S. SANKARAN

Representations of semi direct products of groups

<http://www.numdam.org/item?id=CM_1970__22_2_215_0>
REPRESENTATIONS OF SEMI DIRECT PRODUCTS OF GROUPS

by

S. Sankaran

Introduction

Let G_1 be a locally compact Abelian group, G_2 a locally compact group of continuous automorphisms of G_1. In this paper we characterise all pairs of unitary representations ρ and σ of G_1 and G_2 respectively in a Hilbert space \mathcal{H}, where ρ is cyclic and

$$\sigma(\alpha)\rho(x)\sigma(\alpha^{-1}) = \rho(\alpha[x]), \ \alpha \in G_2, \ x \in G_1. \ \ (\star)$$

A set of necessary and sufficient conditions for a pair (ρ_1, σ_1) to be unitarily equivalent to a pair (ρ_2, σ_2) is given.

It can be shown that the commutation relations (\star) define a system of imprimitivity for the representation σ. In [3] § 14. Mackey investigates these representations, from a different point of view from ours, primarily as an application of his theory of induced representations.

I would like to thank the referee for his helpful comments.

1. Preliminaries

Definition 1.1. Let G be a locally compact group. A unitary representation of G is a homomorphism $\Pi : g \to \Pi(g)$ of G into the group of unitary transformations of a Hilbert space $\mathcal{H}(\Pi)$, such that Π is continuous in the weak topology for operators. A closed linear manifold M is called an invariant subspace for Π if $\Pi(g) \xi \in M$ for all $g \in G$ and all $\xi \in M$. An invariant subspace M is said to be a cyclic subspace for Π if there is an element ξ_0 in $\mathcal{H}(\Pi)$, such that the smallest invariant subspace for Π containing ξ_0 is M. ξ_0 is called a relative cyclic vector for Π. If $\mathcal{H}(\Pi)$ is a cyclic subspace, then Π is said to be cyclic. The intertwining algebra of a representation Π is the set

$$R(\Pi, \Pi) = \{T : T\Pi(g) = \Pi(g)T, \ g \in G\},$$

T being bounded, everywhere defined, linear transformations on $\mathcal{H}(\Pi)$.

Definition 1.2. Let \mathcal{H} be a Hilbert space. A^\ast algebra \mathfrak{A} of (bounded,
everywhere defined, linear) transformations of \(\mathcal{H} \) is called a von Neumann algebra, if \(\mathcal{A} \) is closed in the weak topology for operators. A closed linear manifold \(\mathcal{M} \) is called an invariant subspace for \(\mathcal{A} \), if \(A \xi \in \mathcal{M} \) for all \(A \in \mathcal{A} \) and all \(\xi \in \mathcal{M} \). An invariant subspace \(\mathcal{M} \) is said to be a cyclic subspace for \(\mathcal{A} \) if there is an element \(\xi_0 \) in \(\mathcal{H} \), such that the smallest invariant subspace for \(\mathcal{A} \) containing \(\xi_0 \) is \(\mathcal{M} \). If \(\mathcal{H} \) is an invariant subspace for \(\mathcal{A} \), then \(\mathcal{A} \) is said to be cyclic. The commutant of \(\mathcal{A} \) is the set

\[\mathcal{A}' = \{ T : TA = AT, A \in \mathcal{A} \}, \]

\(T \) being bounded, everywhere defined, linear transformations on \(\mathcal{H} \).

It is easy to prove that a closed linear manifold \(\mathcal{M} \subseteq \mathcal{H}(\Pi) \) (resp. \(\mathcal{M} \subseteq \mathcal{H} \)) is a cyclic subspace for \(\Pi \) (resp. \(\mathcal{A} \)) if and only if there is an element \(\xi_0 \in \mathcal{H}(\Pi) \) (resp. \(\xi_0 \in \mathcal{H} \)) such that the closed linear manifold generated by \((\Pi(g)\xi_0 : g \in G) \) (resp. \((A\xi_0 : A \in \mathcal{A}) \)) is \(\mathcal{M} \).

If \(S \) is a set of elements in a Hilbert space the closed linear manifold generated by \(S \) is denoted by \([s : s \in S]\).

Let \(\Pi : g \mapsto \Pi(g) \) be a representation of a locally compact group \(G \). We shall often use the following well-known results

Lemma 1.1.

