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A classical theorem of J. H. C. Whitehead [2, 8] states that a con-
tinuous map between CW-complexes is a homotopy equivalence iff it
induces an isomorphism of fundamental groups and an isomorphism on
the homology of the universal covering spaces. This paper deals with
the problem of finding an algebraic criterion for a proper map between
locally finite CW-complexes to be a proper homotopy equivalence. The
results are an extension of those announced in [1].
The first section treats generalities about the category of locally finite

CW-complexes and proper maps and the second section outlines the
homology and homotopy theories needed to work within this category.
In § 3 we prove the ’Proper Whitehead Theorem’. Section 4 presents
some special cases of this general theorem where the criteria that a map
be a proper homotopy equivalence are more algebraic than in § 3. For
example, any proper, degree one map between open n-manifolds which
are simply connected and simply connected at infinity is a proper homo-
topy equivalence iff the map induces an isomorphism on homology and
on cohomology with compact supports.

1. Preliminary remarks about proper maps

The term map means a continuous function. A proper map f : X -+ Y
is a map such that f-1(C) is compact whenever C is a compact subset
of Y. A proper homotopy from X to Y is a homotopy, that is a map
h : X x 1 --+ Y, which is a proper map. Here 1 = [0, 1 ]. Let Y be a
collection of subsets of a topological space X; Y is said to be locally
finite iff every point in X has a neighborhood which meets only finitely
many members of Y. If X happens to be locally compact then one
easily deduces that Y is locally finite iff each compact subset of X meets
only finitely many members of Y. Recall that a CW-complex K is
locally finite iff the collection consisting of all the closed cells of K is
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locally finite. This condition is equivalent to K being locally compact.
Also K is locally finite iff each point of K has some neighborhood which
is a finite subcomplex. We will say that K is strongly locally finite iff K
can be covered in a locally finite way by finite subcomplexes. Clearly,
a strongly locally finite CW-complex is locally compact and hence
locally finite. In this section we have three objectives: first, to prove that
a finite dimensional, locally finite CW-complex is strongly locally finite;
second, to prove a version of the homotopy extension theorem for proper
homotopies when the domain space is strongly locally finite and the
range space is arbitrary; and third, to prove that a proper map between
strongly locally finite complexes is properly homotopic to a cellular map.
Note that one can also define the notion of an indexed family of sets

being locally finite.

LEMMA 1.1. Let f : X ~ Y be a proper map and let Y be a locally
finite collection of subsets of X. Also, assume that Y is locally compact.
Then, the indexed family f(Y) = {f(S)|S E Y} of subsets of Y is locally
finite. Here f (,.9’) is indexed by Y.

The proof of (1.1) is left to the reader.
If S is a subset of a CW-complex K, then K(S) denotes the carrier of

,S in K.

LEMMA 1.2. Let K be a locally finite CW-complex, W = {K(e)|e is a
cell in KI, and Y be an arbitrary locally finite collection of compact
subsets of K. If Y is a locally finite collection, then K(Y) = {K(S)|S E Y}
is a locally finite collection indexed by Y.

PROOF. Since W is locally finite, K is locally compact. Let C be a
compact subset of K. Denote the cells of K whose carriers meet C by
e1, e2, ···, en. Let C’ = e1 u ... u ën and denote the members of Y
which meet C’ by Sl, ..., Sm . Suppose that K(S) meets C. Recall that
K(S) equals the union of the carriers of all the cells which meet S.
See [8, p. 97]. Therefore, there exists a cell e of K which meets S and
whose carrier meets C. Therefore, e is one of the cells el , e2, ..., en;
and hence S meets C’ and is one of the finite collection S1, ···, Sm .

COROLLARY 1.3. If K is a strongly locally finite CW-complex, and Y
is a locally finite collection of compact subsets of K, then K( Y’) is a locally
finite collection indexed by Y.

