B. B. Van der Genugten

Asymptotic expansions in renewal theory

Compositio Mathematica, tome 21, no 4 (1969), p. 331-342

<http://www.numdam.org/item?id=CM_1969__21_4_331_0>
Asymptotic expansions in renewal theory

by

B. B. van der Genugten

1. Introduction and statement of the results

Let \(\mu \) be a probability measure defined on the Borel sets of \((-\infty, \infty)\) with \(\int |x|\mu(dx) < \infty \) and \(\mu_1 = \int x\mu(dx) > 0 \). Then the renewal measure \(\nu \) belonging to \(\mu \), defined by \(\nu = \sum_{n=0}^{\infty} \mu^* \), assigns finite measure to bounded Borel sets.

In this paper our aim is to get approximations of \(\nu\{x+E\} \), \(E \) some Borel set, for \(x \to -\infty \) if \(\mu\{(-\infty, x)\} \) decreases exponentially, and for \(x \to \infty \) if \(\mu\{(x, \infty)\} \) has this property. Work on this has been done in Stone [1] and [2]. Results are obtained for \(\mu \) lattice and for the case that some \(\mu^* \) is non-singular (we call \(\mu \) lattice with span \(d \) if \(\mu \) is concentrated on \(\{nd : -\infty < n < \infty\} \) but not on \(\{nd' : -\infty < n < \infty\} \) for any \(d' > d \), and we call \(\mu^* \) non-singular if it contains an absolutely continuous component).

Let \(g(s) \) be the moment generating function of \(\mu \), defined by \(g(s) = \int e^{sx} \mu(dx) \), the domain being all complex numbers for which the integral exists absolutely. As far as defined let \(A(s_0) \) denote the residue of \(1/(1-g(s)) \) at \(s = s_0 \).

Theorem 1. Let \(\mu \) be lattice with span 1.

a) If \(g(s) \) exists for some \(s \) with \(\text{Re } s = -R \leq 0 \), then for any \(r \in (0, R] \) with \(g(s) \neq 1 \) on \(\text{Re } s = -r \), the set

\[S = \{s_0 : g(s_0) = 1, -r < \text{Re } s_0 < 0, -\pi < \text{Im } s_0 \leq \pi\} \]

is finite, \(A(s_0) \) exists for \(s_0 \in S \) and for integer \(k \to -\infty \)

\[
\nu\{k\} = \sum_{s_0 \in S} A(s_0)e^{-s_0k} + o(e^{rk})
\]

\[
\nu\{(-\infty, k]\} = \sum_{s_0 \in S} (1-e^{s_0})^{-1} A(s_0)e^{-s_0k} + o(e^{rk}).
\]

b) If \(g(s) \) exists for some \(s \) with \(\text{Re } s = R > 0 \), then for any \(r \in (0, R] \) with \(g(s) \neq 1 \) on \(\text{Re } s = r \), the set

\[S' = \{s_0 : g(s_0) = 1, 0 < \text{Re } s_0 < r, -\pi < \text{Im } s_0 \leq \pi\} \]
is finite, $A(s_0)$ exists for $s_0 \in S'$ and for integer $k \to \infty$
\begin{equation}
(1.3) \quad \nu\{k\} = \mu_1^{-1} \sum_{s_0 \in S} A(s_0) e^{-s_0 k} + o(e^{-rk}).
\end{equation}
Moreover, if $\mu_2 = \int x^2 \mu(dx) < \infty$ then
\begin{equation}
(1.4) \quad \nu\{(-\infty, k]\} = k/\mu_1 + \frac{1}{2}\mu_2/\mu_1 + \sum_{s_0 \in S'} (1-e^{-s_0})^{-1} A(s_0) e^{-s_0 k} + o(e^{-rk}).
\end{equation}

Under mild conditions S is not empty and contains even one real point which provides the leading term. This does not hold for the set S'.

