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Introduction

Problems connected with the foundations of mathematics led C. Spec-
tor to consider a certain kind of functional equation. The solution of this
functional equation is provided by a certain principle, the ’principle of
barrecursion". One problem with respect to this functional equation has
up to now remained open, namely to find a family F of functionals with
the property: if the parameters of the equation belong to F then there is a
solution which belongs to F. There is so to speak a weak and a strong ver-
sion of this problem: a) the weak version is that one given above, b) the
strong version requires that the elements of F are constructive in one sense
or the other. Here we propose a solution of the weak problem. More
precisely, we construct two families S’ and K. The first is in essence already
described in [2] but it has the disadvantage that its construction leads
beyond classical analysis. The second, K, is a more elaborate version of S
and its construction remains within the scope of classical analysis. A few
applications of these models are given.

I. A family of functionals of higher types

1.1. Syntax
Our notation follows loosely the one used in [4]. Types are inductively

given as follows: 1) 0 is a type, 2) if 03C31,···, 03C3s, i are types then (03C31,···,
(J’ s/1: ) is a type. For each type 03C3 there is a denumerable list of free variables

Xr, X03C32,···, Y03C31, Y03C32,···; for simplicity we often omit the superscripts.
For every type J there is also a denumerable list of bound variables

B03C31, B03C32, ···, B. In addition we have a symbol À, called abstraction opera-
tor and two kind of brackets, ( , ) and [, ].

1.2. Topologies defined by convergence
Let X be a set on which a notion of convergence, denoted by ~, is

given. By pn ~ p, n = 1, 2, ... we understand that the sequence pl, p2,
... converges against p ; we often simply write pn ~ p. We assume that -
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satisfies the following axioms: 1) if pn ~ p, if k1  k2 ... then

pki - p, 1 = 1, 2, ’ ’ ’, 2) if pn = p with the exception of finitely many
n’s then pn ~ p, 3) if pn, n = 1, 2, ... does not converge against p then
there is a list k1  k2  ·· · such that no subsequence of pk1 , pk2, ···
converges against p, 4) if pn ~ p, pn ~ q then p = q. The pair (X, - )
will be called an L-space. Such spaces have already been investigated
among others by Kuratowski [2, pg. 93]. We refer to axioms 1 )-4) as to
Kuratowski’s axioms. Below we have to consider different L-spaces
(X1, ~1), (X2 , ~2),···, then we often omit the superscripts in ~ 1,
~2,··· and write simply ~ since it will be clear from the context on what
space is supposed to operate.

1.3. Topologies on families of continuous functions
Let (Xi, ~) i = 1, ..., s and (Y, ~) be L-spaces. A mapping f from

Xl x ... x XS into Y is said to be continuous if f (xn1, ···, xns) ~ f(x1, ···,
xs) whenever xni ~ xi, n = l, 2, ’ ’ ’, i = 1, ..., s (with xn and xi all in
Xi for n = 1, 2, ’ ’ ’, i = 1, 2, ’ ’ ’, s). By C(Xl , ’ ’ ’, XS, Y) we denote
the set of continuous mappings from Xl x ... x XS into Y. On C(X1, ···,
Xs, Y) we introduce a notion of convergence according to [2 ] as follows:
if f and fn, n = 1, 2,... belong to C(Xl , ’ ’ ’, Xs, Y) then fn ~ f,
n = 1, 2, ··· iff fn(xn1, ···, xns) ~ f(x1,···, xs) for all xn and xi such that
xni ~ Xi’ n = 1,2, ..., i = 1, ···, S. As shown in [2], (C(X1,···,XS, Y), 
- ) thus defined satisfies axioms 1), 2), 3) above and it is trivial to verify
that axiom 4) is also satisfied. We call the convergence notion just defined
the convergence notion induced by (Xi, ~) i = l, ’ ’ ’, s and (Y, ~) on
C(X1, ···, Xs, Y).
1.4. Continuous functionals for each type
N is the family of natural numbers provided with the following notion

of convergence: xn ~ x iff Xn = x with the exception of finitely many n’s.
We put S(o) = N. Let J be (03C31, ···, 03C3s/03C4) and assume that L-spaces
(S(03C3i), ~), i = 1, ’ ’ ’, s and (S(03C4), ~) have already been defined. Then
we put S(J) = C(S(03C31), ···, S(6S), S(03C4)) and as notion of convergence
on S(6) we take the convergence notion induced by (S(03C3i), -), i = 1,
’ ’ ’, s and (S(03C4), ~) on S(u). Our first goal is to prove
THEOREM 1. The family S = Ua S( (J) is closed under primitive recursion.
THEOREM 2. S is closed under barrecursion of higher type.
The rather trivial proof of th. 1 will be sketched only, while the less

trivial, but still simple proof of th. 2 will be worked out in detail.

