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1. Introduction

Our object is to present simplified and more conceptual proofs of some
theorems of Hurley [3, 4] on ’Chevalley algebras’ over commutative
rings, and simultaneously to generalise his results. Our methods are

derived from Jacobson [5 ] p. 109, Kaplansky [6] p. 150 and were used by
us in [9]. It turns out that [9] can be modified to cover the present situa-
tion ; and for reasons of compatibility we shall follow the notation of that
paper.

Hurley starts from the theorem of Chevalley [2] that every finite-dimen-
sional split semisimple Lie algebra L over a field of characteristic zero
has a basis with respect to which the structure constants are integers -
the so-called Chevalley basis. Thus the Z-module generated by this basis
has a natural ring structure; we denote the ring by Lz. Interpreting the
structure constants as elements of a commutative ring-with-1 R we
obtain the Chevalley algebra LR which is a Lie algebra over R. Clearly
LR g:; R Q Lz, where the tensor product is over Z.

Suppose now that L is simple. What conditions on R will ensure that
every Lie ideal of LR arises as J Q Lz for an ideal J of R? The main
theorem of Hurley [3 ] states that if 2 and 3 are not zero-divisors in R then
a necessary and sufficient condition is that two integers should be in-
vertible in R, namely: the determinant of the Cartan matrix of L, and
the square of the ratio of the lengths of long and short roots in L. The
proof given in [3] involves detailed calculations using a Chevalley basis.

In another paper [4] Hurley shows that a necessary and sufhcient
condition for LR to have a composition series of ideals is that R should
have a composition series of ideals. In these bare terms the result is rather
easy to prove, as we shall show. Of course, [4] provides much detailed
information about Chevalley algebras which is not obtainable from the
more general viewpoint of the present paper.

2. Notation and terminology

We shall show that Hurley’s results are typical of the general situation
of a tensor product R(8)B where B is a certain special kind of (non-asso-
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ciative) ring, having properties closely allied to central simplicity. In
order to state our theorems concisely we must introduce some terminol-
ogy.
From now on the terms ’ring’, ’algebra’, and ’ideal’ will be interpreted

in the non-associative sense unless suitably qualified.
Let B be a ring, with additive group B+. Let C(B) denote the (associa-

tive) ring of endomorphisms of B+. The multiplication ring M(B) is the
associative subring of C(B) generated by the right and left multiplications

for all b e B.

We shall usually assume that B satisfies the following hypothèses :

(H1 ) B+ is a finitely generated free Z-module.

(H2) Q0B is a central simple Q-algebra.

In H2 (and elsewhere) the tensor product is over Z. The Chevalley algebra
Lz certainly satisfies Hl ; and it is well-known that it also satisfies H2.
(By direct computation (exactly as in section 4) it follows that the multi-
plication algebra of Q~LZ is the full algebra of endomorphisms, which
obviously implies central simplicity of Q~LZ.)

Notice that if Hl holds, then Q~B is finite-dimensional.
We shall also work with a second ring R, which will satisfy

(H3) R is a commutative associative ring-with-1.

Given a set 03C0 of primes we shall say that R is 03C0-regular if every p ~ 03C0
is invertible considered as an element of R ; and R is n-singular otherwise.
If 03C0 = {p} we use the terms p-singular, p-regular.

For any ring T we let I(T) denote the set of ideals of T. There is a
natural map

defined by r(J) = JOB for JE I(R). We seek conditions under which i
is a bijection.

3. Relevant Primes

In one direction, our results will follow from:

THEOREM 3.1. Let R and B satisfy hypotheses Hl, H2, H3. Then there
exists an integer À &#x3E; 0 such that
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For such an integer À, every ideal I of RQB satisfies

for a suitable ideal J of R.