PROOF. Since K has a locally finite cover by finite subcomplexes, the
collection W = {K(e)|e a cell of KI is locally finite. Now apply (1.2).
THEOREM 1.4. Every locally finite, finite dimensional CW-complex K

is strongly locally finite.
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PROOF. We proceed by induction on the dimension of K. When
dim = 0, K is discrete and hence strongly locally finite. Let us next
suppose that (1.4) has been proved for all locally finite CW-complexes
whose dimension is less than n = dim K. Denote the (n -1 )-skeleton
of K by Kn-1. Let Y = {K(e)|e a cell of K) ; Y’ = {K(e)|e an n-dimen-
sional cell of K}; and Y" = {K(e)|e a cell of Kn-1}. By the inductive
assumption and (1.3), Y" is locally finite; and hence once we show that
Y’ is locally finite we will have proved (1.4) because Y = Y’ u W". If
e is an n-dimensional cell of L then K(e) = e ~ Kn-1(~e) where ~e =
è n Kn-1. By our inductive assumption and (1.3), we see that {K(~e)|e
an n-dim cell of K} is a locally finite collection indexed by Y’. Since the
set of all n-dimensional cells of K is also locally finite, we see that rc’ is
locally finite.

ADDENDUM. Every locally finite simplicial complex (whether finite

dimensional or not) is strongly locally finite since the collection of closed
simplexes is a locally finite cover by finite subcomplexes.

LEMMA 1.5. Let K be a connected, strongly locally finite CW-complex.
Then K has a locally finite cover of the form {An, Bnln = 0, 1, 2, ···}
where each Ai i and Bi is a finite subcomplex of K and Ai n Ai = ø =
Bi n Bj whenever i :0 j.

PROOF. Note that K has only a countable number of cells and hence
only a countable number of finite subcomplexes. See [8]. Hence K has
a countable locally finite cover by finite subcomplexes; say

Inductively, we define a strictly increasing sequence of integers n i as
follows: ni - 1; and if nj-1 has been defined, let nj be the first integer
larger than nj-1 such that for all m ~ nj we have

Define

REMARK. Each connected component of a CW-complex is an open
subcomplex.

THEOREM 1.6. (Homotopy Extension Theorem). Let K be a strongly
locallyfinite CW-complex, L a subcomplex of K, and Y an arbitrary
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topological space. Let h : L x [0, 1 ] ~ K x 0 ~ Y be a proper map. Then
there exists a proper map h : K x [0, 1] ~ Y which extends h.

PROOF. To prove (1.6), it is necessary and sufficient to prove that the
hat on L, i.e. L x [0, 1 ] u K x 0, is a proper retract of K x [0, 1 ]. By the
remark above, it is sufficient to consider the case when K is connected.
Via (1.5), we can express K as the union of two subcomplexes A and B
where

and each Ai and Bi is a finite subcomplex of K with Ai n Aj = 0 =
Bi n Bj when i ~ j. In order to show that the hat on L is a proper
retract of K x [0, 1 ], we first show that the hat on L ~ A in K is a proper
retract of K x [0, 1 ] and then that the hat on L in K is a proper retract of
the hat on L ~ A in K. To define a proper retract of K x [0, 1 ] onto
K x 0 u A x [0, 1 ] ~ L x [0, 1 ], we express K x [0, 1 ] as the union of the
two closed subspaces A x [0, 1 ] and B x [0, 1 ]. On A x [0, 1 ] define a map
r to be the identity. Since B x [0, 1 ] intersected with the hat on A ~ L
in K is the hat on (A ~ L) n B in B, and since the inclusion map of
(A ~ L) n B into B is a cofibration, (see [6, p. 402]) there exists a

retraction s of B x [0, 1 ] onto the hat on (A ~ L) n B in B. Since B
is a disjoint union of finite subcomplexes, we see by a connectivity
argument that s is a proper map. Both r and s agree where their domains

overlap; and hence we can piece them together to obtain a proper
retraction of K x [0, 1 ] onto the hat on L u A in K. The hat on L ~ A
in K can be expressed on the union of the two closed subsets A x [0, 1 ]
and the hat on L in K. On the hat on L in K define the identity map.
Since A x [0, 1 ] intersected with the hat on L in K is the hat on L n A
in A, and the inclusion map of L n A into A is a cofibration, there exists
a retraction map s of A x [0, 1] onto the hat on L n A in A. By connec-
tivity considerations s is a proper map. Piecing this map together with
the identity map on the hat on L in K, we obtain a proper retraction of
the hat on L u A in K onto the hat on L in K.