1.5. Some properties of S

a) In order to discuss some properties of S and also for later use we
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introduce below the notion of term. Prior to this we list a few functionals

which belong to S. b) Let F ~ S be of type (03C31, ···, 03C303C3/03C4) and 03BC1, ···, f.lt

a list of types. Then there is a G E S with: if Fi E S(03C3i), Gk E S(03BCk) then
G(F1, ···, Fs, G1, ···, Gt) = F(F1, ..., Fs). If 03C3t1, ···, 03C3ts is a permuta-
tion of 03C31, ···, us then there exists a F E S with: F(Ft1’...’ Fts) =
F(Fl , ’ ’ ’, Fs) for all Fi, i = 1, ···, s. The projections P’ E S are given
by: P03C3i(F1, ···, F,) = Fi where 1 ~ i ~ s. The successor function s is
defined as usual by s(x) = x + 1, where x runs over N. c) Let G be of type
(03C31, ···, 03C3s/03C4) and Fi of type (03BC1, ···, 03BCt/03C3i), i = 1, ..., s. Then there is
an H in S of type (,ul , ’ ’ ’, 03BCt/03C4) with the property: H(T1, ···, Tt) =
G(F1(T1,···,Tt),···,Fs(T1,···,Tt)) for all T i = 1,...,t. We say
that H is obtained from G, F1,···,Fs, by substitution. d) Let E03BC be type
p = ((03C31, ···, 03C3s/03C4), 07, , * .., 03C3s/03C4) whose value E(F, G1, ..., Gs) is given
by F(G1, ···, Gs). It is easy to verify that E, belongs to S : if F,, converges
against F and G" against Gi then Fn(Gn1, ···, Gs) converges against
F(G1, ···, Gs) in virtue of our definition of induced convergence notion
(see also [2], pg. 94). e) Now to the notion of term. The definition is in-
ductively : 1) if F ~ S(03C3) then Fis a term of type 03C3, 2) a free variable of
type J is a term of type 6, 3) if T is a term of type (03C31, ···, 03C3s/03C4), if Q is a
term of type 03C3i, i = 1, ..., s then T[Q1, ···, QS ] is a term of type 7:,

4) if T is a term of type i, B a bound variable of type p not occurring in T,
if Y is a free variable of type p then (ÂBSBT) is a term of type (03BC/03C4) (where
SBYT denotes here and below the result of replacing every occurrence of
Y in T by B). Next, let Z1, ’ ’ ’, ZN be a list of free variables of types
03C31,···, 6N respectively (with N = 0 admitted). We write T/Z1, ···, ZN
in order to indicate that the free variables of T occur among the Zi’s.
With each expression T/Z1, ···, ZN we associate an element (T/Z1, ···,
ZN)* belonging to S(03C31, ···, 0" N/7: ) where i is the type of T. The definition
is by induction according to the clauses below; by definition S(03C31, ···,
03C3N/03C4) denotes S( 7:) whenever N = 0. a) If T is F ~ S( 0") then (T/Z1, ···,
ZN)*(Fl , ’ ’ ’, FN) = F. fi) If T is Zi then (T/Zl , ’ ’ ’, ZN)* is P’ with
6 = (03C31, ···, 03C3N/03C3i). y) If T is (ÂBSBQ) with Y and B of type /1, Q of type
i and Y a free variable not occurring in Z1, ···, ZN then (T/Z1, ’ ’ ’, ZN)*
is the welldetermined element G E S of type (03C3i, ···, 03C3N/(03BC/03C4)) given by:
G(F1, ···, FN)(H) = (Q/Z1, ..., ZN,Y)*(F1, ···, FN, H). b) If T is