(i) \(R(\Pi, \Pi) \) is a von Neumann algebra;
(ii) \(R(\Pi, \Pi)' \) is the smallest von Neumann algebra containing the operators \((\Pi(g) : g \in G) \);
(iii) \(\mathcal{M} \) is an invariant subspace for \(\Pi \) (resp. \(R(\Pi, \Pi)' \)) if and only if \(P \), the projection whose range is \(\mathcal{M} \), belongs to \(R(\Pi, \Pi) \).
(iv) A closed linear manifold \(\mathcal{M} \) is a cyclic subspace for \(\Pi \) if and only if \(\mathcal{M} \) is a cyclic subspace for \(R(\Pi, \Pi)' \).

Definition 1.3. Let \(X \) be a locally compact space, \(\mu \) a finite regular measure defined on the \(\sigma \)-ring of Borel subsets of \(X \). We denote by \(L(X) \) the set of all continuous functions with compact support; \(C(X) \) the set of all continuous functions on \(X \). If \(f \in L(X) \) we denote by \(M_f \) the operator on \(L^2(X, \mu) \) defined by \((M_f h)(x) = f(x)h(x) \), where \(h \in L^2(x, \mu) \).

Lemma 1.2. Let \(\hat{G} \) be a locally compact Abelian group, \(\hat{G} \) the character group of \(G \) and \(\mu \) a finite regular measure defined on the \(\sigma \)-ring of Borel subsets of \(\hat{G} \). The mapping \(M : x \mapsto M_x \), where \((M_x f)(\tau) = x(\tau)f(\tau), f \in L^2(\hat{G}, \mu) \), \(x \in G \) is a cyclic representation of \(G \).

Proof. It is easy to verify that \(M : x \mapsto M_x \) is a weakly continuous unitary representation of \(G \). We shall show that \(M \) is cyclic.

Let \(e \) be the function on \(\hat{G} \), \(e(\tau) = 1 \). Since \(\mu \) is a finite measure on \(\hat{G} \), \(e \) belongs to \(L^2(\hat{G}, \mu) \) and therefore \(x = M_x e \in L^2(\hat{G}, \mu) \) for all \(x \in G \). Denote by \(F \) the set of all finite linear combination of elements...
of G_1. We recall [[4] § 31, cor. 4] that every continuous function on \hat{G}_1 can be approximated uniformly on compact sets by members of F. If f, h_1, h_2 are continuous functions with compact supports and $\varepsilon > 0$, we can find $s \in F$ such that

$$|f(\tau) - s(\tau)| < \frac{\varepsilon}{||h_1|| ||h_2||} \text{ for all } \tau \in k_1 \cap k_2$$

where K_i is the support of h_i. Hence

$$||(M_f - M_s)h_1, h_2|| = \left| \int_{\hat{G}_1} (f(\tau) - s(\tau))h_1(\tau)\overline{h_2(\tau)}d\mu(\tau) \right|$$

$$< \frac{\varepsilon}{||h_1|| ||h_2||} ||h_1|| ||h_2|| = \varepsilon.$$

This is true for all $h_1 \in L(\hat{G}_1)$ and $h_2 \in L(\hat{G}_1)$. Since $L(\hat{G}_1)$ is dense in $L^2(\hat{G}_1, \mu)$, we have proved that $(M_f : f \in L(\hat{G}_1))$ belongs to the weakly closed algebra generated by $(M_x : x \in G_1)$. From Lemma 1.1 (ii) we deduce that $(M_f : f \in L(\hat{G}_1)) \subseteq R(\Pi, \Pi)'$ and therefore from the (iv) of Lemma 1.1, we deduce that $f = M_f e \in [M_x e : x \in G_1]$. That is $L(\hat{G}_1) \subseteq [M_x e : x \in G_1]$. We complete the proof by observing that $L(\hat{G}_1)$ is dense in $L^2(G_1, \mu)$.

Lemma 1.3. Let $\Pi : x \rightarrow \Pi(x)$ be a cyclic representation of a locally compact Abelian group G_1. There is a regular, finite measure μ on \hat{G}_1, and a linear isometry $S : \hat{G}(\Pi) \rightarrow L^2(\hat{G}_1, \mu)$ such that $S\Pi(x)S^{-1} = M_x$, where $M : x \rightarrow M_x$ is the representation of G_1 defined in Lemma 1.2.