THEOREM 1.7 (Cellular ’Approximation’ Theorem). Let K and M be
strongly locally finite CW-complexes, L a subcomplex of K, and f : K ~ M
a proper map with f IL cellular; then f is properly homotopic to a cellular
map g through a homotopy fixed on L.

PROOF. Applying (1.5) to each connected component of K, we de-
compose K as the union of two subcomplexes A and B where both A
and B can be expressed as the disjoint union of finite subcomplexes; i.e.
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where each a E Y and j8 E Y’ is a finite subcomplex and if (Xi, Ce 2 E Y

and rxl =1= a2 then 03B11 n OE2 = 0; and likewise if 03B21, 03B23 ~ Y’ and Pl 0 P2
then fli n 03B22 = 0. By (1.1)f(Y) is a locally finite collection of compact
subsets of M indexed by Y. By (1.3), M(f(Y)) is a locally finite collec-
tion indexed by f(Y), and hence by Y. For each a E Y, there exists a
homotopy of f|03B1 : ce -+ M(f(03B1)) to a cellular map which is fixed on

L n a. See [6, p. 404]. Piecing all of these homotopies together, we
obtain a proper homotopy of f|A: A ~ M to a cellular map where the
homotopy is fixed on L n A. We can extend this homotopy to a proper
homotopy of f|A u L : A u L ~ M where this homotopy is fixed on L.
Then we use (1.6) to extend this homotopy to a homotopy of f : K ~ M.
Hence we have properly deformed f : K ~ M to a map fi : K ~ M
which is cellular on A ~ L through a homotopy fixed on L. Now f1|B
is cellular on (A ~ L) n B. By an argument similar to the one given
above, f1|B is properly homotopic to a cellular map gl through a homo-
topy fixed on (A ~ L) n B. Hence fi : K ~ M is properly homotopic
(through a homotopy fixed on L ~ A) to a cellular map g where g 1 A = f,
and glB = gl . If we string together the proper homotopy from f to fl
with the proper homotopy from fl to g, then we obtain a proper homo-
topy of f to a cellular map g. This homotopy is fixed on L.

REMARK 1.8. Theorem 1.7 is not true in general if the condition

’strongly locally finite’ is dropped as the following example shows: Let
K be an infinite set of points {p1,p2,···} with the discrete topology.
Let M = e’ u el ~ e2 ~ ··· where / is attached to

by collapsing all of oen to a point qn e int en-1. M is not strongly locally
finite because any subcomplex of M must contain eo. The proper map
f : K ~ M given by f(pi) = qi can certainly not be deformed (properly
or otherwise) to a proper cellular map.
REMARK 1.9. Define a pair (K, L) of locally finite CW-complexes to be

strongly locally finite if K = LuKa. where {K03B1} is a locally finite collec-
tion of finite subcomplexes of K. If dim (K- L)  oo, then the pair
(K, L) is strongly locally finite. Furthermore (1.6) and (1.7) still hold
under the weakened hypothesis that the pair (K, L) is strongly locally
finite.

Finally we say that a proper map f : X ~ Y is a proper homotopy
equivalence provided that there exists a proper map g : Y ~ X such that
both g o f and f o g are properly homotopic to the identity map.
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2. A-homology and A-homotopy

In this section we review from [7] the definitions and results concerning
A-homology and A-homotopy, which take the place in the proper

category of ordinary homology and homotopy in the categories of spaces
and all continuous maps.