P[Q1, ···, Qs] and (PIZ1, - ···, ZN)* = G, (Qi/Z1, ···,ZN)* = H, then
(T/Z1, ’ ’ ’, ZN)* is the functional D E S given by: D(Fl , ’ ’ ’, F N)
G(Fl , ···, FN)(H1(F1 , ···, FN), ···, Hs(Fl’ ···, FN)) (that is, D is ob-
tained from G, H1, ···, Hs by substitution). If in particular there are no
free variables in T then we obtain for N = 0 : (P[Q1, ···, Qs])* =
P*(Q*1, ···, Q*s). Our assignment * has a few properties, described by
the following
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LEMMA 1. Let Zal’ ..., Zas be precisely the free variables occurring in T.
Then (T/Zal’ ···, Z03B1s)* (F03B11, ···, (TIZ1 ···, ZN)*(F1, ···, FN).
We omit the easy proof of the lemma which is by induction with respect

to the complexity of T. If in particular T is a constant term then (T/Z1,
..., ZN)*(Fl, ..., FN) does not depend on the Fi’s. We denote this value
by T*. For N = 0 we then have (T/Z1, ···, ZN)* = T*. We note in par-
ticular : if F E S then F* = F. We also have

LEMMA 2. Let T be a term whose free variables are among Zl, - ZN.
Let Q1, ···, Qs be terms without free variables and denote by To the
result of replacing each occurrence of Zi in T by QI, i = 1, ···, s. Then

This proof too is by a straightforward induction with respect to the
complexity of T and hence omitted. For s = N the lemma reduces to:
T* = (T/Z1, ’ ’ ’, ZN)*(Q*1, ···, Q*N). Without danger of confusion we
use the following notation at a few places: for F ~ S of type (03C31, ···,
03C3N/03C4) we write simply (03BBBF[Z1, ···, ZN, B]) in place of (03BBBF[Z1, ···,
ZN, B]/Z1,···,ZN)*.

f) For every type cr there is a distinguished element 0. E S( a) whose
inductive definition is as follows: 1) 00 = 0, 2) if a = (03C3i, ···, 6Sli)
then 003C3(F1, ···, Fs) = 0, for all Fi E S(03C3i). We often write 0 in place of
003C3 whenever it is clear from the context which type 0 is supposed to have.
g) For every J there is an element 03941 in S of type ((0/03C3), 0/(0/03C3)) whose
value for a e S(0/J) is given as follows: 1) 03941(03B1, n)(i) = a(i) for i  n,
2) 03941(03B1, n)(i) = 0 if n ~ i. We writ’e more suggestively: a(n) in place of
03941(03B1, n). h) For every type J there is an element d 2 in S of type ((0/03C3),
0, 03C3/(0/03C3)) whose value for 03B1 ~ S(0/03C3), a ~S(03C3) is given as follows:

1) 03942(03B1, n, a)(i) = a(i) if i  n, 2) A2(ot, n, a)(n) = a, 3) 03942(03B1, n, a)(i)
= 0 if i &#x3E; n. Without danger of confusion we often write a(n) * a in
place of 03942(03B1, n, a). i) There is a 03943 E S of type ((0/03C3), 0, (0/03C3)/(0/03C3))
whose value for a, fi in S(0/J) is given as follows: 1) 03943 (03B1, n, 03B2)(i) = a(i)
for i  n, 2) 03943(03B1, n, 03B2)(i) = fi(i-n) for i ~ n. We often write 03B1(n) * fi
in place of 0394A(03B1, n, 03B2). We write 03B1(n)*a*03B2 in place of 03943(03B1(n)*a,
n+1, 03B2) and a*03B2 instead of E(0) * a * 03B2. Note: 03B1(0)(i) = 0 for all i.

j) Of basic importance are the two lemmas listed below.

LEMMA 3. Let Y of type ((0/03C3)/0) be in S’. Then there isfor every a E S(0/03C3)
an n such that Y(a) = Y(03B2) whenever a(n) = P(n).

PROOF. Assume the contrary. Then there is an a with the property: for

every n there is a Pn E s(0/J) such that 03B2n(n) = a(n) and such that
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Y(03B2n) ~ Y(a). However Pn( n) = a( n), n = 1, 2, ... implies Pn ~ a and
hence Y(fl,,) = Y(a) with the exception of finitely many n’s. This contra-
dicts Y(03B2n) ~ Y(,Y), n = 1, 2, ···.