Proof. Let ξ_0 be a cyclic element for the cyclic representation Π, and let $\Phi(x) = (\Pi(x)\xi_0, \xi_0)$. There is a positive functional P on $R(G_1)$, the group algebra of G_1, which corresponds to the continuous positive definite function Φ. Since $R(G_1)$ is a commutative Banach algebra, the positive functional P can be represented in the form

$$P(f) = \int_{\Delta} f(\tau)d\mu(\tau).$$

The spectrum Δ of $R(G_1)$ is homeomorphic to $\hat{G}_1 \cup \{L^1(G_1)\}$ and $\mu(\{L^1(G_1)\}) = 0$. Therefore, the measure μ may be considered as a measure defined on $\hat{G}_1[[4] § 31, sec. 3].$

The Gelfand isomorphism theorem allows us to regard P as a positive functional on $C(\Delta)$, where $C(\Delta)$ is the set of all continuous functions on Δ. The positive functional P defines a representation of $C(\Delta)$ which is equivalent to the representation $M : f \rightarrow M_f$ on $L^2(\Delta, \mu)$, where

$$(M_f g)(\delta) = f(\delta)g(\delta), g \in L^2(\Delta, \mu).$$
([4]. ch. 4. § 17]. Since $G_1 \subseteq C(\Delta)$, we obtain a representation $M : x \to M_x$ of G_1 in
\[L^2(\Delta, \mu) = L^2(\hat{G}_1, \mu), \]
where
\[(M_x \gamma)(\tau) = x(\tau) \gamma(\tau). \]
Since the representations M and Π of G_1 define the same representation of $R(G_1)$, namely the representation defined by the positive functional P, the representations M and Π are equivalent. [4] § 29, sec. 3.

2. Semi-direct products

Let G be a locally compact group, G_2 a locally compact group of automorphisms of G such that the mapping $(g, \alpha) \to \alpha[g]$ of $G \times G_2$ into G is continuous in both variables. The semi-direct product $G \otimes G_2$ is the set of all pairs (g, α), $g \in G$, $\alpha \in G_2$, whose group operation is defined by
\[(g, \alpha)(h, \beta) = (gh[\alpha], \alpha \beta). \]
$G \otimes G_2$ is a locally compact group in the product topology. The mapping $g \to (g, \varepsilon)$ where ε is the identity of G_2 is an isomorphism between G and a closed normal subgroup of $G \otimes G_2$. The mapping $x \to (e, \alpha)$ where e is the identity element of G is an isomorphism between G_2 and a closed subgroup of $G \otimes G_2$. Finally, $(g, \alpha) = (g, \varepsilon)(e, \alpha)$. [2] pp. 6-7, 58-59, [3] § 14]. The proof of the following lemma is routine.

Lemma 2.1. Let $\rho : g \to \rho(g)$ and $\sigma : \alpha \to \sigma(\alpha)$ be representations of G and G_2 respectively in a Hilbert space \mathcal{H}. The mapping $\Pi : (g, \alpha) \to \Pi(g, \alpha)$, where $\Pi(g, \alpha) = \rho(g)\sigma(\alpha)$ is a representation of $G \otimes G_2$ if and only if
\[\sigma(\alpha)\rho(g)\sigma(\alpha^{-1}) = \rho(\alpha[g]). \]

In the following pages let G_1 be a locally compact Abelian group, \hat{G}_1 the character group of G_1, G_2 a locally compact group of continuous automorphisms of G_1 such that the mapping $(x, \alpha) \to \alpha[x]$ of $G_1 \times G_2$ to G_1 is continuous in both variables. The group G_2 acts as a group of automorphisms of \hat{G}_1, if we define $[\tau]x$ by the equation $([\tau]x)(x) = \tau(\alpha[x]), x \in G_1$. [2] 26.9.

Definition 2.1. Let μ be a finite Borel measure defined on \hat{G}_1, and for each $\alpha \in G_2$ let μ_α be the measure on \hat{G}_1 defined by $\mu_\alpha(B) = \mu([B]\alpha)$. The measure μ is said to be G_2-quasi invariant if μ_α is absolutely continuous with respect to μ for all $\alpha \in G_2$.

Lemma 2.2. Let μ be a G_2-quasi invariant measure on \hat{G}_1. The mapping
where

$\Pi : (x, \alpha) \rightarrow \Pi(x, \alpha) = \Pi(x, \varepsilon)\Pi(e, \alpha)$,

and

$$(\Pi(x, \varepsilon)f)(\tau) = x(\tau)f(\tau)$$

is a representation of $G_1 \otimes G_2$ in $L^2(\hat{G}, \mu)$.