Let V denote the category of pointed sets and base point preserving
functions. Let S = {S03B1} denote a collection of objects in Y’ where oc

runs through some indexing set. Define p(S) to be 03A003B1S03B1 modulo the
equivalence relation which identifies {s03B1} E 03A003B1S03B1 with {s’03B1} E 03A003B1S03B1
provided that s03B1 = s’03B1 except for possibly finitely many values of a.
If each Sa is actually a group (with base point the identity element),
then p(S) is a group and in fact

If f = {f03B1 : S03B1 ~ T03B1} is a collection of morphisms, there is a natural

morphism 03BC(f) : 03BC(S) ~ 03BC(T) induced by 03A003B1f03B1 : ITaSa ~ ITaTa. If each
fa is a homomorphism, so is p(f). Sometimes we shall denote p(S) by
Jla(S) to indicate what indexing set is being used.

Let X be a locally finite CW-complex. A locally finite collection {p}
of points in X will be called a set of base points for X provided that (a)
for any compact set K c X each infinite component of X- K (i.e. each
component not contained in a compact subset of X) contains an element
of {p} and (b) any subset of {p} satisfying condition (a) has the same
cardinality as {p}. Note that if X is compact and connected any set
of base points consists of just one point.
Now suppose G is a functor from the category Yo of based topological

spaces and base point preserving maps to the category Y. Let {p} be a
set of base points for X. We define pointed sets e(X, {p}; G) and
4(X, {p}; G) as follows: For each compact set C c X and base point
p ~ {p} let

Then form 03BCp(G(C, p)) and note that if C c D there is a morphism

Define

Define L1 as the pull-back of the diagram
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Note that if G is actually a functor into the category of groups and
homomorphisms, then s and d are groups. Also, if {C03B1} is any cofinal

collection of compacta in X (i.e. given a compactum D c X there is
some CQ containing D), one can just as well take the inverse limit in
(2.2) over the sets Ca to calculate 8 and then d.

REMARK. In all of the examples of interest in this paper the isomor-
phism class of s or 0394 is independent of the choice of the set of base points
{p}. See [7]. Any natural transformation of functors G ~ H induces a
morphism 0394(X, {p}; G) ~ 0394(X, {p}; H).
For any space X set

where the limit runs through the compact subsets of X. Any proper map
f : X ~ Y will be called properly 0-connected provided X and Y are
connected and H0e(Y) ~ H°(X) is an isomorphism. The map f is
properly 0-connected iff the inclusion X c- M f of X into the mapping
cylinder M f of f is properly 0-connected.
Now let f : X -+ Y be properly 0-connected and let {p} denote a set

of base points for X. Then {f(p)} is a set of base points for Y and by
refining {p} we can insure that f : {p} ~ {f(p)} is a bijection. We
define the induced map

as follows: The set of compacta f -I(C) where C is a compactum of Y is
cofinal and hence the G(f-1(C), p) can be used to compute 0394(X, {p}; G).
The map BI * is the one induced by the collection of maps G(f-1(C), p) -+
G(C,f(p)). The map ef* induces a map

The E and d constructions can also be described by a direct limit
process (see [7]): Let Q denote the set of collections {gp} where
gp E G(Cp, p), p runs through the set of base points {p}, and {Cp} is a
collection of compacta such that p E X - Cp and such that any compactum
of X is contained in Cp for all but finitely many p. Two such collections
{g’p} and {g"p} are E-equivalent, written ( g)) ~ 03B5 {g"p}, iff there is a collec-
tion {gp} such that for all but at most finitely many p’s
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(i) Cp c Cp and Cp c C"p, and
(ii) under the maps G(C;,p) ~ G(Cp, p) and

We say that {g’p} and {g"p} are 0394-equivalent, written {g’p} = 
iff conditions (i) and (ii) hold for all p e {p}. Then

and

If G is a functor to the category of groups both 8 and Li are groups.
The multiplication is given by

where Ap and h"p are the images of g p and g"p under the maps

In what follows the functor G will, with one or two exceptions (see
2.7 and 2.10) always be a functor to the category of groups and, more
often then not, to the category of abelian groups. Thus the general
theorems concerning exact sequences, conditions insuring triviality of E,
etc. will be stated in the category of groups for the sake of economy.
We leave it to the reader to interpret things in the category of pointed
sets when necessary.