COROLLARY 1. For every oc there is an n such that Y(5(n) * 03B2) = Y(a)
for all 03B2.

COROLLARY 2. For every k and every a there is an n such that Y(03B1(n) * 03B2)
 n+k for all 03B2.

LEMMA 4. Let F be an arbitrary mapping from N into S(6). Then
F E yS’(O/6).
We omit the obvious proof.

REMARK. In this section we have mostly stated that some particular
functionals belong to S or if some functionals belong to S then some
others belong to S. The proofs are completely trivial and therefore we
have omitted them.

1.6. Proof of theorem 1

In order to prove theorem 1 we show that for every appropriate type
there is a functional J which satisfies the following equations:

(with type compatibility tacitly assumed). For simplicity we consider the
case where just one parameter is present, that is where s = 1. Now it is
evident that there exists a mapping J (of appropriate type) which satisfies
equations 1), 2); what we have to do is to convince ourself that J is indeed
an element of S. This is achieved if we can show: J(n, Fi, Gi, Hi) ~
J(n, F, G, H) whenever Fi ~ F, Gi -+ G, Hi ~ H for i = 1, 2, ···. We

prove this by induction with respect to N. If n = 0 then the statement
reduces to Gi(Fi) ~ G(F). But this is a consequence of our definition of
convergence. Now assume that continuity of J (with respect to G, H, F)
has been proved up to n. Now J(n+1, Fi, Gi, Hi) = Hi(n, Fi, J(n, Fi,
Gi, Hi)). But J(n, Fi, Gi, Hi) converges against J(n, F, G, H) by assump-
tion. Hence Hi(n, Fi, J(n, Fi, Gi, Hi)) converges against H(n, F, J(n, F,
G, H)) in virtue of the continuity of H, whence the statement follows.

II. S is closed against barrecursion of higher type

2.1. Parameters; the barrecursive equations

a) Below it is convenient to use the following notation: 1 ) if F E S is of
type (03C31, ···, 03C3s/03C4) then F(X103C31, ···, X6S) denotes a functional of type r
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depending on the parameters X103C31, ···, X:s’ 2) if F E S is of type (a 1, ...,
03C3s, 03BC/03C4) then 03BBBF(X103C31, ···, X:s’ B) denotes a functional H of type (03BC/03C4),
depending on X103C31, ···, X:s; for given values Gi, i = 1, ···, s H assumes
a certain value Ho given by the equation Ho(G) = F(G1, ···, G,, G)
for all G E S(03BC), 3) single parameters and lists of parameters will also be
denoted by such symbols as Z, z etc; lists of types will be denoted by
capital Greek letters E, 039B etc. Thus if we say that Z is of type 1 we mean
eg. that Z is X103C31, ···, X:s and that f is 03C31, ···, as. The lists Z and ¿ may
be empty. Below we often omit types and assume tacitly that all func-
tionals, variables and parameters appearing in equations or other con-
texts are provided in a compatible way with types.

DEFINITION 1. A functional ç E S is called a barrecursive functional if it

has the following properties: 1) qJ(Z, G, H, Y, x, 03B1(x)) = ~(Z, G, H, Y,
x, a), 2) for all functionals G, H, Y and all values of the parameters Z the
following equations are satisfied:

This equations are supposed to hold for all a E S and x. The natural
number k is arbitrary but fixed and the only constant which enters into
the equations. The types of Z, G, H, Y, a and x are in that order: E,
(E, 0, (0/03C3)/03C4), (1, 0, (0/03C3), (03C3/03C4)/03C4), (03A3, (0/03C3)/0), (0/03C3), 0.

NOTATION. In order not to overburden the notation we often write

cp(x, a) in place of ~(Z, G, H, Y, x, a).
Below we often have to study equations I, II with Z, G, H, Y held

constant. cp is then a function of x and a only. In this case we call cp a
solution of I, II with respect to G, H, Y and Z. If only G, H, Y are held
constant then we call cp a solution with parameters Z of I, II with respect
to G, H, Y. If finally Z, G, H, Y are considered as parameters then we call
cp a solution of I, II with Z, G, H, Y as parameters; cp is then by definition
a barrecursive functional.