As the proof consists of a routine verification of the condition given in lemma 2.1, we omit the proof.

Theorem 2.1. Let $\Pi : (x, \alpha) \rightarrow \Pi(x, \alpha)$ be a representation of $G_1 \otimes G_2$ in a Hilbert space $\mathcal{H}(\Pi)$ such that the representation $\Pi(x, \varepsilon)$ of G_1 in $\mathcal{H}(\Pi)$ is cyclic. There is a G_2-quasi invariant measure μ on \hat{G}_2 and a linear isometry S from $\mathcal{H}(\Pi)$ onto $L^2(\hat{G}_1, \mu)$ such that

$$S\Pi(x, \varepsilon)S^{-1}f(\tau) = x(\tau)f(\tau)$$

where $a(\tau, \alpha)$ is a Borel function on $\hat{G}_1 \times G_2$ with the following properties:

i $|a(\tau, \alpha)| = 1$ almost everywhere, and

ii $a(\tau, \alpha_1 \alpha_2) = a(\tau, \alpha_1) a([\tau]\alpha_2), \text{ a.e.}$

Proof. Let $\rho(x) = \Pi(x, \varepsilon)$ and $\sigma(\alpha) = \Pi(e, \alpha)$. Since ρ is a cyclic representation of G_1 in $\mathcal{H}(\Pi)$, it follows from Lemma 1.2 that there is a finite Borel measure μ on \hat{G}_1 and a linear isometry S from $\mathcal{H}(\Pi)$ onto $L^2(\hat{G}_1, \mu)$ such that $S\rho(x)S^{-1}f(\tau) = x(\tau)f(\tau)$. The well-known Stone-Naimark-Ambrose-Godement theorem asserts that there is a projection valued measure $P : B \rightarrow P_B$ on the Borel subsets of \hat{G}_1 to the projections in the intertwining algebra $R(\rho, \rho)'$ such that [[4] § 31. Th. 6]

$$(\rho(x)\xi, \eta) = \int_{\hat{G}_1} x(\tau)d(P_\tau \xi, \eta) \quad (1)$$

for every pair of elements ξ and η in $\mathcal{H}(\Pi)$. Moreover, if ξ_0 is a cyclic element for the representation ρ then the measure μ is equivalent to the measure ν where $\nu(B) = ||P_B \xi_0||^2$. Now

$$(\sigma(\alpha)\rho(x)\sigma(\alpha^{-1})\xi, \eta) = \rho(\alpha[x] \xi, \eta). \quad (2)$$

From (1) we have
(σ(x)ρ(x)σ(α⁻¹)ξ, η) = (ρ(x)σ(α⁻¹)ξ, σ(α⁻¹)η)
= \int_{G_1} x(τ)d(P_τσ(α⁻¹)ξ, σ(α⁻¹)η)
= \int_{G_1} x(τ)d(σ(α)P_τσ(α⁻¹)ξ, η) \tag{3}

Also,

(ρ(α[x])ξ, η) = \int_{G_1} α[x](τ)d(P_τξ, η)
= \int_{G_1} x(τ)d(P_τξ, η) = \int_{G_1} x(τ)d(P_{[\alpha]^{-1}}ξ, η) \tag{4}

It follows from (2), (3) and (4) that

σ(α)P_Bσ(α⁻¹) = P_{[\alpha]^{-1}}. \tag{5}

Now μ(B) = 0 implies ν(B) = 0 and consequently P_Bξ_0 = 0. Since P_B ∈ R(ρ, ρ), the equation 0 = TP_Bξ = P_BTξ = T ∈ R(ρ, ρ)' implies P_BE = 0 where E is the projection on the closed linear manifold generated by (Tξ : T ∈ R(ρ, ρ)')'. However, E = I because ξ_0 is a cyclic element for ρ. Therefore P_B = 0. Thus μ(B) = 0 implies P_B = 0, and from (5) it follows that P_{[\alpha]^{-1}} = 0. That is, μ(B) = 0 implies ν([B]α⁻¹) = 0. Since μ and ν are equivalent, ν([B]α⁻¹) = 0, implies μ([B]α⁻¹) = 0.

Hence μ_{α^{-1}} is absolutely continuous with respect to μ. Since α ∈ G_2 is arbitrary, we have shown that μ is G_2 quasi invariant.

