4 \), and \(f: M \to B^4 \) is a \(C^\infty \) homeomorphism which is a diffeomorphism over a neighborhood of the boundary \(\partial B^4 \). Then there is an isotopy rel boundary \(f_t: M \to B^4, 0 \leq t \leq 1, \) such that:

1. \(f_0 = f \) and \(f_1 \) is a diffeomorphism over \(B^k - \{ p \} \) for some point \(p \in \text{int} B^4 \).
2. \(f_t \) restricts to a \(C^\infty \) almost compact isotopy \(M - f^{-1}(\{ p \}) \to B^k - \{ p \} \).
3. \(f \) is fixed over some smooth path from \(p \) to \(\partial B^4 \).

Proof of 2.1: Without loss of generality we may assume there is a radius of \(B^4 \) over which \(f \) is nonsingular. In this case we will make \(p = \{ 0 \} \in B^4 \) and cause the path mentioned in (iii) to be this radius. By the weak Schoenflies theorem, we can find a homeomorphism \(\alpha: B^4 \to M \) such that \(f \alpha: B^4 \to B^4 \) restricts to a diffeomorphism \((B^4 - 0) \to (B^4 - 0) \) and is the identity near \(\partial B^4 \). We can alter \(\alpha \) rel boundary by a diffeotopy of \((B^4 - 0) \to M^4 - f^{-1}(\{ 0 \}) \), so that \(f \alpha \) is also the identity on the chosen radius. This requires just a proper version, applied to \(\alpha \) (open radius), of Whitney's (ambient) isotopy theorem cf. [2].

Identifying \(B^4 - \{ 0 \} \) naturally to \(\partial B^4 \times R_+ = \partial B^4 \times [0, \infty) \) we are only required to find, for a certain \(\{ q \} \in \partial B^4 \), an almost compact \(C^\infty \)-isotopy \(f_t', 0 \leq t \leq 1 \), fixing \(\{ q \} \times R_+ \) and a neighborhood of \(\partial B^4 \times \{ 0 \} \), from \(f' = f \circ \alpha: \partial B^4 \times R_+ \to \partial B^4 \times R_+ \) to a diffeomorphism. Once this is accomplished the required isotopy \(f_t \) of \(f \) will be \(f_t(f^{-1}(0)) = 0 \) and \(f_t(x) = f_t' \circ \alpha^{-1}(x) \) for \(x \in M - f^{-1}(0) \).

Let \(\mu_t: [0, \infty) \to [0, \infty) \) be an almost compact smooth (into) isotopy from the identity to a diffeomorphism \(\mu_1: [0, \infty) \to [0, \infty) \). (Only \(\mu_1 \) is not onto.) Let \(\epsilon > 0 \) be so small that \(f' \) is a diffeomorphism on \(S^3 \times [0, \epsilon) \). Define \(f_t': \partial B^4 \times [0, \infty) \to \partial B^4 \times [0, \infty) \) to be

\[
\{ (\text{id}|\partial B^4) \times \mu_t \} \circ f' \circ \{ (\text{id}|\partial B^4) \times \mu_t^{-1} \}.
\]

1 It is a down to earth version of Mazur's proof of the topological Schoenflies theorem [9].
3. Proof of an elaborated C^∞ Hauptvermutung

3.1. THEOREM: (C^∞ Hauptvermutung). Consider a C^∞ homeomorphism $f: M' \to M$ of smooth m-dimensional manifolds equipped with Whitehead triangulations. Suppose f is also a PL equivalence over a neighborhood of some closed subset C of M.

In case $\dim M = 4$ or $\dim \partial M = 4$ we make some provisos. If $\dim M = 4$ we suppose that each component of the complement of C in M has noncompact closure in M. In case $\dim \partial M = 4$ we suppose that each component of $\partial M - C$ has noncompact closure in ∂M.

(I) Then, for $m \leq 4$, there exists a C^∞ isotopy rel C from f to a diffeomorphism.

(II) For $m = 5$ or 6, there exists a topological isotopy rel C from f to a diffeomorphism.

(III) For all m, there exists a topological isotopy rel C from f to a PL homeomorphism.

