T. H. Gulliksen

A homological characterization of local complete intersections

<http://www.numdam.org/item?id=CM_1971__23_3_251_0>
A HOMOLOGICAL CHARACTERIZATION
OF LOCAL COMPLETE INTERSECTIONS

by

T. H. Gulliksen

5th Nordic Summer-School in Mathematics,
Oslo, August 5–25, 1970

Let \(R \) denote a local ring with residue field \(k = R/\mathfrak{m} \). Let \(P_R \) be the Poincaré series of \(R \) i.e. the power series

\[
P_R = \sum_{p=0}^{\infty} \dim_k \text{Tor}_p^R(k, k)Z^p.
\]

It is known that \(P_R \) may be written uniquely as a product of the form

\[
P_R = \prod_{i=0}^{\infty} \frac{(1 + Z^{2i+1})^{e_{2i}}}{(1 - Z^{2i+2})^{2i+1}}
\]

where \(e_q(R) = e_q \) \((q = 0, 1, \cdots)\) are non-negative integers only depending on \(R \) (Assmus, Levin). If \(R \) is a local complete intersection (i.e. the \(\mathfrak{m} \)-adic completion of \(R \) is a factor ring of a regular ring \(A \) modulo an \(R \)-sequence) then it is known that \(e_q = 0 \) for all \(q \geq 2 \) (Tate, Zariski). If \(e_2 = 0 \) or \(e_3 = 0 \) then \(R \) is a complete intersection. The case \(e_2 = 0 \) is due to Assmus, the case \(e_3 = 0 \) is due to the author. Cf. [5].

The purpose of this note is to prove the following:

Theorem. If \(e_q(R) = 0 \) for all sufficiently large \(q \), then \(R \) is a local complete intersection.

Notation. The term ‘\(R \)-algebra’ will be used in the sense of Tate [6] i.e. an associative, graded, differential, strictly skew-commutative algebra \(X \) over \(R \), with unit element 1, such that the homogeneous components \(X_q \) are finitely generated modules over \(R \), \(X_0 = 1 \cdot R \) and \(X_q = 0 \) for \(q < 0 \).

\(Z_+(X) \) (resp. \(H_+(X) \)) will denote the set of homogeneous cycles (resp. homology classes) in \(X \) of positive degree.

If \(X \) is an \(R \)-algebra and \(s \) is a homogeneous cycle in \(X \), then \(X\langle S; dS = s\rangle \) or briefly \(X\langle s\rangle \) denotes the \(R \)-algebra obtained from \(X \) by the adjunction of a variable \(S \) which kills \(s \). Cf. [6].
By the Koszul complex over R generated by elements t_1, \cdots, t_n in R we mean the R-algebra obtained from the trivial R-algebra R by the adjunction of variables T_1, \cdots, T_n of degree 1 killing t_1, \cdots, t_n.

Lemma 1. Let X be an R-algebra satisfying

(i) $H_0(X) \approx R/\mathfrak{m}$

(ii) $Z_+(X) \subset \mathfrak{m}X$.

Let $n = \dim \mathfrak{m}/\mathfrak{m}^2$.

Then for all $\sigma \in H_+(X)$ we have $\sigma^{n+1} = 0$.

Proof. Let s be a cycle representing σ.

Let \mathfrak{m} be minimally generated by t_1, \cdots, t_n. By (ii) there exist $x_1, \cdots, x_n \in X$ such that

$$s = \sum_{i=1}^n t_i x_i.$$

By (i) we can choose elements T_1, \cdots, T_n of degree 1 such that $dT_i = t_i$ for $i = 1, \cdots, n$. s is obviously homologous to the cycle

$$s_0 := \sum_{i=1}^n T_i dx_i.$$

Since $T_i^2 = 0$ for all i we have $s_0^{n+1} = 0$, hence $\sigma^{n+1} = 0$.

Definition. Let X be an R-algebra. Define

$$q(X) = \inf \{ r | H_i(X) = 0 \text{ for all } i > r \}$$

$$(\inf \emptyset = \infty).$$

Lemma 2. Let X be an R-algebra satisfying the assumptions (i) and (ii) of lemma 1. Let s be a homogeneous cycle of positive degree in X and put $Y = X \langle S, dS = s \rangle$. Then

$$q(Y) < \infty \Rightarrow q(X) < \infty$$

Proof. Let us assume that $q(Y) < \infty$. We will consider two cases. First assume that $\deg S$ is even. In this case we have an exact sequence of complexes

$$0 \rightarrow X \rightarrow Y \rightarrow 0$$

where i and j are maps of degree 0 and $-\deg S$ respectively. Cf. [6]. Looking at the associated exact homology sequence one sees that $q(X) < \infty$.