Let

σ_0(α)f(τ) = \sqrt{dμ_α(τ)f([τ]α)}, f ∈ L^2(\hat{G}_1, μ)

and

σ_1(α) = Sσ(α)S^{-1}σ_0(α⁻¹)

where S is the linear isometry S(\hat{\alpha}) → L^2(\hat{G}_1, μ) introduced in the first paragraph of this proof. It is clear that σ_1(α) is a unitary transformation. Now, from the relation σ_0(α⁻¹)M_x = M_{[α]^{-1}x}σ_0(α⁻¹), we have

σ_1(α)Sρ(x)S^{-1}(τ) = Sσ(α)S^{-1}σ_0(α⁻¹)M_xf(τ)
= Sσ(α)S^{-1}M_{[α]^{-1}x}σ_0(α⁻¹)f(τ)
= Sσ(α)xσ_0(α⁻¹)[x]S^{-1}σ_0(α⁻¹)f(τ)
= Sσ(α)xσ_0(α⁻¹)[x]S^{-1}σ_0(α⁻¹)f(τ)
= Sρ(xσ_0(α⁻¹)[x])S^{-1}σ_0(α⁻¹)f(τ)
= Sρ(xσ_0(α⁻¹)[x])S^{-1}σ_0(α⁻¹)f(τ)
= Sρ(xσ_0(α⁻¹)[x])S^{-1}σ_0(α⁻¹)f(τ)
= Sρ(α)S^{-1}σ_0(α⁻¹)f(τ)
= Sρ(α)S^{-1}σ_0(α⁻¹)f(τ)
= Sρ(α)S^{-1}σ_0(α⁻¹)f(τ)
This shows that \(\sigma_1(\alpha) \) commutes with \(S_0(\alpha)S^{-1} = M_\alpha \) and consequently \(\sigma_1(\alpha) \) commutes with the von Neumann algebra generated by \(M_\alpha \). It is known [5 cor. 1.1] that a commutative von Neumann algebra with a cyclic vector is maximal Abelian. Therefore \(\sigma_1(\alpha) \) belongs to the von Neumann algebra generated by \(\{ M_\alpha : \alpha \in G_1 \} \) which is the algebra of multiplication by essentially bounded measurable functions on \((G_1, \mu) \). Hence \(\sigma_1(\alpha)f(\tau) = a(\tau, \alpha)f(\tau) \) where \(a(\tau, \alpha) \) is, for each \(\alpha \) a measurable essentially bounded function of modulus 1. We introduce the operator \(M_\alpha \) in \(L^2(G_1, \mu) \) where \((M_\alpha f)(\tau) = a(\tau)f(\tau) \).

From the equation \(S_0(\alpha)S^{-1} = M_\alpha \sigma_0(\alpha) S_0 \), we obtain \(S_0(\alpha)S^{-1} = M_\alpha \sigma_0(\alpha) \); that is
\[
S_0(\alpha)S^{-1}f(\tau) = a(\tau, \alpha) \sqrt{\frac{d\mu_\alpha}{d\mu}}(\tau)f([\tau] \alpha).
\]

Finally,
\[
S_0(\alpha_1 \alpha_2)S^{-1}f(\tau) = a(\tau, \alpha_1 \alpha_2) \sqrt{\frac{d\mu_{\alpha_1 \alpha_2}}{d\mu}}(\tau)f([\tau] \alpha_1 \alpha_2)
\]
\[
= a(\tau, \alpha_1) \sqrt{\frac{d\mu_{\alpha_1}}{d\mu}}(\tau)f([\tau] \alpha_1, \alpha_2)
\]
\[
\sqrt{\frac{d\mu_{\alpha_2}}{d\mu}}([\tau] \alpha_1)f([\tau] \alpha_1 \alpha_2)
\]
\[
= a(\tau, \alpha_1)a([\tau] \alpha_1, \alpha_2) \sqrt{\frac{d\mu_{\alpha_1 \alpha_2}}{d\mu_\alpha}}(\tau)
\]
\[
\sqrt{\frac{d\mu_{\alpha_2}}{d\mu}}(\tau)f([\tau] \alpha_1 \alpha_2)
\]
\[
= a(\tau, \alpha_1)a([\tau] \alpha_1, \alpha_2) \sqrt{\frac{d\mu_{\alpha_1 \alpha_2}}{d\mu}}(\tau)f([\tau] \alpha_1 \alpha_2).
\]

Since \(S_0(\alpha_1 \alpha_2)S^{-1} = S_0(\alpha_1)S^{-1} \sigma_0(\alpha_2)S^{-1} \) we have
\[
a(\tau, \alpha_1 \alpha_2) = a([\tau] \alpha_1, \alpha_2)\alpha(\tau, \alpha_1), \text{ a.e.}
\]

This completes the proof of the theorem.

