A. J. Stam

Local central limit theorem for first entrance of a random walk into a half space

<http://www.numdam.org/item?id=CM_1971__23_1_15_0>
LOCAL CENTRAL LIMIT THEOREM FOR FIRST ENTRANCE
OF A RANDOM WALK INTO A HALF SPACE

by

A. J. Stam

1. Introduction, notations

Throughout this paper the following assumptions apply. Let $X_k = (X_{k1}, \cdots, X_{kd})$, $k = 1, 2, \cdots$, be independent strictly d-dimensional random vectors with common probability distribution F and characteristic function φ. (The bar distinguishes vectors from scalars and strict d-dimensionality means that the support of F is not contained in a hyperplane of dimension lower than d.) The second moments of the X_i will be finite and the first moment vector $\bar{\mu}$ nonzero. We put $S_n = X_1 + \cdots + X_n$, $n = 1, 2, \cdots$,

(1.1) \quad U(A) = \sum_{m=1}^{\infty} F^m(A),

where the exponent denotes convolution. The distribution function of X_{11} if F_1.

We consider the first entrance of the random walk $\{S_n\}$ into the half space $\{\bar{x} : a_1 x_1 + \cdots + a_d x_d \geq t\}$, where $t > 0$. It is essential that the half line $\bar{x} = c\bar{\mu}$, $c > 0$, intersects the boundary of the half space. For convenience of notation we assume that the x_1-axis of our coordinate system has been chosen in the direction of \bar{a}. This implies that we have to assume throughout this paper

(1.2) \quad \mu_1 > 0.

Now let $N(t) = \min \{n : S_{n1} \geq t\}$, and let R_t be the joint probability distribution of

$Z_1(t) - t$, $Z_2(t)$, \cdots, $Z_d(t)$,

where $Z(t) = S_{N(t)}$. It will be shown in section 3 that R_t for $t \to \infty$ satisfies a local central limit theorem, if either F is nonarithmetic – i.e. $\{\bar{u} : \varphi(\bar{u}) = 1\} = \{0\}$ – or X_{1k} is arithmetic with span 1, $k = 1, \cdots, d$.

The approximating probability measure is the product of the well known limiting distribution of $Z_1(t) - t$ and a normal distribution for $Z_2(t)$, \cdots, $Z_d(t)$. The corresponding ‘marginal’ result for $Z_2(t)$, \cdots, $Z_d(t)$ also is derived.
We will need the strict ascending ladder process with respect to the x_1-coordinate, i.e. the random walk $\bar{S}_{n_1}, \bar{S}_{n_2}, \cdots$ in R_d, where n_1, n_2, \cdots are the times at which a strict ascending ladder point occurs in the random walk $S_{11}, S_{21}, S_{31}, \cdots$. We put
\begin{equation}
\bar{Y} = \bar{S}_{n_1}.
\end{equation}

By Wald’s identity for expectations we have, since $E\{n_1\} < \infty$ by (1.2),
\begin{equation}
\bar{v} \overset{df}{=} E\{\bar{Y}\} = \mu E\{n_1\}.
\end{equation}

By H_1 we denote the probability distribution of Y_1.

Let E denote the covariance matrix of the random variables $X_{1j} - \mu_i^{-1}\mu_jX_{11}, j = 2, \cdots, d$ and ε_{ij} the (i,j)-element of E^{-1}. We put
\begin{equation}
Z(x_1, \cdots, x_d) = \exp\left[-\frac{1}{2}\mu_1 x_1^{-1} \sum_{i=2}^{d} \sum_{j=2}^{d} \varepsilon_{ij}(x_i - \mu_i^{-1}\mu_i x_i)(x_j - \mu_j^{-1}\mu_j x_i)\right],
\end{equation}
\begin{equation}
L(x_1, \cdots, x_d) = \mu_1^{-1}(2\pi)^{-\rho}(\text{Det } E)^{-\frac{1}{2}}Z(x_1, \cdots, x_d),
\end{equation}
where
\begin{equation}
\rho = \frac{1}{2}(d-1).
\end{equation}
If x_1 is kept fixed, $\mu_1^{\rho+1}x_1^{-\rho}L(x_1, x_2, \cdots, x_d)$ considered as a function of x_2, \cdots, x_d, is a $(d-1)$-dimensional normal probability density. By C_d we denote the class of continuous functions on R_d with compact support. The indicator function of a set A is written I_A.