Theorem 2. Let μ be lattice with span 1, $\mu\{(-\infty, 0)\} > 0$ and let I be the interior of the interval I of real points $s < 0$ for which $g(s)$ exists. Suppose I is not empty.

a) If $I = I$ or if there exists some s with $g(s) = 1$ and $\text{Re } s \in I$, or even $\text{Re } s \in I$ and $\text{Im } s \neq 2\pi k$, $k = 0, \pm 1, \cdots$, then there exists exactly one real $s_0 \in I$ with $g(s_0) = 1$. Moreover, $g'(s_0) < 0$ and for some $r > -s_0$
\begin{equation}
(1.5) \quad \nu\{k\} = -e^{-s_0 k}/g'(s_0) + o(e^{rk}), \quad k \to -\infty
\end{equation}
\begin{equation}
(1.6) \quad \nu\{(-\infty, k]\} = -e^{-s_0 k}/[g'(s_0)(1-e^{s_0}) + o(e^{rk}), \quad k \to -\infty.
\end{equation}

b) If $I \neq I$ and there does not exist such an $s_0 \in I$ then for any $-r \in I$
\begin{equation}
\nu\{k\} = o(e^{rk}), \quad k \to -\infty
\end{equation}
\begin{equation}
\nu\{(-\infty, k]\} = o(e^{rk}), \quad k \to -\infty.
\end{equation}
Moreover, if even there does not exist such an $s_0 \in I$ then these order relations hold for $r = R$, where $-R$ is the (finite) left boundary of I.

The corresponding theorems for μ non-lattice are:

Theorem 3. Let μ^{m*} be non-singular.

a) If $g(s)$ exists for some s with $\text{Re } s = -R < 0$, then for any $r \in (0, R]$ with $g(s) \neq 1$ on $\text{Re } s = -r$, for which the singular part ζ of μ^{m*} satisfies
\begin{equation}
(1.7) \quad \int_{-\infty}^{0} e^{-rx} \zeta(dx) + \int_{0}^{\infty} (1+x) \zeta(dx) < 1,
\end{equation}
the set
\[S = \{s_0 : g(s_0) = 1, -r < \text{Re } s_0 < 0\} \]
is finite, $A(s_0)$ exists for $s_0 \in S$ and for $x \to -\infty$
for every Borel set E bounded from above. In particular, for $x \to -\infty$

(1.9) \[v\{(-\infty, x]\} = - \sum_{s_0 \in S} s_0^{-1} A(s_0) e^{-s_0 x} + o(e^{rx}). \]

b) If $g(s)$ exists for some s with $\text{Re} s = R > 0$, then for any $r \in (0, R]$ with $g(s) \neq 1$ on $\text{Re} s = r$, for which the singular part ζ of μ^{m*} satisfies

\[\int_{-\infty}^{\infty} (1-x) \zeta(dx) + \int_{0}^{\infty} e^{rx} \zeta(dx) < 1, \]

the set

\[S' = \{s_0 : g(s_0) = 1, 0 < \text{Re} s_0 < r\} \]

is finite, $A(s_0)$ exists for $s_0 \in S'$ and for $x \to \infty$

(1.10) \[v\{x+E\} = |E|/\mu_1 - \sum_{s_0 \in S'} A(s_0) e^{-s_0 x} \int_{E} e^{-s_0 t} dt + o(e^{rx}), \]

for every Borel set E bounded from below of finite length $|E|$. Moreover, if $\mu_2 = \int x^2 \mu(dx) < \infty$ then

(1.11) \[v\{(-\infty, x]\} = x/\mu_1 + \frac{1}{2}(\mu_2 / \mu_1)^2 + \sum_{s_0 \in S'} s_0^{-1} A(s_0) e^{-s_0 x} + o(e^{rx}). \]

Theorem 4. Let μ^{m*} be non-singular, $\mu\{(-\infty, 0]\} > 0$, let the singular part of μ^{m*} be restricted to $(-\infty, 0]$, let I be the interior of the interval I of real points $s < 0$ for which $g(s)$ exists and let E be a Borel set bounded from above. Suppose I is not empty.

a) If $I = I$ or if there exists some s with $g(s) = 1$ and $\text{Re} s \in I$, or even $\text{Re} s \in I$ and $\text{Im} s \neq 0$, then there exists exactly one real $s_0 \in I$ with $g(s_0) = 1$. Moreover, $g'(s_0) < 0$ and for some $r > -s_0$

(1.13) \[v\{x+E\} = -e^{-s_0 x} \int_{E} e^{-s_0 t} dt |g'(s_0)| + o(e^{rx}), \quad x \to -\infty. \]