The salient advance beyond [15] is clearly the case of open 4-manifolds in (III). Note that (II) is implied by (III) and classical smoothing theory (but we naturally get to (II) first).

REMARK 1: If f is a C^∞ homeomorphism which is a PL equivalence near C, then f will be non-singular near C. Indeed, f PL implies that for each (closed) principal simplex σ of a suitable subdivision of M', f maps σ linearly into a principal simplex of M, hence C^∞ non-singularly with rank m into M as a C^∞ manifold. Thus, in the above theorem, f is actually nonsingular near C.

REMARK 2: The provisos concerning dimension 4 can be eliminated if and only if the smooth 4-dimensional Schoenflies conjecture is true. (See Appendix B and Lemma 1.2.)

REMARK 3: It is easy to believe that in (II) the isotopy can be C^∞.

REMARK 4: The isotopies produced by 3.1 can be made as small as we please for the strong (majorant) topology – except possibly where dimension 4 manifolds or boundaries intervene. This is accomplished merely by using sufficiently fine Whitehead C^1 triangulations in the proofs to follow.
3.2. Proof of 3.1 Part I: Manifolds of dimension ≤ 4.

This is by far the most delicate part.

Exploit smooth collars of $\partial M'$ and ∂M corresponding under f near C to C^∞ isotopy f rel C by a classical squeezing argument (cf. proof of 1.1) so that f becomes a product near the boundary along the collaring interval factor. This property is to be preserved carefully through all changes of f.

Select a smooth Whitehead triangulation of M so fine that f is nonsingular over a subcomplex containing C, and the preimage of each 4-simplex lies in a co-ordinate chart. With no loss of generality we suppose now that C is a subcomplex.

Apply the C^∞/DIFF handle lemma 1.1, around the smooth open k-simplexes $\tilde{\sigma} \cong R^k$ of M in order of increasing dimension for $k = 0, 1, 2, 3$, to make f nonsingular over a neighborhood of the 3-skeleton of M. When $\tilde{\sigma}$ lies in ∂M the handle lemma gives a C^∞ isotopy of $f|: \partial M' \to \partial M$ which we must damp out along the collaring interval factor to get a C^∞ isotopy of f. The proof is now complete for $m \leq 3$.

Suppose now that $m = 4$. It is easy to choose the handles so near to the open simplices that for each 4-simplex σ, the preimage of σ remains in its co-ordinate chart throughout the isotopy constructed thus far.

Using the index 4 weak C^∞/DIFF handle lemma 2.1, we could give an isotopy of f over smooth 4-handles in the open 4-simplices to obtain a homeomorphism which is a diffeomorphism on the complement of center points of these 4-handles. There is a well-known trick that then provides a diffeomorphism homotopic to f when M is open. But, to ensure the C^∞ isotopy asserted by 3.1 we must now take some care and execute the isotopy and the trick simultaneously.

After making f nonsingular over a neighborhood of the 3-skeleton, we have a C^∞ homeomorphism $f: M' \to M$ which is nonsingular except well within the interior of the preimage of a smooth 4-handle B_i inside each 4-simplex $\tilde{\sigma}_i$. We extend the smooth arcs given by the weak C^∞/DIFF handle lemma 2.1 obtaining, for each 4-handle B_i, a point p_i in int B_i and a smooth arc α_i from p_i to ∞ in the complement of C. Here we use the curious proviso that these components are unbounded in M. We can arrange that $\alpha_i \cap \partial M = \phi$, that $\alpha_i \cap \alpha_j = \phi = \alpha_i \cap B_j$ for $i \neq j$ and that the union of the α_i is a properly embedded smooth submanifold of M.

The weak index 4 handle lemma provides an isotopy $f_i: M' \to M$ such that

(a) $f_0 = f$ and f_i is a diffeomorphism over $M - \bigcup_i \{p_i\}$
(b) $f_i(M' - \bigcup_i f^{-1}\{p_i\})$ is an almost compact C^∞ isotopy in $M - \bigcup_i \{p_i\}$.
(c) f_i is constant over each smooth arc α_i.

Extend the smooth arcs α_i and $f_i^{-1}\alpha_i = f^{-1}\alpha_i$ slightly to smooth arcs $\beta_i: R_+ \to M$ and $\beta_i': R_+ \to M'$ parametrized so that $\beta_i(1) = p_i$.