Proofs are based on the results obtained in Stam [1].

2. Preliminary lemmas

Lemma 2.1. If F is nonarithmetic and $E|X_{11}|^p < \infty$, then for $g \in C_d$
\begin{equation}
\lim_{x_1 \to \infty} \left\{x_1^p \int g(\bar{z} - \bar{x})U(d\bar{z}) - \mu_1^p L(\bar{x}) \int g(\bar{z}) d\bar{z}\right\} = 0,
\end{equation}
uniformly in x_2, \cdots, x_d.

This is theorem 3.1 of Stam [1], II. We also need theorem 3.2 of the same paper:

Lemma 2.2. If there is a Cartesian coordinate system such that the components of \bar{X}_1 in this system are arithmetic with span 1 and their joint characteristic function ζ satisfies the condition: $\zeta(\bar{u}) = 1$ if u_1, \cdots, u_d are integer multiples of 2π and $|\zeta(\bar{u})| < 1$ elsewhere and if $E|X_{11}|^p < \infty$, then
uniformly in x_2, \ldots, x_d, if \bar{x} is restricted to lattice points of U.

Lemma 2.3. If F satisfies the conditions of lemma 2.1 and $g(\bar{x}) = I_{a,b}(x_1)g_1(\bar{x})$ with $g_1 \in C_d$, then (2.1) holds for g.

Proof. We may write $g = h + h_1$ with $h \in C_d$ and $|h_1| \leq h_2 \in C_d$. Then

\[
\lim_{x_1 \to \infty} \{x_1^d U(\{\bar{x}\}) - \mu_x^d L(\bar{x})\} = 0,
\]

uniformly in x_2, \ldots, x_d, if \bar{x} is restricted to lattice points of U.

Since $L(\bar{x})$ is bounded, we may choose h, h_1 and h_2 so that

\[
\mu_x^d L(\bar{x}) \int h_2(\bar{z}) d\bar{z} < \varepsilon/4.
\]

Then

\[
\mu_x^d L(\bar{x}) \int h_2(\bar{z}) d\bar{z} \leq \mu_x^d L(\bar{x}) \int h_2(\bar{z}) d\bar{z}
\]

and the lemma follows from (2.2), (2.3), (2.4) and lemma 2.1.

Lemma 2.4. The random variables Y_1, \ldots, Y_d of (1.3) have finite second moments. If $\mu_j = 0$, $j \geq 2$,

\[
\text{cov} (Y_j, Y_k) = E\{ n_j \} \text{cov} (X_{1j}, X_{1k}), \quad j, k = 2, \ldots, d.
\]

See theorems 1.2, 1.4, 1.5 of Nevels [2].

Lemma 2.5. The covariance matrix of the random variables $Y_j - v_1^{-1} v_j Y_1$, $j = 2, \ldots, d$, is $E\{ n_1 \} \cdot E$, where E is defined as in section 1.

Proof. By (1.4) we have $v_1^{-1} v_j = \mu_1^{-1} \mu_j$. So

\[
Y_j - v_1^{-1} v_j Y_1 = \sum_{k=1}^{n_1} W_{kj},
\]

where $W_{kj} = X_{kj} - \mu_1^{-1} \mu_j X_{k1}$ has expectation zero. The lemma follows from lemma 2.5 by considering the random walk with steps $(X_{k1}, W_{k2}, \ldots, W_{kd})$.

Lemma 2.6. If $E|X_{11}|^2 < \infty$, where $\lambda > 0$, then $E|Y_1|^4 < \infty$.