There is a variant of definition 1, which will be of importance below,
namely

DEFINITION 2. Let G, H, Y, containing parameters Z, be given; their
types are as in def. 1. Then 9 is said to be a solution with parameters Z
up to 03B1(x) of I, II with respect to G, H, Y if the following holds: 1)
cp(Z, y, fi) = cp(Z, y, 03B2(y)), 2) for all arguments Z, y, 03B2 the following
equations are satisfied:
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otherwise.

REMARK. A solution ç of I*, II* is nothing else than a solution with

parameters Z of I, II but with respect to certain functionals G’, H’, Y’
different from G, H, Y. The parameters Z in I*, II* may of course be
absent. In connection with I*, II* we use the same terminology as with
I, II. A conparison of definitions 1, 2 shows: a solution ç up to E(0) of
I, II with respect to G, H, Y is a solution of I, II with respect to G, H, Y

according to def. 1.

2.2. Transfinite induction
Lemmas 3, 4 permit us to use the principle of bar induction with

respect to functionals Y ~ S of type ((0/03C3)/0).
DEFINITION 3. Let Y E S be of type «01(1)/0) and k an arbitrary number.

A finite sequence {f0,···,fx-1} of elements E S of type J is called
’secured’ with respect to Y, k (to Y if k = 0) iff the following holds: if
a E S(0/03C3) is such that a(i) = fi for i  x then Y(a)  x + k. We call

{f0, ···,fx-1} unsecured otherwise.

REMARK. In this connection we use a somewhat unprecise way of

speaking: we call 03B1(x) secured if {03B1(0), ···,03B1(x-1)} is secured, and
unsecured otherwise. Then we have the following principle of bar induc-
tion (or transfinite induction, as we sometimes say): if A(03B1(x)) holds for
all â(x) secured with respect to Y, k, if moreover (s)A (fl(y) * s) ~ A(03B2(y))
is true for all fl(y) then A(03B3(x)) holds for all  (x).
2.3. Some lemmas

LEMMA 5. Let F ~ S be of type (Z, (0/03C3)/03C4). Then F(Z, 03B1(x) * s) depends
continuously on all its arguments, that is on Z, a, s (and x).

PROOF. Follows from the fact that S is closed against substitution.

LEMMA 6. Let Fn n = 1, 2, ··· and F be of type (03A3, 03C3/03BC) and assume
Fn ~ F. Then ÀBFn[Z, B] ~ ABF[Z, B].

PROOF. We have to show: if Zn ~ Z then ÂBFn(Zn, B) ~ ÀBF(Z, B).
Hence let Xn ~ X be true. Then ÀBFn(Zn, B)(Xn) = Fn(Zn, Xn) and
ÀBF(Z, B)(X) = F(Z, X). But Fn(Zn, Xn) ~ F(Z, X) in virtue of Fn ~ F.
Hence the lemma follows.

REMARK. In virtue of our notation conventions we can read the last

lemma also as: ÀBFn(Zn, B) ~ ÀBF(Z, B) whenever Zn ~ Z.
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LEMMA 7: Let Fn, F in S be of type (1, 03C3/03BC) and let Zn, n = 1, 2, ···
and Z be particular values of the parameters. Assume that for all Xn ~ X
Fn(Zn, Xn) converges against F(Z, X). Then 2BFn(Z,,, B) ~ ÀBF(Z, B).

PROOF. This is a straightforward consequence of our definition of in-
duced convergence.

LEMMA 8. The system I, II of equations without parameters Z admits at
most one solution ~ with respect to G, H, Y.
The proof is by a straightforward bar induction with respect to Y, k

and is omitted. Of crucial importance is the following

LEMMA 9. Let Gn, Hn, Yn, n = 1, 2, ··· and G, H, Y be functionals (of
suitable types) without parameters Z having the following properties: 1)
for every n there is a solution qJn of I, II with respect to Gn, Hn, Yn, 2) there
exists a solution qJ of I, II with respect to G, H, Y, 3) Gn, Hn, Yn converge
against G, H, Y respectively. Then 9n ~ ~.