Choose disjoint closed tubular neighborhoods $\tilde{\beta}_i: R_+ \times B^3 \to M$ and $\tilde{\beta}'_i: R_+ \times B^3 \to M'$ of β_i and β'_i such that their sum over i is a properly embedded submanifold of M and M' respectively.

Define an isotopy $g_i: M \to M$, $0 \leq t \leq 1$, by

(i) $g_i(x) = x$ if $t = 0$ or x is outside the normal tubes $\text{Im}(\tilde{\beta}_i)$.

(ii) For x in $\text{Im}(\tilde{\beta}_i)$, say $x = \tilde{\beta}_i(u, v)$,

$$g_i(x) = \tilde{\beta}_i(\tilde{\mu}_i(1-t)|u|, v).$$

where $\tilde{\mu}_i: R_+ \to R_+$ is an almost compact smooth nonsingular (into) isotopy with $\tilde{\mu}_i(R_+) = [0, 1)$, adjusted to be constant near $t = 0$ and $t = 1$. This is an almost compact smooth into isotopy of $id|M|$ with

$$g_1 M = M - \bigcup_i \alpha_i = f_1(M' - \bigcup_i \alpha'_i).$$

Define $g'_i: M' \to M'$ similarly.

Consider the composed isotopy $f_t^* = g_t^{-1} \circ f_t \circ g'_t: M' \to M$, $0 \leq t \leq 1$. Since $f_1 g_1' M' = g_1 M$ and f_t is a C^∞ isotopy for $t < 1$ while f_1 is a diffeomorphism over $g_1 M$, this f_t^* is a C^∞ isotopy. It runs from f to a diffeomorphism and finally establishes Part I.

3.3. Proof of 3.1, Part II: 5- and 6-manifolds

As in the proof of Part I we can find an isotopy of f rel C to make f a diffeomorphism over a neighborhood of the 3-skeleton of M.

If $\dim \partial M = 4$, we can even use Part I to make f a diffeomorphism over a neighborhood of ∂M.

As in part I, f can be, near the boundary, always a product along the interval factor of collarings of the boundaries.

Applying a TOP/DIFF handle lemma to handles of index 4, 5, and 6 with cores in the open simplices of M of increasing dimension 4, 5, and 6 we can now topologically isotop f rel C and rel the 3-skeleton to a diffeomorphism. More precisely the TOP/DIFF version of the TOP/PL handle straightening theorem of [6] is to be used. No immersion theory is required; the associated torus problem – presented by an exotic structure $(B^k \times T^n)_\Sigma$, $k + n = m$, $k = 4, 5, 6$, standard near the boundary – may be solved by simply connected surgery. To do this, first use the Product Structure Theorem [7, §5] to reduce to the two cases (i) $k = k + n \geq 5$; (ii) $k = 4, n = 1$. Then for $k = k + n \geq 5$ we solve by the smooth Poincaré Theorem [3]. The remaining case $k = 4$,
\(n = 1 \) is reduced by [18, § 5] to a surgery problem rel boundary with
target \(B^4 \times [-1, 1] \) – which is just the smooth Poincaré Theorem for
dimension 5 [3]. Compare [16] [4].

3.4. Proof 3.1, Part III, the \(C^\infty \) Hauptvermutung

Following the proof for part II, we isotop \(f \) rel \(C \) to make \(f \) a diffeomorphism over a neighborhood of \(C \cup M^{(6)} \). As \(f \) is already PL over a neighborhood of \(C \) the (relative) Whitehead triangulation uniqueness theorem [13] provides an isotopy of \(f \) rel \(C \) making \(f \) PL over a neighborhood of \(C \cup M^{(6)} \).

Now we can further isotop \(f \) rel \(C \cup M^{(6)} \) to a PL homeomorphism using the TOP/PL handle straightening lemma of [6] for handle index values \(\geq 6 \). We note no sophisticated techniques are required here; for example the Product Structure Theorem of [7] (based on handlebody theory) reduces the straightening lemma of [6] for index \(k \geq 6 \) to the PL Poincaré theorem for a disc of dimension \(k \).