Let us now consider that case where $\deg S$ is odd. In this case we have an exact sequence of complexes

$$0 \rightarrow X \rightarrow Y \rightarrow X \rightarrow 0$$

where i and j have degrees 0 and $-\deg S$ respectively and where the con-
necting homomorphism d_* in the associated homology triangle

$$
\begin{array}{c}
H(Y) \\
i_* & \searrow j_* \\
H(X) & \leftarrow & H(X) \\
d_* & & \\
\end{array}
$$

is, up to sign, multiplication by σ, see the proof of theorem 2 in [6]. Now put $n = \dim \mathcal{M}/\mathcal{M}^2$ and $v = \deg \sigma$. Using (1) we obtain for each $r > q(Y)$ an exact sequence

$$H_r(X) \xrightarrow{d_*} H_{r+v}(X) \to H_{r+v}(Y) = 0$$

Hence $H_{r+v}(Y) = \sigma H_r(X)$ for $r > q(Y)$. It follows that

$$H_{r+(a+1)v}(X) = \sigma^{n+1} H_r(X) \quad \text{for } r > q(Y).$$

By Lemma 1 we have $\sigma^{n+1} = 0$. It follows that $q(X) < \infty$.

PROOF OF THE THEOREM: It is enough to prove the theorem for complete local rings, hence we may assume that there exists a regular ring \mathcal{R} and a surjective ring homomorphism $f : \mathcal{R} \to \mathcal{R}$. Put $\mathcal{U} = \ker f$. We may also assume that \mathcal{U} is contained in the square of the maximal ideal \mathcal{M} in \mathcal{R}.

Let a_1, \ldots, a_c be a maximal \mathcal{R}-sequence in \mathcal{U} and let \mathcal{U}' be the ideal generated by a_1, \ldots, a_c. This sequence can be chosen such that it can be extended to a minimal set of generators for \mathcal{U}, i.e. the canonical map $\mathcal{U}' \otimes k \to \mathcal{U} \otimes k$ is injective. Put $R' = \mathcal{R}/\mathcal{U}'$ and let $g : R' \to R$ be the homomorphism induced by $f : \mathcal{R} \to R$.

Now assume that $E_q(R) \neq 0$ for all q sufficiently large. We will show that $\ker g = 0$. It suffices to show that R is an R'-module of finite projective dimension. Indeed, by construction every element in $\ker g$ is a zero-divisor in the ring R'. Hence if $pd_{R'} R < \infty$ it follows from proposition 6.2 in [3] that $\ker g = 0$.

Let \mathcal{E} be the Koszul complex generated over \mathcal{R} by a minimal set of generators for \mathcal{M}. Since $\ker f \subset \mathcal{M}^2$, the rings \mathcal{R}, R' and R have the same imbedding dimension. Thus, putting $E' = \mathcal{E} \otimes_{\mathcal{R}} R'$ and $E = \mathcal{E} \otimes_{\mathcal{R}} R = E' \otimes_{R'} R, E'$ and E will be Koszul complexes generated over R' and R by minimal sets of generators for \mathcal{M}' and \mathcal{M} respectively.

Let s_1, \ldots, s_c be cycles representing a basis for the k-module $H_1(E')$. Put $F' = E' \langle S_1, \cdots, S_c; dS_i = s_i \rangle$. Then F' is a minimal R'-free resolution of k. Consider the R-algebra $F = F' \otimes_{R'} R$ which contains the R-algebra E. Since the map $\mathcal{U}' \otimes k \to \mathcal{U} \otimes k$ is injective, the images of s_1, \cdots, s_c in $H_1(E)$ can be extended to a basis for $H_1(E)$. Indeed, we have a commutative diagram
where the left vertical map is induced by the obvious map $E' \rightarrow E$. Therefore, by the theorem in [4], F can be extended to a minimal R-algebra resolution X of k of the form $X = F \langle \cdots U_i \cdots \rangle$. Since for $q \geq 2 e_q(R)$ is the number of variables of degree $q + 1$ adjoined to F in order to obtain X, and since $e_q(R) = 0$ for all sufficiently large q, X has in fact the form

\[X = F \langle U_1, \cdots, U_r \rangle = F \langle U_1 \rangle \cdots \langle U_r \rangle. \]

for some $r \geq 0$.

Every sub-R-algebra of X containing F satisfies the assumptions (i) and (ii) of lemma 1. Since X is acyclic we have $q(X) = 0 < \infty$. Hence, using lemma 2, r times we obtain

\[q(F) < \infty. \]

But $H(F) = \text{Tor}^R(k, R)$, hence R has finite projective dimension over R'.

Remark. In [1] André defines homology groups $H_i(A, B, W)$ where B is a commutative algebra over a commutative ring A, and W is a B-module. For a local ring R with residue field k he defines the simplicial dimension of R as follows

\[s\text{-dim } R = \inf \{ r | H_i(R, k, k) = 0 \text{ for } i \geq r \} \quad (\inf \emptyset = \infty). \]

In studying the relationship between $\text{Tor}^R(k \cdot k)$ and $H_i(R, k, k)$ we are tempted to conjecture that $e_i(R) = \dim_k H_{i+1}(R, k, k)$ for $i \geq 0$. It would follow from this that the only local rings of finite simplicial dimension are the complete intersection.

REFERENCES

M. André

E. F. Assmus

M. Auslander, D. A. Buchsbaum

T. H. Gulliksen

T. H. Gulliksen, G. Levin

J. Tate

(Oblatum 5–X–1970)

T. H. Gulliksen
Universitetet i Oslo
Matematisk Institutt
BLINDERN, Oslo 3
Norway