PROOF. We proceed by transfinite induction with respect to Y, k: if

an(x) converges against â(x) then qJn(x, 03B1n(x)) ~ ~(x, 5(x». Case 1: a(x)
is secured with respect to Y, k. Then 9(x, 03B1(x)) = G(x, a(x» by definition.
Since Yn ~ Y, an(x) ~ 03B1(x) it follows that Yn(an(x» = Y(03B1(x)) for

almost all n’s. Hence Yn(03B1n(x))  x + k for almost all n’s. Hence

(Pn(X, an(x») = Gn(x, an(x» for almost all n’s. But Gn(, an(x» --+ G(x,
03B1(x)) in virtue of Gn ~ G whence the statement follows. Case 2 : The state-
ment holds for all à(x) * a. We distinguish two subcases. Subcase 1:

Y(a(x»  x+k. Then we proceed as in Case 1. Subcase 2: Y(03B1(x)) ~
x+k. Then qJ(x, a(x» = H(x, a(x), 03BBs~(x, 03B1(x) * s)) by definition. As
before Yn(an(x» = Y(03B1(x)) for almost all n’s. Hence ~n(x, 03B1n(x)) is

Hn(x, an(x), 03BBs~n(x, an(x) * s)) for almost all n’s. The inductive assump-
tion is: for all a, if J3n(x+ 1) ~ 5-c(x) * a, then qJn(x+ 1, J3n(x + 1)) ~
~(x + 1, 03B1(x) * a). From this we infer: whenever an(x) --+ d(x) and an ~ a
then (p.(X+ 1, 5n(X) * an) ~ 9(x+ 1, 5(x) * a). According to lemma 7
(or 6) this implies: if 03B1n(x) ~ 03B1(x) then 03BBs~n(x+1, 03B1n(x) s) ~
ÀSqJ(x+ 1, 03B1(x) * s). In virtue of Hn ~ H this implies the convergence of
Hn(x, "n(X), 03BBs~n(x+ 1, 03B1n(x) * s)) against H(x, â(x), 03BBs~(x+ 1, 5c-(x) * s))
whence the statement follows.

LEMMA 10. Let Gn, Hn, Yn and G, H, Y be functionals of suitable types
all containing the parameters Z. Assume that the following holds: 1) for
every n, Z there exists a solution ~nZ of I, II with respect to Gn, Hn, Yn, Z,
2) for every Z there exists a solution qJz of I, II with respect to G, H, Y, Z,
3) Gn ~ G, Hn ~ H, Yn ~ Y. If Zn ~ Z then ~nzn ~ ~z.

PROOF. Consider Zn, n = 1, 2, ... and Z as fixed and assume Zn --+ Z.
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Define Gn, H., Yn’ and G’, H’, Y’ as follows: G’n(x, a) = Gn(Zn, x, a),
H’n(x, 03B1, 03BE) = Hn(Zn, x, 03B1, 03BE), Y’n(03B1) = Yn(Zn, 03B1), G’(x, a) = G(Z, x, 03B1),
H’(x, a, 03BE) = H(Z, x, a, ç), Y’(03B1) = Y(Z, a) for all x, a, ç. Then

Gn ~ G’, Hn’ ~ H’ and Yn’ Y’ in virtue of assumption 3). But ~nZn is a
solution of 1, II with respect Gn, Hn, Y’n while cpz is a solution of 1, II
with respect to G’, H’, Y’. Hence the statement follows from lemma 9.

LEMMA 11. Assume that for every G, H, Y and all values of the parameters
Z there exists a solution of I, II with respect to G, H, Y, Z. Then there
exists a solution cp(Z, G, H, Y, x, a) of I, II; in other words, a solution of
l, II with G, H, Y, Z as parameters exists (everything with respect to a
fixed compatible list of types).

PROOF. Denote by ~{G, H, Y, Z} the solution of 1, II with respect to
G, H, Y, Z. From the last lemma we infer: if Gn --+ G, Hn ~ H, Yn ~ Y
and Zn --+ Z then ~{Gn, Hn, Yn, Zn} ~ ~{G, H, Y, Z}. This means: if

Gn, Hn, Yn, Zn, an converges against G, H, Y, Z, a then ~{Gn, Hn, Yn, Znl
(x, an ) ~ ~{G, H, Y, Z}(x, a). Hence by defining cp(Z, G, H, Y, x, a) =
~{G, H, Y, Z}(x, a) for all G, H, Y, Z, x, a we get the desired solution
cp of 1, II with G, H, Y, Z as parameters.