Definition 2.2. A Borel measure \(\mu \) on \(G_1 \) is said to be \(G_2 \)-ergodic if
1. \(\mu \) is \(G_2 \)-quasi invariant, and
2. the G_2-quasi-invariant non zero measures on \hat{G}_2 which are absolutely continuous with respect to μ are equivalent to μ.

Theorem 2. Let G_1 and G_2 be as in the paragraph preceding Definition 2.1. Let $\Pi : (x, \alpha) \rightarrow \Pi(x, \alpha) = \rho(x)\sigma(x)$ be a representation of $G_1 \otimes G_2$. If the measure μ defined by the cyclic representation ρ is G_2 ergodic, then Π is irreducible.

Proof. Suppose a closed linear manifold \mathcal{M} of $\hat{S}(\Pi)$ is invariant for Π. Then clearly \mathcal{M} is invariant for ρ and σ. Let E be the projection whose range is \mathcal{M}. E belongs to $R(\rho, \rho)$. The representation ρ being cyclic, the von Neumann algebra $R(\rho, \rho)'$, generated by the operators $\rho(x) : x \in G_1$, is a commutative von Neumann algebra with a cyclic element. Consequently [5], cor. 1.1. $R(\rho, \rho)'$ is maximal Abelian. Therefore $R(\rho, \rho)' = R(\rho, \rho)$. Since every projection of $R(\rho, \rho)'$ is of the form P_B, where $P : B \rightarrow P_B$ is the projection valued measure defined by ρ, there is a Borel set B_0 of \hat{G}_1 such that $E = P_{B_0}$.

Let $\mu_0(B) = \mu(B_0 \cap B)$. Clearly μ_0 is absolutely continuous with respect to μ. We shall show that μ_0 is G_2-quasi invariant. The measure μ is equivalent to the measure ν where $\nu(B) = \sup_{\pi} \nu(B \pi)$. We may for the purpose of this proof assume, without loss of generality, that $\nu(B) = \sup_{\pi} \nu(B \pi)$. From equation (5) in the proof of Theorem 2.1 we have

$$\sigma(\pi) P_{B_0 \cap B} \sigma(\pi^{-1}) = P_{[B_0 \cap B] \pi^{-1}}.$$

However,

$$\sigma(\pi) P_{B_0 \cap B} \sigma(\pi^{-1}) = \sigma(\pi) P_{B_0} P_B \sigma(\pi^{-1}) = \sigma(\pi) P_{B_0} \sigma(\pi)^{-1} \sigma(\pi) P_B \sigma(\pi^{-1}).$$

Now suppose $\mu_0(B) = 0$. Then $\mu(B_0 \cap B) = 0$, and by the G_2-quasi invariance of μ, it follows that $\mu([B_0 \cap B] \pi^{-1}) = 0$. Consequently,

$$0 = ||P_{[B_0 \cap B] \pi^{-1}} \xi_0||^2$$
$$= ||P_{B_0 \cap [B] \pi^{-1}} \xi_0||^2$$
$$= \mu(B_0 \cap [B] \pi^{-1}) = \mu_0([B] \pi^{-1}).$$

Since π in G_2 is arbitrary, we have shown that μ_0 is G_2-quasi invariant. The measure μ is G_2-ergodic. Therefore either μ_0 is equivalent to μ or μ_0 is the zero measure. That is either $B_0 = \hat{G}_1$ or $B_0 = \phi$. Consequently, $\mathcal{M} = \mathcal{S}$ or $\mathcal{M} = \{0\}$.

This completes the proof.

