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1. Introduction

The function sin (s) of the complex variable s possesses the remarkable
property that all its zeros are located on the real axis. The reason for
this phenomenon becomes apparent when the function sin (s) is defined
as an exponential polynomial by the formula

From this identity we easily observe that if so = uo+ito is a zero of

sin (s) = 0, then

which implies that to = 0. An equally remarkable phenomenon occurs
for the exponential function eS which does not vanish anywhere in the
finite part of the plane.

Questions concerning the existence and location of zeros of functions
like sin (s) and eS which are defined by linear combinations of exponen-
tial functions have received a considerable attention in the past fifty
years. More generally. the emphasis has been on the investigation of the
geometric position and asymptotic distribution of the zeros of functions
defined by exponential polynomials of the type

where the frequencies Otk are complex numbers and the Ak(s) are polyno-
mials in s. Through the efforts of several mathematicians we now pos-
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sess a fairly complete knowledge of the global position of the zeros of the
exponential polynomial ~(s). The most interesting results in this direc-
tion were first obtained by Pôlya [8]. His results were subsequently im-
proved by Schwengler and others. See the survey article of Langer [6]
where Pôlya’s work and other related topics are discussed. The question
of the asymptotic distribution of the zeros of the exponential polynomial
~(s) is closely related to the geometric position of the zeros and has been
extensively treated since the work of Pôlya. In recent years there has been
a resurgence of interest on these questions. First in the hands of Turân
who studied exponential polynomials of the type (1) in connection with
his work on the Riemann zeta function. Secondly in the work of Dickson
[4] which gives a refinemenent and simplification of the ideas of Pôlya.
In a recent paper Tijdeman [10] improved further the results of (Dancs
and) Turàn and also simplified their proof.
The many results that have been established concerning the position

and distribution of the zeros of the exponential polynomial ~(s) do not
yet explain the phenomenon we described earlier to the effect that all
the zeros of the function sin (s) are real. For a long time it had been known
(see Wilder [12] and Tamarkin [9]), and follows easily from the work
of Pôlya that the zeros of the exponential polynomial ~(s) are located in
strips parallel to the imaginary axis if it is assumed that the coefficients
Ak(s) are complex constants and the frequencies oCk are all real. The aim
of this paper is to give a precise description in this case as to where are
the strips of zeros of the exponential polynomial ~(s) located, and what
is the position of the zeros within the strips. See statement of Main Theo-
rem in § 2. Throughout our work we assume that the exponential poly-
nomial is of the form

where the Ak are non-zero complex constants and the frequencies ak are
m real numbers for which 1, 03B11, ···, oc. are linearly independent over the
field of rational numbers. One of the main results we prove is that the
real parts of the zeros of ~(s) are dense in those intervals of the real line
which lie entirely inside a strip of zeros. The extension of our results to
exponential polynomials of the type (1) with the Ak(s) not necessarily con-
stant seems difficult to obtain.
The theorem we prove can also be looked at as giving a sufhcient con-

dition for the location of the zeros of an exponential polynomial in a given
strip of the s-plane. In this sense our result resembles the Fundamental
Theorem of algebra to the effect that any non-constant polynomial has
roots. In this respect we should also mention that the fact that an ex-
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ponential polynomial in more than one term has zeros follows readily
from Hadamard’s Factorization Theorem for entire functions, or from

Pôlya’s Theorem. The latter furthermore gives a description of where the
zeros are located, i.e. on strips perpendicular to the sides that bound the
convex hull generated by the frequencies of the exponential polynomial.
Our main result is somehow weaker than Pôlya’s since it deals with ex-
ponential polynomials whose frequencies satisfy rather restrictive con-
ditions. Nevertheless, for the exponential polynomials under consideration
our main result gives finer information than that which can be extracted
from Pôlya’s result. In fact our main result suggests the following con-
jecture.

Conjecture. Let ~(s) be an exponential polynomial with constant
coefficients and with complex frequencies which are linearly independent
over the rationals. Let S be one of the strips where ~(s) has zeros (the
existence of S follows from Pôlya’s Theorem). Let L be any line inside S
and parallel to the sides of S. The claim is that any e-neighborhood of L
(i.e. a strip of constant width e &#x3E; 0 covering L ) contains an infinite
number of zeros of ~(s).

Broadly speaking we can say that our result on the existence and loca-
tion of the zeros of the exponential polynomial qJ(s) is a direct conse-
quence of the fact that qJ(s) defines an almost periodic function of the
complex variable s.

In the last part of this article we give an application of our results to
showing that a certain number theoretic function has zeros in the critical
strip ot the Riemann zeta function.
The results in this paper arose in connection with the author’s work [7]

on a conjecture of Professor Leon Ehrenpreis (see [5 ] page 320) concerning
the mutual distance between distinct zeros of exponential polynomials.
The author wishes to express his thanks to Professor Ehrenpreis for much
valuable advice. The author is also very grateful to the referee, without
whose many useful suggestions the present paper would have contained
many obscurities.