PROOF: We modify the proof of the ’Sandwich Lemma’ of [9].
Let M = M(B), C = C(B), WèQ = M(Q~B). Let {p03B1} be a set of free
generators for B+, where oc runs through a finite index set A. Such
generators exist by Hl. By H2, Q~B is central simple; so by Jacobson’s
Density Theorem we can find elements t03B103B2 e MQ (a, f3 e A) such that

By multiplying together the denominators of the coefficients involved
in the expression of t03B103B2 in terms of (p03B4)L and (p03B4)R (03B4 e A) we can find
integers Àap &#x3E; 0 such that

If we set

then the elements

lie in fl, and

Now let I be any ideal of R~B, and let J be the ideal of R generated by
the coefficients m of elements

of I. The ma are uniquely determined since RQB is a free R-module (by
Hl). The elements of J take the form ¿mar for all possible a E A,
mEI, rER.
As in the first part of the proof of lemma 2.1 of [9] we can develop

from the v03B103B2 elements w,,,.8 E M(R~B) such that if a, b E R then

for all a, 03B2 E A. It follows that I contains 03BBJ~B. Clearly I is contained
in J(8)B.
We now define the set 03C0 of relevant primes for B to be the set of prime

divisors of the smallest integer &#x3E; 0 for which fl(B) contains 03BBC(B).
We may then draw the following:
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COROLLARY 3.2. Let R, B satisfy hypotheses HI, H2, H3; and let n be the
set of relevant primes for B. Then n is a finite set. If R is n-regular, then
the natural map

is a bijection. 

PROOF: Since R is 03C0-regular, 03BB is invertible. But then 03BBJ = J.
This corollary may be seen as a qualitative version of half of theorem

3.3 of Hurley [3]. In the next section we discuss how it may be made
quantitative; and in section 5 we consider the other half of his theorem.

4. Some computations

To find the relevant primes for Chevalley algebras we must compute
a suitable integer À, but in the most economical fashion possible. Hurley’s
calculations in [3], can be interpreted as choices of the elements t03B103B2 re-
quired for theorem 3.1, and yield:

PROPOSITION 4.1 If B = Lz is a Chevalley algebra, then the relevant
prinles are

(a) The prime divisors of det(C), where C is the Cartan matrix,
(b) The ratio of the squares of the lengths of long and short roots, if this

is not 1.

It is easy to see that the set of relevant primes consists at most of 2, 3,
and the divisors of det (C), and we sketch the proof.
We take {p03B1} to be a Chevalley basis for the simple Lie algebra L.

In the notation of Hurley [3] ] it consists of {hi} U {er} where i runs
through a system of fundamental roots, r runs through a system of
roots, and the multiplication is given by

The structure constants Nrs and c(r, s) are integers of absolute value
~ 3, and Nrs = 0 if r + s is not a root. The Cartan matrix of L is the
matrix C = (c(i,j)) where i, j run through a system of fundamental roots.

If r and s are roots there is a sequence of roots r1, ···, rk such that

and such that each
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(i ~ k) is a root, by [3] 4.1. So

for a non-zero integer K, which is a product of certain Htu.
Let p be the highest root, and let r be any root. As above we can find

r1, ···, rk such that

Since adding a root ri preserves the ordering of the roots, we know that
for all roots s &#x3E; r we have

Therefore the element

sends er to K’h p , where K’ is a product of structure constants, and kills
all the other basis vectors.

Now the elements ese-s map each et to a scalar multiple, and map ht
to c(t, s)hs . Hence some integer linear combination of these maps h. to
det(C)hi for any chosen i. Finally, hi may be mapped by es to c(s, i)es .
By composing the above maps we can find an element of fl(Lz) mapping
e,. to an integer multiple of any given basis vector and annihilating all
other basis vectors. The integer concerned will be a product of det(C)
and certain structure constants.

In a similar manner we can find an element of fl(Lz) with the analogous
effect on hi. So we can find an integer of the form 2’3 bdet(C), and so
may take x to be a subset of {2, 3} ~ {divisors of det(C)}.
To get exactly Hurley’s results involves traversing the root system in

a more careful manner; and this is essentially what is done in [3]: for
example see section 4.2 of that paper.

5. Bad Primes

Assume that B satisfies hypotheses Hl, H2. A prime p is a bad prime
for B if ZpQB is not a simple Zp-algebra. It follows immediately that if p
is a bad prime and t is any field of characteristic p, then

is not simple; so the natural map i : I(f) ~ I(~B) cannot be a surjec-
tion.

The next result, though quite simple, is decisive for our purposes.
THEOREM 5.1. Let B,R satisfy hypotheses Hl, H2, H3. Suppose that p

is a bad prime for B, and R is p-singular. Then the natural map

is not surjective.
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PROOF: Since R is p-singular, pR is a proper ideal of R. N’ow R has an
identity, so we may find a maximal ideal K of R such that K contains pR.
Then R/K is a field f of characteristic p. The quotient

(R~B)/(K~B)
is isomorphic to ~B. Since p is bad, this quotient ring is not simple;
therefore there is an ideal I of RQB such that KOB $ I $ ROB. Since
K is maximal, i cannot be surjective.