Definition 2.3. Let $\Pi_i : (x, \alpha) \rightarrow \Pi_i(x, \alpha) = \rho_i(x)\sigma_i(\alpha)$ be representations of $G_1 \ast G_2$ in $\hat{S}(\Pi_i)$, $i = 1, 2$. Π_i is said to be equivalent to Π_2 if there is a linear isometry $S : \hat{S}(\Pi_1) \rightarrow \hat{S}(\Pi_2)$ such that
THEOREM 2.3. Let $n_i : (x, \alpha) \rightarrow \Pi_i(x, \alpha)$ be representations of $G_1 \otimes G_2$ on $S (\omega_i)$ where ω_i are cyclic. A set of necessary and sufficient condition that ω_1 is equivalent to ω_2 is

1. μ^1_1 is equivalent to μ^2_1 where μ^1_1 is the measure on \hat{G}_i defined by $\Pi_i (o, \omega) \ i = 1, 2$; and
2. there exists a Borel function b on \hat{G}_i with the properties
 2.1. $|b(\tau)| = 1$ almost everywhere, and
 2.2. $a^i_2(\tau, \alpha) = b(\tau) a^i_1(\tau, \alpha) b^{-1}(\tau)\alpha$ where $a^i_1(\tau, \alpha)$ is the function associated with $\Pi_i(e, \omega) : \omega_i \rightarrow \Pi_i(e, \alpha)$ in theorem 2.1.

PROOF. It is evident from Theorem 2.1 that, Π_1 is equivalent to Π_2 if and only if the following is true: (*) there is a linear isometry $S : L^2 (\hat{G}_1, \mu^1) \rightarrow L^2 (\hat{G}_1, \mu^2)$ such that $S \rho_1(x) = \rho_2(x) S$ where

$$\rho_i(x)f(\tau) = x(\tau)f(\tau), \ f \in L^2 (\hat{G}_1, \mu^i)$$

and $S \sigma_1(\alpha) = \sigma_2(\alpha) S$, where

$$\sigma_i(\alpha)(\tau) = a_i(\tau, \alpha) \sqrt{\frac{d\mu_i^1}{d\mu_i^2}}(\tau)f([\tau]|\alpha), \ i = 1, 2.$$

Assume that the conditions (*) are satisfied. We recall that $L(\hat{G}_1)$, the set of all continuous functions with compact support, is dense in $L^p(G_1, \mu^1)$ where $p = 1, 2$ and $i = 1, 2$. In the course of the proof of lemma 1.2 we saw that the operators $\rho_i(g)$ where $(\rho_i(g)f)(\tau) = g(\tau)f(\tau), \ g \in L(\hat{G}_1)$ and $f \in L^2 (\hat{G}_1, \mu^i)$ belong to $R(\rho_1, \rho_1)'$. It is easily verified that $S \rho_1(x) S^{-1} = \rho_2(x)$ implies $S \rho_1(g) S^{-1} = \rho_2(g)$ for all $g \in L(\hat{G}_1)$.

Since $S \rho_1(x) S^{-1} = \rho_2(x)$ for all x in G_1, the commutative von Neumann algebra $R(\rho_1, \rho_1)'$ generated by $\rho_1(x) : x \in G$ is unitarily equivalent to the von Neumann algebra $R(\rho_2, \rho_2)'$ generated by $\rho_2(x) : x \in G_1$. Since ρ_i are cyclic representations, the commutative von Neumann algebras $R(\rho_1, \rho_1)'$ are cyclic. A commutative von Neumann algebra with a cyclic vector is maximal Abelian ([5] corollary 1.1) and is unitarily equivalent to a multiplication algebra ([5] Lemma 1.2). Consequently, the multiplication algebra on $L^2 (\hat{G}_1, \mu^1)$ is unitarily equivalent to the multiplication algebra on $L^2 (\hat{G}_1, \mu^2)$ and therefore ([6] Theorem 4.1) μ^1 is equivalent to μ^2.

The function e, where $e(\tau) = 1$ for all $\tau \in \hat{G}_1$, belongs to $L^2 (\hat{G}_1, \mu^1)$. Let $Se = c \in L^2 (\hat{G}_1, \mu^2)$. We shall show that c is an essentially bounded function.

$S \rho_1(x) S^{-1} = \rho_2(x), \ S \sigma_1(\alpha) S^{-1} = \sigma_2(\alpha)$.
Let
\[C(g) = \int_{\mathcal{G}_1} |c(\tau)|^2 g(\tau) d\mu^2(\tau) \]
\[|C(g)| = (gc, c) = (\rho_1(g)c, c) = (\rho_2(g)Se, Se) \]
\[= (S^{-1}\rho_2(g)Se, e) = (\rho_2(g)e, e) \]
\[= \int_{\mathcal{G}_1} g(\tau) d\mu^1(\tau). \]
\[(ii) \]

Hence \[|C(g)| \leq \|g\|_1 \] (the \(L^1 \)-norm of \(g \in L^1(\mathcal{G}_1, \mu^1) \)).