Appendix A. \(C^\infty \)-smoothing an isolated singularity

The proof of the following proposition was given to us by C. T. C. Wall, when we had proved just a special case sufficient for the \(C^\infty \) Hauptvermutung.

Proposition A.1: Let \(f: \mathbb{R}^r \to \mathbb{R}^s \) be a continuous map that is \(C^\infty \) on \(\mathbb{R}^r - 0 \). There exists a \(C^\infty \) homeomorphism \(\mu: [0, \infty) \to [0, \infty) \) (depending on \(f \)) such that the map \(h: \mathbb{R}^r \to \mathbb{R}^s \), \(h(x) = \mu(||x||^2) \) is a \(C^\infty \) mapping.

Proof of A.1: Write

\[
N_{n,r}(f) = \sup \left\{ \left| \frac{\partial^lf}{\partial x^l} \right| : \frac{1}{n+1} \leq ||x||^2 \leq \frac{1}{n-1}, |l| = r \right\}.
\]

Choose a decreasing sequence \(c_n \) with \(c_n N_{n,r}(f) \to 0 \) as \(n \to \infty \) for each \(r \) (easily done by diagonal process). If \(\mu \) is \(C^\infty \)-homeomorphism of \([0, \infty) \), nonsingular on \((0, \infty) \) and flat at 0, with \(\mu^{(s)}(y)/c_n y \to 0 \) as \(y \to 0 \) for all \(s \) (where \(n \) depends on \(y \) by \(1/(n+1) \leq y \leq 1/(n-1) \) then \(g(x) = \mu(||x||^2) \) is \(C^\infty \), and as

\[
D^l(fg) = \Sigma(D^lf D^kg : J + K = I) \}
\]

by Leibniz’ theorem,

\(D^l f \) is estimated by an \(N_{n,r}(f) \) and \(D^k g \) by \(c_n ||x||^2 \), we have \(D^l(fg) \to 0 \) as \(||x|| \to 0 \). Thus by induction if we define \(h(x) = f(x)g(x) \) \((x \neq 0) \) \(h(0) = 0 \), \(h \) is flat at 0 as required.
We construct $\mu(y) = \int_0^y \mu'$ defining first μ' so that, for small y,
$$\mu'(y) = \sum_{n=2}^{\infty} 2^{-n} c_{n+1} (n^2 - 1)y^{n-1},$$
where $B(x) > 0$ for $||x|| < 1$ and $= 0$ otherwise. At most 2 terms in the summation can be nonzero, and since each $B^{(0)}(x)$ is bounded, the desired estimates follow easily.

Appendix B. Potential Counterexamples in Dimension 4

It is clear that a positive solution to the smooth (or PL) Schoenflies conjecture in dimension 4 would eliminate the conditions concerning dimension 4 in the C^∞ Hauptvermutung 3.1. Conversely we show now that a counterexample to this conjecture would give a counterexample to the C^∞ Hauptvermutung for compact (even closed) 4-manifolds.

Proposition: Suppose S is a smoothly embedded 3-sphere in $\mathbb{R}^4 - 0$, and T is the closure in \mathbb{R}^4 of the bounded component of $\mathbb{R}^4 - S$. Then there exist C^∞ homeomorphisms $B^4 \to T$ and $T \to B^4$ each with one singular point, at 0.

Discussion: The 4-dimensional smooth Schoenflies conjecture asserts that every such T is in fact diffeomorphic to B^4, (equivalently PL isomorphic to B^4, cf [12]). So it is immediate that a counterexample T to this conjecture would yield a counterexample $T \to B^4$ to the C^∞ Hauptvermutung. By capping off with 4-discs it also yields a counterexample $M = T \cup B^4 \subset S^4$ for closed 4-manifolds. In each case there is just one singularity.

Proof of Proposition: Mazur’s Schoenflies argument (as reworked in [14, 3.38] yields a diffeomorphism $f:(\mathbb{R}^4 - 0) \to (\mathbb{R}^4 - 0)$ with $f(B^4 - 0) = T - 0$. Then application of Lemma A.1 to f and f^{-1} respectively yields the asserted homeomorphisms.

BIBLIOGRAPHY

(Oblatum 15–III–1974)

University of Liverpool
Department of Pure Mathematics
Liverpool, Great Brittain