Proof. See Nevels [2], theorem 1.1.
3. Local limit theorems for R_t

Theorem 3.1. If F is nonarithmetic and $E|X_{11}|^p < \infty$, we have for $g \in C_d$

$$
\lim_{t \to \infty} t^p \left| \int g(x_1, x_2 - a_2, \ldots, x_d - a_d) R_t(d\bar{x}) - \int g(x_1, x_2 - a_2, \ldots, x_d - a_d) \beta(x_1) q_t(x_2, \ldots, x_d) d\bar{x} \right| = 0,
$$

uniformly in a_2, \ldots, a_d. Here

$$(3.1) \quad \beta(x_1) = 0, \quad x_1 \leq 0, \quad \beta(x_1) = v_1^{-1}\{1 - H_1(x_1)\}, \quad x_1 > 0,$$

and q_t is the $(d-1)$-dimensional normal density with covariance matrix $\mu_1^{-1}tE$ and means $\mu_j^{-1}t$, $j = 2, \ldots, d$.

Proof. First we assume that $X_{11} \geq 0$ with probability 1. Since $g \in C_d$, it is sufficient to show that

$$
\lim_{t \to \infty} t^p \int g(x_1, x_2 - a_2, \ldots, x_d - a_d) R_t(d\bar{x}) - t^p q_t(a_2, \ldots, a_d) \int \beta(x_1) g(d\bar{x}) d\bar{x} = 0,
$$

uniformly in a_2, \ldots, a_d. We have

$$
\begin{align*}
&\quad \quad \quad \quad \quad \quad t^p \int g(x_1, x_2 - a_2, \ldots, x_d - a_d) R_t(d\bar{x}) \\
&= t^p \int I_{[t, \infty)}(x_1) g(x_1 - t, x_2 - a_2, \ldots, x_d - a_d) F(d\bar{x}) \\
&\quad + t^p \sum_{m=1}^{\infty} \int I_{(-\infty, t]}(x_1) I_{[t, \infty)}(x_1 + \xi_1) g(x_1 + \xi_1 - t, x_2 + \xi_2 - a_2, \ldots, x_d + \xi_d - a_d) F^m(d\bar{x}) F(d\xi).
\end{align*}
$$

Here the first term tends to zero for $t \to \infty$, uniformly in a_2, \ldots, a_d, since $E|X_{11}|^p < \infty$. The second term may be written

$$
(3.4) \quad T_2 = \int \Lambda(\bar{\xi}, t, \bar{a}) F(d\xi),
$$

where $\bar{a} = (0, a_2, \ldots, a_d)$ and

$$
\begin{align*}
\Lambda(\bar{\xi}, t, \bar{a}) &= t^p \int I_{(-\infty, 0]}(x_1 - t) g(x_1 + \xi_1 - t, x_2 + \xi_2 - a_2, \ldots, x_d + \xi_d - a_d) U(d\bar{x}).
\end{align*}
$$

By lemma 2.3, applied to the function $I_{(-\infty, 0]}(x_1) g(\bar{x} + \xi)$ with ξ fixed,
\[(3.5) \quad A(\xi, t, \bar{a}) = \eta(\xi, t, \bar{a}) + \mu_{\xi} L(t, a_2, \cdots, a_d) \int_{I_{[-\xi, 0]}} g(\bar{z} + \xi) \, d\bar{z},\]

where \(\lim_{t \to \infty} \eta(\xi, t, \bar{a}) = 0\), uniformly in \(a_2, \cdots, a_d\) for fixed \(\xi\). Equivalently
\[(3.6) \quad \lim_{t \to \infty} \zeta(\xi, t) = 0,
\]

for fixed \(\xi\), where \(\zeta(\xi, t) = \sup_{a} \eta(\xi, t, \bar{a})\). We now write
\[(3.7) \quad T_2 = T_3 + T_4,
\]

\[(3.8) \quad T_3 = \int_{I_{[\xi t, \infty]}} A(\xi, t, \bar{a}) F(d\xi),
\]

\[(3.9) \quad T_4 = \int_{I_{[0, \frac{1}{2}t]}} A(\xi, t, \bar{a}) F(d\xi).
\]