THEOREM 2.4. 03B5(X, {p}; G) = 0 iff for any compact set C there is a

compact set D containing C such that for all base points p E X - D

is the zero homomorphism. Furthermore J(X, {p}; G) = 0 iff 8 = 0 and
G(0, p) = 0 for all p E {p}.
REMARK. The direct limit description of 8 also implies that whenever

each morphism G(f-1(C03B1), p) ~ G(ca,f(p» is surjective for a cofinal
collection {C03B1} of compacta Ca c Y then the map

is also surjective.
As usual, let {p} be a set of base points for X. A covering functor,

denoted by ~, assigns to each pair (C, p), where C is a compact subset
of X and p ~ {p} lies in X - C, a subgroup 03C0(C, p) c 03C01(X - C, p) such
that i*(03C0c(D, p)) c x(C, p) whenever C c D. Here i* : 7r(D, p) ~
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03C01(X-C,p) is the homomorphism induced by the inclusion X - D c
X - C. For each compact C c X and base point p ~ {p} lying in X - C,
let p : X - C ~ X - C denote the covering space of the connected com-
ponent of X - C containing p corresponding to the subgroup 03C0(C, p) ~

03C01(X-C, p). Choose a lifting  ~ X - C of p ~ X - C such that

03C1*(03C01 (X- C, )) = 03C0(C, p). Now let C ~ D. Since i*(03C0(D, p)) ~ 03C0(C, p)
there is a unique map :X-D~X-C covering the inclusion

i : X - D m X - C such that the base point p E X - D goes to the base

point p E X - C. Thus each choice of liftings {} determines a functor
from To to itself.
Now let ~ be a covering functor of X and choose a set of liftings {}

as above. Define 03B5(X, {p}; G, ~) and 0394(X, {p}; G, ~) by the e and Li
constructions using the pointed sets (or groups) G(C, p) = G(X - C, p).
Then 03B5(X, {p}; G, ~) and 0394(X,{p}; G, ~) are independent, up to

isomorphism, of the choice of liftings {} of {p}. See [7].
Two covering functors’ and - " of X are pre-equivalent provided

there is a cofinal collection of compacta {C03B1} in X such that 0 E {C03B1}
and such that if C03B1 ~ { C03B1} and p ~ {p} then 03C0’(C03B1,p) = 03C0"(C03B1, p).
Equivalence of covering functors is the equivalence relation generated by
’pre-equivalence’. If ~’ and are equivalent there are natural iso-
morphisms

and

EXAMPLES.

(i) n(c,p) = 03C01(X-C, p). Then X-C = X-C and fi = p.
(ii) 03C0(C, p) = trivial group. Then X-C is the universal cover of the

component of X-C containing p. In this case we let ’univ’ denote the
covering functor.

(iii) n(c,p) = ker [03C01(X-C, p) ~ 1tl(X,P)]. Let Yp c X-C be the
component containing p and let x : U ~ X be the universal cover. Then
X-C is just one of the components of 7r (YP) and the lifting of p to fi
picks out which component it is.

(iv) Let f : X ~ Y be a proper map. Let {p} be a set of base points
for X such that {f(p)} is a set of base points for Y and f : {p} ~ {f(p)}
is a bijection. Let - be a covering functor for Y. We shall define the
induced covering functor f*(~) on X. Although the construction of
f*(~) involves some ambiguity, the equivalence class of f*(~) is well
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determined and it is in this sense we speak of ’the’ induced covering
functor.

Choose a cofinal sequence 0 = Do c Dl ce ... of compacta in Y.

Given p E {p} and any compactum C in X let

where k is the largest integer such that f(X-C) c Y-Dk. The 03C0*(C,p)
are the subgroups which define f*(~ ).
From now on we shall not distinguish between equivalent covering

functors.

The induced morphisms.
Let f : X ~ Y and {p} be as in (iv) above. The induced morphisms

and

are induced by the morphisms

where the Dk are as in (iv).
The rest of this section lists the examples of the d-construction used

in this paper and states some of their general properties.

The absolute groups.
In each of the following examples it suffices to define the G(C, p).