2. Preliminaries

We start by proving a simple generalization of Euclid’s Theorem on the
inequality of the triangle. We shall later use it to show that under suitable
conditions the exponential polynomial qJ(s) takes small values.

Geometric Principle. Let Al, A2 , ···, Am be m positive real numbers
satisfying the inequalities
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then there is at least one m-sided polygon P(A 1 ,..., Am) whose sides have
lengths A1, A2, ···, Am.

PROOF. Let us index the Ak in decreasing order so that A1 ~ A2 ~ ···
~ Am . The result is trivial if Al = L::’=2Ak. For we might just take as
our m-sided polygon the geometric figure consisting of just two sides,
one of length Al, the other of length L::’ = 2 Ak, the one superimposed on
the other. Let us then assume that A1  03A3mk=2 Ak , and let j be that unique
integer for which

Clearly 3 ~ j ~ m. Now consider the three new positive real numbers

It is easy to verify that B1, B2, B3 satisfy the inequalities (3). Consider
then the triangle P(B1, B2, B3). If j = m, this triangle can be viewed as
an m-side polygon. Suppose that j  m, and adjoin to P(Bl, B2, B3) an
isosceles triangle with base equal to Aj+1 and one of its two equal sides
coinciding with Ai In the resulting configuration drop the old segment of
length Ai. The new figure can now be viewed as a closed ( j + 1 )-sided
polygon. It is clear that after a finite number of steps a closed m-sided
polygon will be reached with sides A1, A2 , ···, Am . This completes the
proof of the Geometric Principle.

In the proof of the main result we shall use the following version of the
Kronecker-Weyl theorem on the uniform distribution of the fractional
parts of the integral multiples of irrational numbers.

THEOREM (Kronecker- Weyl). If 1, OEl, 03B12 , ···, am are real numbers

which are linearly independent over the rational number field, 03B31, Y2, ..., Ym
are arbitrary real numbers, and T and 8 are positive real numbers, then
there exist a real number t and integers pl , ’ ’ ’, pm such that t &#x3E; T and

for k = 1, 2, ..., m.
A proof of this result can be found in most standard works on dio-

phantine analysis; see for example Cassels [3].
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MAIN THEOREM. Assume that 1, rxl, ..., am are real numbers linearly
independent over the rationals. Consider the exponential polynomial

where the Ak are complex numbers. Then a necessary and sufficient con-
dition for ~(s) to have zeros near any line parallel to the imaginary axis
inside the strip I = {03C3+it]03C30  a  03C31 - ~ ~ t ~ ~} is that

for any J with 03C3 + it E I.

In the above theorem, the statement ’zeros near any line inside the

strip I’ is taken to mean that given any u 2 with Jo  u 2  u 1 and 03B5 &#x3E; 0,
an s* = u* + it* can be found such that 03C32 - 03B5  03C3*  03C32 + 03B5 and
~(s*) = 0.
To prove the Main Theorem we shall use a familiar argument from the

theory of almost periodic functions.

3. Proof of Main Theorem

We first prove that the conditions are necessary. Assume that ~(s) has
zeros near any line in the strip I with fixed Re (s) = 6. If the inequalities
(4) hold for this 03C3, we are done. Suppose then that for some j

and consider the function defined by

Clearly this is a continuous function. Therefore the inequality (5) im-
plies that a 03B4 &#x3E; 0 can be found for which f(x) &#x3E; 0 for all x satisfying
03C3 - 03B4  x  03C3 + 03B4. But this would contradict the fact that the equation
cp(s) = 0 had roots near the line Re (s) = 03C3.

To establish the sufficiency part, we now assume that the inequalities
(4) hold and proceed to show that cp(s) = 0 has roots near any line in 7
with 03C30 ~ Re (s) ~ 03C31. We first prove the following lemma.

LEMMA. If the function cp(s) has the properties
(a) It is bounded and analytic for all s with 03C30 ~ Re (s) ~ U1,
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(b) For some U3 with uo 03C33 ~ 03C32 , the line {03C33 + itl- ~ ~ t ~ ~}
contains a sequence ofpoints {03C33 + itn} such that ~(03C33 + itn) ~ 0 as n -+ oo,

(c) There exist positive numbers d and 1 such that on any segment of
the line {03C33 + il - ~ ~ t ~ ~} of length 1 there can be found a point
U3 + it* such that +~(03C33 + it *) ~ d, then g(s) has zeros in any strip

where 03B4 is any positive number.