This result shows that every bad prime is relevant. If the converse also
holds, we have a characterisation theorem:

THEOREM 5.2. Let B,R satisfy hypotheses H1, H2, H3. Suppose that
every relevant prime for B is bad. Then the natural map ’1: I(R) ~ I(RQB)
is a bijection if and only if R is 03C0-regular, where n is the set of relevant
primes.

Steinberg [8] ] (p.1120) discusses the simplicity, or otherwise, of the
algebras ~LZ where f is a field of characteristic p &#x3E; 0. From his re-
marks on page 1121, together with the known non-simplicity of the Lie
algebra of type Ar over a field of characteristic p dividing l + 1, it follows
that when B = Lz the bad primes are precisely the relevant primes
described in proposition 4. l. Thus 5.2 applies and we recover theorem 3.3
of Hurley [3 ] in its entirety.

If B is an n x n matrix ring over Z then there are no relevant or bad
primes, and we recover the well-known result that under hypothesis H3
the ideals of the matrix ring over R are in bijective correspondence with
the ideals of R under the natural map. (See e.g. McCoy [7], p. 37).
The question of whether in general the relevant primes are bad is still

open.

6. Composition Series

In [4] ] Hurley considers composition series of ideals in Chevalley
algebras, and proves that LR has such a composition series if and only if
R has a composition series of ideals. It should be remarked that ’ideal’
here must be interpreted as ’R-algebra ideal’, that is, ’ring ideal and
R-submodule’. For if we take L to be of type An and R a field of character-
istic p|n+1, then the Chevalley algebra R~LZ is the algebra of

(n+1)(n+1) matrices of trace 0 over R; and any additive subgroup of
the centre, which consists of the scalar matrices, is a ring ideal. Now R,
being a field, has a composition series of ideals; but we can easily choose
R so that R+ has neither maximal nor minimal condition on subgroups,
and hence RQLZ has no composition series of ring ideals.
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It is therefore necessary to consider only R-algebra ideals. Now if R
does not have a composition series then ROB certainly does not have a
composition series (see Hurley [4] p. 430). But it is well-known that if R
is a commutative associative Artinian (Noetherian) ring then any

finitely-generated R-module is Artinian (Noetherian); see for example
Atiyah and MacDonald [1], or Zariski and Samuel [10] p. 158. From this
we immediately have :

PROPOSITION 6.1 Let B, R satisfy hypotheses H1, H2, H3. Then ROB
has a composition series of R-algebra ideals if and only if R has a coniposi-
tion series of ideals.
Note that theorems 3.1 and 5.2 refer to ring ideals.

7. Extending the Results

The bad primes for a simple Lie algebra of type An are the prime
divisors of n + 1. If B is the corresponding Chevalley algebra over Z,
and f is a field of characteristic p dividing n + 1, then ~B has non-
trivial centre, so is not simple. However, the central quotient, say K,
is simple, indeed central simple. In contrast to this, the bad primes for
the other classical Lie algebras have a much more drastic effect on the
structure of the tensor product.
For any commutative associative ring-with-1 R, we have pR~K = 0.

It is therefore reasonable to confine our attention to rings R such that
pR = 0, which are therefore algebras over Zp. By Kaplansky [6] p. 150
it follows that the natural map r : I(R) ~ I(R~K) is a bijection,
although p is certainly not invertible in R! Thus by passing to the central
quotient we may recover good behaviour of the ideals in the case of An .
We may also consider what happens if R does not have an identity.

We can still define R(DB; and by the methods of [9] it follows that with
03BB as before every ideal of ROB lies between JOB and 03BBJn~B for an
ideal J of R and an integer &#x3E; 0. Using this and the induction argument
of [9] theorem 4.1 we may show that every subideal (with the obvious
definition) of ROB lies between JO B and 03BBrJn~B for suitable r, n &#x3E; 0

and an ideal J of R. Returning to the case where R has an identity, and
assuming 03BB invertible in R, then every subideal of ROB lies between
JOB and Jn~B. It is now possible to carry over most of the results of
[9] sections 4 and 5; in particular to give examples of Lie rings in which
the join of any pair of subideals is a subideal, or which satisfy the maxi-
mal condition on subideals.
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