In particular

(1.14) \[v\{(-\infty, x]\} = e^{-s_0 x} |g'(s_0)| + o(e^{rx}), \quad x \to -\infty \]

b) If $I \neq I$ and there does not exist such an $s_0 \in I$ then for any $-r \in I$

\[v\{x+E\} = o(e^{rx}), \quad x \to -\infty \]
\[v\{(-\infty, x]\} = o(e^{rx}), \quad x \to -\infty. \]

Moreover, if even there does not exist such an $s_0 \in I$ then these order relations hold for $r = R$, where $-R$ is the (finite) left boundary of I.
2. Proof of the theorems

Proof of Theorem 1a. \(g(s) \) is analytic for \(\Re s \in (-R, 0) \), continuous for \(\Re s \in [-R, 0] \), \(g(i\theta) \neq 1 \) for \(|\theta| \in (0, 2\pi) \) and

\[
(2.1) \quad g(s) = 1 + \mu_1 s + o(|s|), \quad \text{for } |s| \to 0 \text{ and } \Re s \leq 0.
\]

Therefore, for any \(r \in (0, R] \) with \(g(s) \neq 1 \) on \(\Re s = -r \) and \(\varepsilon > 0 \) sufficiently small the function \(1/(1-g(s)) \) is continuous on \(\Gamma \), and analytic within \(\Gamma \) with the exception of a finite number of poles. Here \(\Gamma \) is the contour in the complex \(s \)-plane shown in fig. 1. If for one or more \(s_0 \) with \(\Re s_0 \in (-r, 0) \) it occurs that

\[
g(s_0) = 1 \text{ with } \Im s_0 = \pi \text{ and also } g(\tilde{s}_0) = 1 \text{ with } \Im \tilde{s}_0 = -\pi
\]

then the parts \(\Gamma_1 \) and \(\Gamma_2 \) of \(\Gamma \) are slightly deformed as indicated.

Setting

\[
\psi(s) = (1-g(s))^{-1} + \mu_1 (1-e^s)^{-1}
\]

we get with the Cauchy residue theorem

\[
(2.2) \quad \frac{1}{2\pi i} \int_{\Gamma} e^{-sk\psi}(s) ds = \sum_{s_0 \in S} A(s_0) e^{-s_0 k}.
\]

According to Stone [3], (20), for \(k < 0 \) we have

\[
(2.3) \quad v\{k\} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \Re \{e^{-i\theta \psi}(i\theta)\} d\theta = \lim_{\varepsilon \to 0} \frac{1}{2\pi i} \int_{\varepsilon \leq |\Im s| \leq \pi \atop \Re s = 0} e^{-sk\psi}(s) ds.
\]
With the Riemann-Lebesgue lemma

\[
(2.4) \quad \frac{1}{2\pi i} \int_{-\pi}^{\pi} e^{-sk} \Psi(s) ds = \frac{1}{2\pi} e^{\epsilon k} \int_{-\pi}^{\pi} e^{-i\epsilon k} \Psi(i\theta - \epsilon) d\theta = o(e^{\epsilon k}), \quad \epsilon \to -\infty.
\]

Since \(g(s+2\pi i) = g(s) \), the contributions of \(\Gamma_1 \) and \(\Gamma_2 \) to the integral in (2.2) cancel out. With (2.1) we see that the contribution of \(C \) to the integral in (2.2) tends to zero for \(\epsilon \to 0 \). So (1.1) follows from (2.2)–(2.4) and (1.2) follows from (1.1).

b) The proof of (1.3) is similar to that of (1.1). Use Stone [1], (20), for \(k \geq 0 \). With (1.3)

\[
\nu(k, N) = \frac{N-k}{\mu_1} + \sum_{s_0 \in S'} (1-e^{-s_0})^{-1} A(s_0) e^{-s_0 k} + o(e^{-k}) + o(e^{-\epsilon N}),
\]

\(k \to \infty, N \to \infty \)

and, as is well-known,

\[
\lim_{N \to \infty} \left[\nu\left((-\infty, N)\right) - \frac{N}{\mu_1} \right] = \frac{1}{2}(\mu_2/\mu_1)^2
\]

we get (1.4).