COROLLARY. Under the assumptions of lemma 11 it follows that the bar-
recursive functional (of a certain type) exists.

PROOF. This is but a restatement of lemma 11.

Hence theorem 2 is proved as soon as we can prove

THEOREM 3. For every G, H, Y without parameters and every 03B1(x) there
exists a solution ~ of I, II up to 03B1(x), that is a solution ofI*, II* with respect
to G, H, Y and 03B1(x).

PROOF. We proceed by induction with respect to Y, k. Case 1: 03B1(x) is
secured with respect Y, k, that is Y(03B1(x)* 03B2)  x+k for all 03B2. Put

~(y, fi) = G(x + y, i(x) * J3(y». Then Y(03B1(x) * J3(y»  x+k ~ x + k + y
and cp thus defined is indeed a solution up to 03B1(x) of 1, II with respect to
G, H, Y. Case 2 : Now assume that 03B1(x) is such that for every z of type 03C3
the following assumption holds: there exists a solution cp z of 1, II up to
03B1(x) * z. We want to construct a solution cp ofl, II up to 5(x). By assump-
tion cpz satisfies the following conditions: 1) ~Z(y, fi) = ~z(y, J3(y»,
2) 1*: ~z(y, J3(y» = G(x + y + 1, cX(x) * z * J3(y» if Y(03B1(x) * z * J3(y»
 x+y+k+ 1, and Il*: = H(x+y+ 1, 03B1(x) * z * 03B2(y), 03BBs~z(y+ 1,
03B2(y) * s)) otherwise. Define G, ,  as follows: 1) G(z, y, fi) = G(x +y + 1,
03B1(x)*z*03B2(y)), 2) (z,y, fi, 03BE) = H(x+y+ 1, 03B1(x)*z*03B2(y), 03BE), 3) (z, 03B2) =
Y(03B1(x) * z * 03B2). The functionals G, il,  are clearly in S. Now cpz is clearly
a solution of 1, II with respect to G, il, f z but with x + k + 1 in place of
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k. In virtue of lemma 10 we have: if zn ~ z, Pn ~ 03B2 then ~zn(y, Pn) ~
CPz(y, 03B2). Define (o as follows: cp(z, y, 03B2) = cpz(y, 03B2). Obviously (o E S.
It follows in particular that (z, 0, 0) depends continuously on z and hence
that 03BBs(s, 0, 0) is an element of S (eg. by specializing lemma 6). Now we
define a functional ç as follows: a) ~(y+ 1, z * 03B2) = (z, y, 03B2(y)),
03B21) cp(O, 03B2) = G(x, a(x» if Y(5(x»  x+k, 03B22) ~(0, 03B2) = H(x, "(X),
03BBs(s, 0, 0)) if Y(03B1(x)) ~ x+k. That cp thus defined is an element in S
follows immediately from the fact that (o is in S. It remains to verify that
cp is indeed a solution up to a(x) of I, II. We distinguish four cases.
A : y &#x3E; 0 and Y(a(x) * f1(y»  x + y + k. Then fl(y) can be written as
z * 03B3(y-1). We have: Y(03B1(x) * z * 03B3(y-1))  (x+1)+(y-1)+k. Ac-
cording to our inductive assumptions about CPz, written in terms of (o,
we have: (z, y-1, 03B3(y-1)) = G(5(x) * z * 03B3(y-1), x+1+y-1). Using
definition a) of cp we infer that equation I* is indeed satisfied by ~.
B : y &#x3E; 0 and Y(a(x) * 03B2(y)) ~ x + y + k. Again we write J3(y) in the form
z * 03B3(y-1). Thus Y(a(x) * z * 03B3(y-1)) ~ x+1 +y-1 +k holds. In view
of our inductive assumption about CPz, written in terms of (o, we
have : (z, y-1, 03B3(y-1)) = H(x+1+y-1 , 03B1(x) x z * x 03B3(y-1), 03BBs(z, y,
03B3(y-1) * s)). Using again definition a) of 9 we infer that equation II* is
satisfied by ç. C : y = 0 and Y(5(x»  x + k. According to 03B21) we have
~(0, 0) = G(x, 03B1(x)), that is cp is indeed a solution of I*. D : y = 0 and
Y(03B1(x)) ~ x+k. By definition 03B22) we have ~(0, 0) = H(x, a(x),
03BB03C3(s, 0, 0)). Now ~(1, z * fi) = (o(z, 0, 0) according to a), therefore

~(1, E(0) * z) = cp(z, 0, 0). Hence ç(0, 03B1(0)) = H(x, 03B1(x), Àsç (1, a(O)
* s)). That is, cp is indeed a solution up to 03B1(x) of I, II with respect to
G, H, Y.