Since \(\int g(\bar{z} - \bar{y}) U(d\bar{z})\) is bounded in \(\bar{y}\), we have by (3.4a) and the assumption that \(E|X_1|^p < \infty\),
\[(3.10) \quad 0 \leq \zeta < \frac{1}{2} t.
\]

So (3.4a) and lemma 2.3 show that \(I_{[0, \frac{1}{2}t]}(\xi_1) \eta(\xi, t, \bar{a})\) and therefore also \(I_{[0, \frac{1}{2}t]}(\xi_1) \zeta(\xi, t, \bar{a})\) is bounded by a constant. So
\[(3.11) \quad 0 \leq \zeta < \frac{1}{2} t.
\]

So by (1.5) and (1.6)
\[(3.12) \quad 0 \leq \zeta < \frac{1}{2} t.
\]

And (3.2) follows from (3.3), (3.4), (3.7), (3.8), (3.10) and (3.11).
If $P\{X_{11} < 0\} > 0$, we apply the part of the theorem proved above, to the random walk arising by sampling the S_n-process at the strict ladder times of the process $\{S_n\}$. It is noted that the first entrance of $\{S_n\}$ into the half space $\{x_1 \geq t\}$ necessarily is a ladder point of $\{S_n\}$. The theorem now follows by lemma 2.5 and (1.4). Lemma 2.6 guarantees that the condition on the absolute moment of order ρ of the x_1-component is satisfied.

Theorem 3.2. If F is nonarithmetic and $E|X_{11}|^\rho < \infty$, we have for $h \in C_{d-1}$

$$
\lim_{t \to \infty} t^\rho \left| \int h(x_2-a_2, \ldots, x_d-a_d) R_t(d\bar{x}) \\
- \int h(x_2-a_2, \ldots, x_d-a_d) \eta_t(x_2, \ldots, x_d) dx_2 \cdots dx_d \right| = 0,
$$

uniformly in a_2, \ldots, a_d. Here η_t is the same as in theorem 3.1.

Proof. Since $h \in C_{d-1}$, it is sufficient to show that, uniformly in a_2, \ldots, a_d,

$$
\lim_{t \to \infty} t^\rho \left| \int h(x_2-a_2, \ldots, x_d-a_d) R_t(d\bar{x}) - \eta_t(a_2, \ldots, a_d) \\
\times \int h(x_2, \ldots, x_d) dx_2 \cdots dx_d \right| = 0.
$$

First we assume that $X_{11} \geq 0$. We then start the proof of (3.2) anew at (3.3), where for $g(x_1, \ldots, x_d)$ we now take $h(x_2, \ldots, x_d)$. We obtain (3.4), (3.5), (3.6), since lemma 2.3 applies to the function $I_{(-\xi_1, 0)}(\xi)$ $h(x_2+\xi_2, \ldots, x_d+\xi_d)$ with ξ fixed. To obtain (3.8) and (3.9) we have to take into account the factor $I_{(-\xi_1, 0)}(x_1-t)$ in (3.4a). This means that in the integral in (3.4a) the variable x_1 is restricted to the interval $[t-\xi_1, t)$. We then have in T_3

$$
(3.13) \quad A(\xi, t, \bar{a}) \leq t^\rho \int_{(0,t)}(x_1) h(x_2+\xi_2-a_2, \ldots, x_d+\xi_d-a_d) U(d\bar{x}).
$$

By lemma 2.3, for $m \geq 1$,

$$
\int I_{[m, m+1)}(x_1) h(x_2+\xi_2-a_2, \ldots, x_d+\xi_d-a_d) U(d\bar{x}) \leq c_2 m^{-\rho},
$$

so

$$
(3.14) \quad A(\xi, t, \bar{a}) \leq t^\rho \{c_0 + c_2 \sum_{m=1}^{[t+1]} m^{-\rho}\}.
$$