PROOF oF LEMMA. The idea of the proof consists in constructing a se-
quence of functions which converge to a function that does have a zero
at the point 63 and which does not differ greatly from the original func-
tion. Then with the help of Rouché’s Theorem we deduce that cp(s)
also has a zero in a small circle about 03C33. The proof we give is probably
due to H. Bohr and is included here only for the sake of completeness.
Let us then consider the sequence of functions {~n(s)} defined by CPn(s) =
cp(s+itn) which by (a) is bounded in the rectangle 03C30 ~ Re (s) ::9 Ul,
-l ~ Im (s) ~ 1. By Montel’s Theorem a subsequence {~nk(s)} can be
found which is uniformly convergent in a subrectangle of the form

where b  min (U3 - UO, 03C31-03C33). Let 03C8(s) be the limit of this subsequence.
Clearly assumption (b) implies that 03C8(03C33) = 0. On the other hand 03C8(s)
cannot vanish identically, for otherwise this would contradict the fact
that the subsequence qJnk(s) has a maximum which is bounded away from
zero on any segment of length 1 on the line {03C33 + it| - ~ ~ t ~ ~}.
By regularity, s = 03C33 is an isolated zero and hence, given any e &#x3E; 0, a
positive r  min (ô, 03B5) can be found such that 03C8(s) does not vanish on
the circumference of the circle Is-u31 = r. Now, a ko = k0(03B5) can be
found such that

A simple application of Rouché’s Theorem then shows that each
function

has in the disc |s - 03C33| ~ r as many zeros as 03C8(s) does, hence at least one.
But this is equivalent to saying that the function ~(s) has at least one
zero inside the dis03B8 |s2013(03C33+itnk)| ~ r for each k ~ ko. This completes
the proof of the lemma.
The above result is a very useful tool in investigations concerning the

values taken by analytic almost periodic functions. Here what this Lemma
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does for us is to show that under the conditions of the Main Theorem,
the exponential polynomial cp(s) has zeros near any line inside the strip
I. To prove this we fix a Q and observe that the inequalities (4) and our
Geometric Principle guarantee the existence of some m-sided polygon P
with sides

Let this polygon be drawn on the complex z-plane, and denote its ver-
tices by ao, a1 , ···, am, where we assume that the vertex ao coincides
with the origin. Assume furthermore that the vertices bounding the side
of length |Ak|e03B1k03C3 are ak-1, ak. Suppose that the angle which the side
|Ak|e03B1k03C3 makes at the vertex ak - 1 with the real axis, measured in a counter
clockwise manner, is ~k. Also put Ak = |Ak|ei~k, 0 ~ ~k  2x (k = 1, ···,
m). Consider the sequence of real numbers ?k = ~k - ~k, (k = 1, 2, ...,
m). Let there be given a decreasing sequence of positive real numbers
En &#x3E; 0 and to each of these apply the Kronecker-Weyl theorem to ob-
tain an infinite sequence of m + 1 tuples of integers (tn , p(n)1, ···, p(n)m)
such that

Using now the polar representation z = re" in the z-plane we have on
the one hand

or equivalently

The inequalities (6) then show that

We have thus shown that on the line Re (s) = 03C3, there exist an infinite

number of points 2nt,, for which the exponential polynomial ~(03C3+203C0itn)
- 0 as n - oo. We now show that positive numbers 1 and d can be found
such that on any interval of length 1 on the line Re (s) = U there is some
point s* at which |~(s*)| ~ d. Clearly if such a pair can be found, any
smaller, but positive, d would also do. On the contrary, let us assume that
whatever positive value of 1 is taken and that no matter how small d is,
there is always a to such that |~(03C3+it)|  d for all t in the interval (to,
t0+l). Let us in particular consider the m values taken by ~(s) at the
points
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This gives rise to m equations

Solving these equations for Ake03B1k(03C3+ito) we obtain

where dhk is the (h, k) cofactor of the determinant

But this is a Vandermonde determinant and can easily be evaluated as

We may assume without restriction that 1 is such that any 03B1kl does not
differ from any 03B1jl, (k ~ j) by an integral multiple of 03C0, then we obtain

Similarly

Taking absolute values on both sides of (7) we obtain

But if

then we obtain a contradiction. This then shows that condition (c) of the
Lemma is satisfied. We therefore conclude that the exponential polyno-
mial ~(s) has zeros near any line in the strip I. This completes the proof
of the Main Theorem.

In a subsequent paper we shall show that even when the inequalities
(4) are satisfied on the line Re (s) = 03C3, the exponential polynomial may
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fail to have any zeros on the line Re (s) = cr. A simple example of this
phenomenon is the exponential polynomial

which cannot have real zeros. Here we assume the 03B21, 03B22 , P3 are real
numbers linearly independent over the rational number field.
An interesting consequence of the Main Theorem is that the function

defined by the polynomial

where the summation is taken over all primes p ~ M, (M ~ Mo),
has zeros near any line on the strip 0 ~ Re (s) ~ 1.
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