III. Application to an equational calculus

3.1. Syntax

a) In what follows we set up an equational calculus, more or less along
the lines of [3], pg. 225. In order to save symbols we use the elements of S
and the terms constructed with the aid of them as basic symbols of the
calculus. The calculus is only apparently nonconstructive; the reader will
easily recognize that the calculus defined below can be explained in an
entirely finitistic way. We begin with the construction of a subset E of
terms by means of the inductive clauses below. Tl ) S0 ~ E, T2) the suc-
cessorfunction s, given by s(i) = i + 1, is in E, T3) free variables are in E,
T4) the barrecursive functionals of all types, determined by the barresur-
sive equations I, II with k = 0, belong to E, T5) the induction functionals
of all types belong to E, T6) if Ti of type 03C3i, i = 1, ···, s and T of type
(03C31, ···, 03C3s/03C4) are in E then T[T1, ···, Ts] is in E, T7) if T is in E then
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(03BBSBXT) is in E, T8) if T is in E and if its free variables are among Zl, ...,
ZN then (7/Zi, ’ ’ ’, ZN)* is in E. It is easy to see that all primitive recur-
sive functionals of Goedels system T belong to E. In particular all func-
tionals listed under f )-k) in I, 1.5, belong to E. Without danger of confu-
sion we often write 03B1[t] in place of Jijoc, t] and 03B1[t] * q in place of
03942[03B1, t, q] (for terms t, oc, q of appropriate types). Let  be a new sign.
By an equation we understand an expression T  R with T, R terms in E
of the same type. Let Z1, ···, ZN be the free variables which occur in T
or in R. Here and below we denote by 7/Qi ? ’ ’ ’? QN the result obtained
by replacing every occurrence of Zi in T by Qi, i = 1, ’ ’ ’, N:, similarly
with R/Q1, ’ ’ ’, QN. The equation T ~ R is said to be true if (T/F1, ...,
F N)* = (R/F1, ···, FN)* for all Fi E S (where Fi and Qi have the same
type as Zi). We now take some equations as axioms, according to the
clauses below. eq 1 : s[t ] = t+1 is an axiom (t of type 0). eq 2: J[O, F, G,
H] = G [F] and J[t+ 1, F, G, H] = H[t, F, J [t, F, G, H]] are axioms,
with F a list of one or more terms as parameters. eq 3: Let the free varia-
bles of T ~ E be among Zl, ..’, ZN. Then (T/Z1, ···, ZN)* [Q1, ..’, QN]
= T/Q 1, ’ ’ ’, QN is an axiom, where the Qi’s are arbitrary terms (of the
right types of course) and where T/Q1, ···, QN has the same meaning
as above. eq 4: Let X be a free variable different from Z1, ···, ZN. Let T
be a term whose free variables are among Z1, ···, ZN, X; let Q1,···,
QN, Q be arbitrary terms. Then ((03BBBSBXT)/Q1, ···, QN)[Q] --’ T/Q1, ···,
QN, Q is an axiom. eq 5 : T ~ T is an axiom.

Besides the axioms, we have also the rules of inference R, Bl, B2.

R 1: If Tl ~ T2 and a ~ b have been proved then we are permitted to
infer T’1 ’-- T2 where Fi ’-- T2 is obtained from Tl = T2 by replacing an
occurrence of a by b or conversely.

B1: If Y [F, 03B1[t]]+q+1 ~ t has been derived then

can be derived. Here F denotes a list (of type I) of one or several terms as
parameters; oc is a term of type (0/03C3) for suitable (1, t and q are terms of
type 0 and ~, G, H, Y are assumed to have the correct type structures.

B2 : If Y [F, 03B1[t] ~ t + q has been derived, then

can be derived.
In order to indicate that an equation t == q is provable from our axioms

by means of the given rules we write 1- t == q. The equational calculus thus
obtained is denoted by E. The main theorem, which connects truth and
provability is