Therefore $T_3 \to 0$, uniformly, since $E|X_{11}|^\rho < \infty$. For $\rho = \frac{1}{2}$ and $\rho = 1$ we have to appeal to the existence of first and second moments. To apply the Lebesgue dominated convergence theorem to T_4 we note that the
second term on the right in (3.5) is bounded by $c_3|\xi_1|$ with c_3 a constant. In the same way as (3.14) we obtain

$$I_{(0, t)}(\xi)A(\xi, t, \bar{a}) \leq c_4 \sum_{m=-r}^{t+1} m^{-p} \leq c_5|\xi_1|. $$

So $|\zeta(\xi, t)| \leq c_6|\xi_1|$ and (3.9) follows by the existence of first moments. The relation (3.10) also follows and (3.11) is replaced by

$$\int \gamma(\xi, t, \bar{a})F(d\xi) = t^p q_1(a_2, \ldots, a_d) \int h(y_2, \ldots, y_d)dy_2 \cdots dy_d. $$

The relation (3.12) now follows from the counterparts of (3.3), (3.4), (3.7), (3.8), (3.10) and (3.11), if $X_{11} \geq 0$. The proof is concluded in the same way as the proof of theorem 3.1.

Theorem 3.3. Let F satisfy the conditions of lemma 2.2. For $t > 0$ let $\bar{a}(t)$ be a d-vector such that $0 \leq a_1(t) \leq K$ and $t + \bar{a}(t)$ belongs to the F-lattice. Then

$$\lim_{t \to \infty} t^p|R_t(\bar{a}(t)) - v_1^{-1} H_1(E_t)q_1(a_2(t), \ldots, a_d(t))| = 0,$$

uniformly in $\bar{a}(t)$ for fixed K. Here E_t denotes the open interval $(a_1(t), \infty)$ and q_1 the same normal density as in theorem 3.1.

Corollary. If X_{11}, \ldots, X_{1d} are integer valued such that $\varphi(\bar{a}) = 1$ if u_1, \ldots, u_d are integer multiples of 2π and $|\varphi(\bar{a})| < 1$ elsewhere, and if $E|X_{11}|^p < \infty$, then

$$\lim_{h \to \infty} h^p|R_h(\bar{a}) - v_1^{-1} H_1((k_1, \infty))q_h(k_2, \ldots, k_d)| = 0,$$

uniformly in k_2, \ldots, k_d, if h, k_1, \ldots, k_d are integers with $h > 0, k_1 \geq 0$.

Proof. First assume $X_{11} \geq 0$ with probability 1. We have

$$t^pR_t(\bar{a}(t)) = t^p P\{S_1 = t + \bar{a}(t)\} + T_2,$$

where the first term is dealt with by the existence of EX_{11}^p

$$T_2 = t^p \sum_{m=1}^{\infty} P\{S_{m1} < t, S_{m+1} = t + \bar{a}(t)\},$$

$$T_2 = t^p \sum_{m=1}^{\infty} \sum_{\xi} P\{X_{m+1} = \xi\}P\{S_{m1} < t, S_m = t + \bar{a}(t) - \xi\},$$

where ξ runs through points of the F-lattice. Because of the second factor we may write

$$T_2 = t^p \sum_{\xi_1 > a_1(t)} F(\xi)U(t + \bar{a}(t) - \xi_1).$$
By lemma 2.2 we have for fixed ξ

$$t^n U\{t + a(t) - \xi\} = \mu_t^n \mathcal{L}(t, a_2(t), \cdots, a_d(t)) + \eta,$$

where $\eta \to 0$ as $t \to \infty$, uniformly in $a(t)$ if $0 \leq a_1(t) \leq K$, if ξ is kept fixed. The proof now proceeds in the same way as with theorem 3.1. We write $T_2 = T_3 + T_4$ where the sum is taken over the sets $\{\xi_1 \geq 1/t\}$ and $\{a_1(t) < \xi_1 < 1/t\}$, respectively. Handling of T_3 and T_4 requires the same estimations as in the proof of theorem 3.1.

The lattice counterpart of theorem 3.2 is restricted to integer valued X_{11}, \cdots, X_{1d}, since under the more general assumptions of theorem 3.3 the lattice description of $Z_2(t), \cdots, Z_d(t)$ is difficult.