Lemma A. Let \(I \) and \(I' \) be defined as in theorem 2. Suppose \(I \) is not empty and \(\mu\{(-\infty, 0)\} > 0 \). If \(I = I' \) or if \(g(s_1) = 1 \) for some \(s_1 \) with \(\text{Re} \ s_1 \in I \) then there exists exactly one real \(s_0 \in I \) with \(g(s_0) = 1 \). We have \(g'(s_0) < 0 \).

Proof. Let

\[
(2.5) \quad g_1(s) = \int_{[0, \infty)} (e^{sx} - 1) \mu\{dx\}, \quad -s \in I
\]

\[
\quad g_2(s) = \int_{[0, \infty)} (1-e^{-sx}) \mu\{dx\}, \quad -s \in I.
\]

Since \(g_1(0) = g_2(0) = 0, 0 < g_1'(0^+) < g_2'(0^+) \) and \(g_1 \) is convex and \(g_2 \) concave, there is at most one \(s_0 \) with

\[
0 = g_1(-s_0) - g_2(-s_0) = g(s_0) - 1,
\]

and then \(g'(s_0) < 0 \). If \(g(s_1) = 1 \) with \(\text{Re} \ s_1 \in I \) then \(g(\text{Re} \ s_1) \geq 1 \). But \(g'(0^-) > 0 \) and so there exists \(s_0 \in I \) with \(g(s_0) = 1 \). Finally, if \(I = I' \) i.e. \(I \) is open to the left, then \(g_1(-s) \to \infty \) if \(s \) tends to the left boundary of \(I \). This also assures that there is \(s_0 \in I \) with \(g(s_0) = 1 \).
Proof of Theorem 2.

a) According to Lemma A the set S in Theorem 1 contains exactly one real $s_0 \in I$ with $g'(s_0) < 0$ and $s_0 \geq \text{Re } s_1$ for any $s_1 \in S$. But μ has span 1 and so $s_0 > \text{Re } s_1$ and $s_0 \in I$. With $A(s_0) = -1/g'(s_0)$ and Theorem 1 we see that (1.5) holds for some $r > -s_0$. (1.6) follows from (1.5).

b) This part follows immediately from Theorem 1.

In the following for any signed measure ψ let $|\psi|$ denote its variation. We call ψ finite if the measure $|\psi|$ is finite.

Lemma B. Let μ^m* be non-singular, ζ the singular part of μ^m*, and let $K(x)$ and $L_s(x)$, $s \in T$ with T an arbitrary index-set, be non-negative Borel functions in x so that

\[(2.6) \quad \text{for every fixed finite interval } I, \quad \int_{\{x+I\}} K(y-x)\mu\{dy\} \text{ is bounded in } x, -\infty < x < \infty \]

\[\lim_{\varepsilon \to 0} \int_{\{x+I\}} |K(y+\varepsilon) - K(y)|((\mu^m* - \zeta)\{dy\} = 0, -\infty > x > \infty \]

\[(2.7) \quad \int K(x)\mu\{dx\} < \infty \]

\[(2.8) \quad L_s(x) \leq K(x), \quad -\infty < x < \infty, \quad s \in T \]

\[(2.9) \quad L_s(x+y) \leq L_s(x)L_s(y), \quad -\infty < x, y < \infty, \quad s \in T \]

\[(2.10) \quad \sup_{s \in T} \int L_s(x)\zeta\{dx\} < 1. \]

Then for any $\varepsilon > 0$ there exist an integer $n_0 \geq 1$, a measure φ with infinitely often differentiable density with compact support, and a signed measure φ' such that

\[(2.11) \quad \mu^{n_0*} = \varphi + \varphi', \]

\[(2.12) \quad |\varphi'|\{(-\infty, \infty)\} < \varepsilon, \]

\[(2.13) \quad 1 - \varepsilon \leq \varphi\{(-\infty, \infty)\} \leq 1, \]

\[(2.14) \quad \sup_{s \in T} \int L_s(x)\varphi\{dx\} < \infty, \]

\[(2.15) \quad \sup_{s \in T} \int L_s(x)|\varphi'|\{dx\} < \varepsilon. \]