That is, \(C(g) \) is bounded on a dense linear subset \(L^1(\mathcal{G}_1) \) of \(L^1(\mathcal{G}_1, \mu^1) \), and can therefore be extended to \(L^1(\mathcal{G}_1, \mu^1) \). Hence \(C \in L^\infty(\mathcal{G}_1, \mu^1) \), and therefore \(\sigma \) is essentially bounded with respect to \(\mu^1 \). Since \(\mu^1 \) and \(\mu^2 \) are equivalent it follows that \(c \) is essentially bounded with respect to \(\mu^2 \).

Since the function \(c \) is essentially bounded the equation (i) can be written in the form \(Sg = M_\sigma g \) where \(M_\sigma \) is the operation of multiplying by \(c \). Since \(M_\sigma \) is a bounded operator and \(L(\mathcal{G}_1) \) is dense in \(L^2(\mathcal{G}_1, \mu) \), the equation \(Sg = M_\sigma g \) holds for all \(g \) in \(L^2(\mathcal{G}_1, \mu^1) \). It follows from the equivalence of \(\mu^1 \) and \(\mu^2 \) and the equation (ii) that
\[\int_{\mathcal{G}_1} g(\tau)|c(\tau)|^2 d\mu^2(\tau) = \int_{\mathcal{G}_1} g(\tau) d\mu^1(\tau) \]
\[= \int_{\mathcal{G}_1} g(\tau) \frac{d\mu^1}{d\mu^2}(\tau) d\mu^2(\tau). \]

Hence \[|c(\tau)|^2 = \frac{d\mu^1}{d\mu^2}(\tau) \]
a virtually everywhere, and
\[c(\tau) = b(\tau) \sqrt{\frac{d\mu^1}{d\mu^2}(\tau)} \]
where \[|b(\tau)| = 1 \]
a virtually everywhere.

Now,
\[S\sigma_1(\alpha)(\tau) = M_\sigma a_1(\tau, \alpha) \sqrt{\frac{d\mu^1}{d\mu^2}(\tau)} g([\tau]\alpha) \]
\[= b(\tau) \sqrt{\frac{d\mu^1}{d\mu^2}(\tau)} a_1(\tau, \alpha) \sqrt{\frac{d\mu^1}{d\mu^2}(\tau)} g([\tau]\alpha) \]
\[= b(\tau) x_1(\tau, \alpha) \sqrt{\frac{d\mu^1}{d\mu^2}(\tau)} g([\tau]\alpha). \]
Hence the equation $S\alpha_1(\alpha)g = \sigma_2(\alpha)Sg$ yields

$$b(\tau)\alpha_1(\tau, \alpha) = \alpha_2(\tau, \alpha)b([\tau]_\alpha), \text{ a.e.}$$

The converse is easy to verify and we omit the details. This completes the proof.

The condition 2 of the last theorem can be reformulated in terms of a one dimensional cohomology group. To this end we observe first that G_2 as a group of automorphisms of $L^\infty(\hat{G}_1, \mu) : \alpha(g)(\tau) = g([\tau]_\alpha)$. Furthermore, the function $\alpha(\tau, \alpha)$ of Theorem 2.1 defines a mapping $\tilde{\alpha} : G_2 \to L^\infty(\hat{G}_1, \mu)$ where $(\tilde{\alpha}(\alpha))(\cdot) = \alpha(\cdot, \alpha)$. From ii of theorem 2.1 we see that $\tilde{\alpha}$ is a crossed homomorphism. It is evident that $(b(\alpha))(\cdot) = b(\cdot)b^{-1}([\cdot]_\alpha)$, where $b \in L^\infty$, is a principal crossed homomorphism. In view of these observations the condition 2 of Theorem 2.3 states α_1 and α_2 define the same element of the one dimensional cohomology group $H^1(G_2, L^\infty)$.

REFERENCES

J. Dixmier

E. Hewitt and K. A. Ross

G. W. Mackey

M. A. Naimark

I. E. Segal

I. E. Segal

(Oblatum 20-VI-1968) Queen Elizabeth College, University of London, Campden Hill Road, London, U.K.