Theorem 3.4. If X_{11}, \cdots, X_{1d} are integer valued, such that $\varphi(\bar{u}) = 1$ if u_1, \cdots, u_d are integer multiples of 2π and $|\varphi(\bar{u})| < 1$ elsewhere, and if $E|X_{11}|^p < \infty$, then

$$\lim_{h \to \infty} h^p |P\{Z_2(h) = k_2, \cdots, Z_d(h) = k_d\} - q_h(k_2, \cdots, k_d)| = 0.$$

uniformly in k_2, \cdots, k_d. Here h, k_2, \cdots, k_d are integers and q_t is the same normal density as in theorem 3.1.

Proof. First take $P\{X_{11} \geq 0\} = 1$. We have

$$h^p P\{Z_2(h) = k_2, \cdots, Z_d(h) = k_d\} = h^p P\{X_{11} \geq h, X_{12} = k_2, \cdots, X_{1d} = k_d\} + T_2,$$

where the first term tends to zero uniformly in (k_2, \cdots, k_d) as $h \to \infty$ since $E|X_{11}|^p < \infty$ and

$$T_2 = h^p \sum_{m=1}^{\infty} P\{S_{m1} < h, S_{m+1,1} \geq h, S_{m+1,r} = k_r, \quad r = 2, \cdots, d\}$$

$$= h^p \sum_{m=1}^{\infty} \sum' \sum'' F^m\{i_1, \cdots, i_d\} F\{j_1, \cdots, j_d\},$$

where \sum' and \sum'' are subject to the restrictions $i_1 < h$, $i_1 + j_1 \geq h$, $i_r + j_r = k_r$, $r = 2, \cdots, d$. So

$$T_2 = h^p \sum_{j_1, \cdots, j_d} F\{j_1, \cdots, j_d\} \sum_{i_1 = h-j_1}^{h-1} \sum_{i_2, \cdots, i_d} U\{i_1, k_2 - j_2, \cdots, k_d - j_d\}.$$

By lemma 2.2 we have for fixed j_1, \cdots, j_d and $h-j_1 \leq i_1 < h-1$

$$U\{i_1, k_2 - j_2, \cdots, k_d - j_d\} = \mu_t^n L(h, k_2, \cdots, k_d) + \eta,$$

with $\lim_{h \to \infty} \eta = 0$, uniformly in k_2, \cdots, k_d.

[8]
The relation (3.15) now follows with (1.5) and (1.6) if passing to the limit in (3.16) under the sum over j_1, \cdots, j_d is justified. This is done by the same methods as in the proof of theorem 3.2.

If $P\{X_{11} < 0\} > 0$ we consider the random walk at the ladder times of the process $\{S_{n1}\}$.

Summary

Let X_1, X_2, \cdots be independent strictly d-dimensional random vectors, with common distribution, with finite second moments and positive x_1-component of the first-moment vector. Let $S_n = X_1 + \cdots + X_n$, $n = 1, 2, \cdots$, $N(t) = \min \{n: S_{n1} \geq t\}$ and $Z(t) = S_{N(t)}$.

If $E|X_{11}|^\rho < \infty$, where $\rho = \frac{1}{2}(d-1)$, the joint distribution of $Z_1(t) - t$, $Z_2(t), \cdots, Z_d(t)$ satisfies a local central limit theorem for $t \to \infty$. The approximating probability measure is the product of the well known limiting distribution for $Z_1(t) - t$ and a normal distribution for $Z_2(t), \cdots, Z_d(t)$. The difference is $o(t^{-\rho})$ as in a local central limit theorem for sums of independent $(d-1)$-vectors.

The theorem is stated and proved for nonarithmetic F and for F restricted to a (rotated) cubic lattice with span 1. A special case of the global version was proved by the author in Zeitschr. für Wahrsch. th. u. verw. Geb. 10 (1968), 81–86.

REFERENCES

A. J. Stam

K. Nevels

(Oblatum 20–X–69, 23–XI–70)