Moreover, for $\varepsilon < 1$ the renewal measure

\[\nu = \sum_{k=0}^{\infty} \mu^k* \]
can be written as
\begin{equation}
\nu = \nu' + \nu''
\end{equation}
with
\begin{align*}
\nu'' &= (\mu^{0*} + \cdots + \mu^{(n_0-1)*}) \ast \sum_0^\infty \varphi^{k*} \\
\nu' &= \varphi \ast \nu'' \ast \sum_0^\infty \mu^{k_{n_0}*}.
\end{align*}

Here \(\nu''\) is a finite signed measure with
\begin{equation}
\sup_{s \in \mathcal{T}} \int L_s(x)|\nu''|\{dx\} < \infty.
\end{equation}

Proof. With \(\xi((\infty, \infty)) < 1\), (2.9) and (2.10) it follows that for \(n\) sufficiently large
\begin{equation}
\zeta^{n*}\{(-\infty, \infty)\} < \frac{\varepsilon}{4},
\end{equation}
\begin{equation}
\sup_{s \in \mathcal{T}} \int L_s(x)\zeta^{n*}\{dx\} < \frac{\varepsilon}{4}.
\end{equation}
Setting \(\xi = \mu^{m*} - \zeta\) and \(n_0 = nm\) we get
\begin{equation}
\mu^{n_0*} = \zeta^{n*} + \sum_{k=1}^n \binom{n}{k} \cdot \xi^{k*} \ast \zeta^{(n-k)*}.
\end{equation}

The second term on the right hand side of (2.20) is absolutely continuous. Let \(h(x)\) be its density. With (2.7), (2.8) and (2.9) for \(A > 0\)
\begin{equation}
\sup_{s \in \mathcal{T}} \int_{|x| \geq A} L_s(x)\mu^{n_0*}\{dx\} \leq n_0 \left[\int K(x)\mu\{dx\} \right]^{n_0-1} \cdot \int_{|x| \geq A}|n_0 K(x)\mu\{dx\}
\end{equation}
and so with (2.7) and (2.20) for \(A\) sufficiently large
\begin{equation}
\int_{|x| \geq A} h(x)dx < \frac{\varepsilon}{4}
\end{equation}
\begin{equation}
\sup_{s \in \mathcal{T}} \int_{|x| \geq A} L_s(x)h(x)dx < \frac{\varepsilon}{4}.
\end{equation}

Set
\[q_\sigma(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\{-\frac{1}{2}\sigma^{-2}x^2\}, \quad \sigma > 0 \]
\[h_\sigma(x) = \int q_\sigma(x-t)h(t)dt \]
and let, for \(\delta > 0 \), \(\theta(x) \) be some infinitely often differentiable function with

\[
\begin{align*}
\theta(x) &= 1, & |x| &\leq A - \delta \\
0 &\leq \theta(x) \leq 1, & A - \delta &\leq |x| \leq A \\
\theta(x) &= 0, & |x| &> A.
\end{align*}
\]

With (2.6),

\[K(x)\mu^\nu \{dx\} < \infty.\]

So with (2.20)

\[\int_{|x| \leq A} K(x)h(x)dx < \infty\]

and therefore for \(\delta \) sufficiently small, again with (2.6)

\[\int_{-A}^A |h(x) - h_\sigma(x)|dx < \frac{\varepsilon}{4}\]

\[\int_{-A}^A K(x)|h(x) - h_\sigma(x)|dx < \frac{\varepsilon}{4}.\]

Finally, for \(\delta \) sufficiently small

\[\int_{A-\delta \leq |x| \leq A} (1 - \theta(x))h_\sigma(x)dx < \frac{\varepsilon}{4}\]

\[\int_{A-\delta \leq |x| \leq A} K(x)(1 - \theta(x))h_\sigma(x)dx < \frac{\varepsilon}{4}.
\]

Let \(\varphi \) be the measure with density

\[
p_\varphi(x) = \begin{cases}
\theta(x)h_\sigma(x) & |x| \leq A \\
0 & |x| > A
\end{cases}
\]

and \(\varphi' \) the sum of the measure \(\zeta^\nu \) and the signed measure with density \(h(x) - p_\varphi(x) \). Then (2.11) holds, \(\varphi \) and \(\varphi' \) are finite with \(\varphi((-\infty, \infty)) \leq 1 \), and \(p_\varphi \) is infinitely often differentiable with compact support \([-A, A]\).