The morphism G(D, p) ~ G(C, p) is induced by X - D ~ X - C. We
adopt the convention that whenever p ~ X - C then G(C, p) = trivial
group. For the d-group in each example use the notation as indicated.

Let

Let

The relative groups.
Let A 4 X be a properly 0-connected inclusion. This allows one to

choose a set of base points {p} for A which is also a set of base points
for X. Let - be a covering functor on X and ne : X - C ~ X - C be the
associated covering maps (strictly speaking the range of ne is a connected
component Yp of X - C containing a base point p ~ {p} and ne depends
on p). Let A - C denote 03C0-1c(Yp n (A - C)).
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Let

Let

Let where as in

modulo the action of

Let

Note that in example (2.7) the Li construction gives a pointed set for
k = 1 and groups for k ~ 2. Example (2.10) gives a pointed set.
The following general properties of the d groups are analogous to

those which hold in ordinary homology and homotopy.

THEOREM 2.11. Let f : X ~ Y be a proper homotopy equivalence. Let
~ and - be covering functors of X and Y respectively such that - is

equivalent to f * ( - ). Let G = nk or Hk. Then ef* and df* are isomorphisms.
An inclusion A  X is properly n-connected provided it is properly

0-connected and 0394(X, A; {p}; nk, no cov) = 0 for 1 ~ k ~ n. Here
’no cov’ is the covering functor in example (i).

In (2.12) below we set

etc.

THEOREM 2.12. Let (X, A) be properly 1-connected and let be a covering
functor on X. Form 039403C0k(A) with respect to the covering functor on A induced
by the inclusion A y X. Then there is a long exact sequence

Similarly there is a long exact sequence using the 0394-homology groups
of (2.6).
REMARK. For simplicity we have assumed that (X, A) is properly

1-connected. When this is not the case it is possible to define 11 functors
which extend the sequence to the right several terms. Also (2.12) and
(2.11) hold for any homotopy functor. See [7].
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In the next theorem set 039403C0’k(X,A) = 0394(X, A; {p}; 03C0’k ~) and

0394hk(X, A) = 0394(X, A; {p} Hk, ~). The ordinary Hurewicz homomorphism
induces a Hurewicz homomorphism

THEOREM 2.14. (Proper Hurewicz Theorem. c.f. [6, p. 397]). Suppose
(X, A) is properly n-connected (n ~ 1). Let - be any covering functor.
Then 0394hk(X, A) = 0 for 1 ~ k ~ n and

is an isomorphism. Conversely, if A  X is properly 0-connected, A and
X are properly 1-connected (i. e. 0394(A, {p}; 1tl, no cov) = 0 and similarly
for X), and there is an n ~ 1 with dh(X, A) = 0 for 1 ~ k ~ n, then

(X, A) is properly n-connected and there is an isomorphism

THEOREM 2.15. Suppose 0394(A, {p}; 03C01, -) = 0 where ’-’ is the

covering functor on A induced by a covering functor - on X. Then for
k ~ 2 there is an isomorphism

EXAMPLE 2.16. Suppose that the composite map

is a monomorphism. Let ~ be the covering functor of X obtained from
the universal covering space of X as in (iii). Then 0394(A, {p} ; 03C01, - ) = 0,
so Theorem 2.15 applies. For example, suppose A and X each have one
stable end (c.f. [4]) with fundamental groups 1tl Ba and 1tl Bx respectively.
Suppose that 03C0103B5a ~ 03C0103B5x and 03C01A ~ 03C01X are isomorphisms and that
03C0103B5a ~ 03C01A is a monomorphism. Then (*) holds.

EXAMPLE 2.17. Let - = universal covering functor of X as in example
(ii). Suppose that 0394(A; {p}; 03C01, no cov) - d (X, {p}; 03C01, no cov) is a
monomorphism. Then 4(A, {p}; 03C01, -) = 0 because 0394(X, {p}; 03C01,
univ cov) = 0.

THEOREM 2.18. Suppose that

is an isomorphism. Let - be any covering functor of X. Then the natural
homomorphism