With (2.18), (2.21), (2.24), (2.26)

\[
|\varphi'|((-\infty, \infty)) \leq \zeta^\nu((-\infty, \infty)) + \int_{|x| \geq A} h(x)dx
\]

\[+ \int_{-A}^A |h(x) - h_\sigma(x)|dx + \int_{A - \delta \leq |x| \leq A} (1 - \theta(x))h_\sigma(x)dx < \varepsilon,
\]

which proves (2.12). With (2.11) this gives (2.13). From (2.8),
(2.20) and (2.23) we get (2.14). With (2.19), (2.8), (2.22), (2.25), (2.27)
\[\sup_{s \in T} \int L_s(|\varphi'| \{dx\}) \leq \sup_{s \in T} \int L_s(x) z^n \{dx\} + \sup_{s \in T} \int L_s(x) h(x) dx \]
\[+ \int_{-A}^A K(x) |h(x) - h(x)| dx + \int_{A-\theta \leq |x| \leq A} K(x)(1 - \theta(x)) h(x) dx < \epsilon \]
which proves (2.15).

Moreover, if \(\varepsilon < 1 \) then from (2.12) it follows that \(\nu'' \) is a finite signed measure. So \(\nu - \nu'' \) is defined, and with (2.11),
\[v - v'' = (\mu_0^* + \cdots + \mu^{(m-1)}_n) \sum_{k=1}^\infty \left(\mu_k n_k^* - \nu' k^* \right) \]
\[= (\mu_0^* + \cdots + \mu^{(m-1)}_n) \sum_{k=1}^\infty \sum_{j=0}^{k-1} \nu^* \mu_j n_j^* \nu'(k-1-j)^* \]
\[= (\mu_0^* + \cdots + \mu^{(m-1)}_n) \sum_{j=0}^\infty \sum_{k=j+1}^\infty \nu^* \mu_j n_j^* \nu'(k-1-j)^* \]
which proves (2.16). Note that the summations with respect to \(j \) and \(k \) may be interchanged since \(\nu'' \) is finite.

Finally, (2.17) follows with (2.7), (2.9) and (2.15).

Proof of Theorem 3.

a) Let \(r \in (0, R] \) with \(g(s) \neq 1 \) on \(\Re s = -r \). We apply Lemma B for \(T = [-r, 0] \),
\[L_s(x) = e^{sx}, \quad x < 0 \]
\[= 1 + x, \quad x \geq 0 \]
\[K(x) = L_{-r}(x), \quad -\infty < x < \infty \]
and keep the same notations. Denoting the moment generating function of any finite measure or finite signed measure \(\psi \) different from \(\mu \) by \(\psi_1 \), we get that \(\int |x|\varphi''(dx) \), \(\varphi_1(-r) \) and \(|\varphi''|_1(-r) \) are finite.

In (1.8) and (1.9) we may replace \(\nu \) by \(\nu' \) since
\[e^{-rx} \varphi''((\infty, x]) \leq \int_{(\infty, x]} e^{-ry} \varphi''(dy) \rightarrow 0 \text{ if } x \rightarrow -\infty. \]
Note that \(g(s) \) and \(g^n(s) \) are analytic for \(\Re s \in (-R, 0) \), continuous for \(\Re s \in [-R, 0] \), that \(g^n(i\theta) \neq 1 \) for \(\theta \neq 0 \) and that
\[g^n(s) = 1 + n \mu_1 s + o(|s|), \text{ for } |s| \rightarrow 0 \text{ and } \Re s \leq 0. \]
Since ϕ_1(s) tends to zero if |Im s| → ∞, uniformly in Re s ∈ [−R, 0] and |ϕ'|_1(−r) can be made arbitrary small

(2.29) |g_{n_0}(s)| ≤ C < 1, Re s ∈ [−R, 0], for |Im s| sufficiently large.

Therefore, for N sufficiently large and ε sufficiently small the function 1/(1−g_{n_0}(s)) is continuous on Γ and analytic within Γ with the exception of a finite number of poles. Here Γ is the contour in the proof of theorem with π replaced by N.

If χ = n_0^{−1}·ϕ ∗ ν'', then χ is a finite signed measure with χ(−∞, ∞) = 1, and χ_1(s) is continuous on Γ and analytic within Γ. Setting

Ψ(s) = χ_1(s)[(1−g_{n_0}(s))−1+(n_0μ_1s)^−1]

we get with the Cauchy residue theorem

(2.30) \frac{1}{2\pi i} \int_{Γ} e^{−sx}Ψ(s)ds = \sum_{s_0 \in Z} B(s_0)χ_1(s_0)e^{−s_0x}.

Here B(s_0) is the residue of 1/(1−g_{n_0}(s)) at s = s_0 and Z is defined by

Z = \{s_0 : g_{n_0}(s) = 1, −r < Re s_0 < 0\}.

But χ_1(s_0) = 1 if g(s_0) = 1 and χ_1(s_0) = 0 if g_{n_0}(s_0) = 1 and g(s_0) ≠ 1. If s_0 ∈ S ⊂ Z then B(s_0) = n_0^{−1}A(s_0). So we get

(2.31) \sum_{s_0 \in Z} B(s_0)χ_1(s_0)e^{−s_0x} = n_0^{−1}\sum_{s_0 \in S} A(s_0)e^{−s_0x}

Let p(x) be the density of ν'. In the same way as in the proof of Stone [2], Theorem, it follows that

\int |χ(iθ + s)|dθ < ∞, s ∈ [−R, 0].

and

(2.32) p(x)−μ_1^{−1}·χ((-∞, x))

\frac{n_0}{2\pi} \text{Re} \{e^{−ixθ}Ψ(iθ)\}dθ = \lim_{ε→0} \frac{n_0}{2\pi i} \int_{|Im s| ≥ ε, \ Re s = 0} e^{−sx}Ψ(s)ds.

It follows easily that

(2.33) χ((-∞, x)) = o(e^{rx}), \quad x → −∞.

With (2.29) and the Riemann-Lebesgue lemma
The contributions of \(I_1 \) and \(I_2 \) to the integral of (2.30) tend to zero for \(N \to \infty \). This follows with (2.29) and the fact that \(\chi_1(s) \) tends to zero for \(|\text{Im} \, s| \to \infty \), uniformly in \(\text{Re} \, s \in [-R, 0] \). With (2.28) we see that the contribution of \(C \) to the integral in (2.30) tends to zero for \(\epsilon \to 0 \). Therefore, from (2.30)–(2.34)

\[
(2.35) \quad p(x) = \sum_{s_0 \in S} A(s_0) e^{-s_0 x} + o(e^{\varepsilon x}), \quad x \to -\infty
\]

and (1.8), (1.9) follow from (2.35).

b) Compare the corresponding part of the proof of theorem 1.

Proof of Theorem 4. Compare the proof of theorem 2. Use Lemma A and theorem 3. Since \(g(s) \to 1 \) for real \(s \in (s_0, 0) \) and \(g(s_0) = 1 \) the condition (1.7) is fulfilled for some \(r > -s_0 \).

3. Final remarks

Remark 1. Let \(\mu \) be lattice or some \(\mu^{m*} \) be non-singular. Suppose \(\mu\{(-\infty, 0)\} > 0 \) and let \(g(s) \) exist for some \(s < 0 \). Then there exists always a finite real number \(r < 0 \) such that \(\int e^{\varepsilon x} v\{dx\} \) converges for \(s \in (r, 0) \) and diverges for \(s \in (-\infty, r) \).

This follows from theorem 2 and \(v\{k\} \) bounded, and from theorem 4, (2.35) and \(p(x) \) bounded.

Remark 2.

a) Suppose \(g(s) \) exists for \(\text{Re} \, s \leq 0 \). If

\[
(3.1) \quad \liminf_{r \to \infty} e^{r k_0} \int_0^{\pi} |g(i \theta - r) - 1|^{-1} d\theta = 0
\]

then the sum in (1.1) converges for \(r \to \infty \) and equals \(v\{k\} \), \(k \leq k_0 < 0 \). This follows from the fact that the left side of (2.4) tends to zero for \(r \to \infty \), uniformly in \(k \leq k_0 \). Note that the sum remains a finite one and (3.1) holds if the number of lattice-points of \(\mu \) in \((-\infty, 0)\) is finite.

b) Suppose \(g(s) \) exists for \(\text{Re} \, s \geq 0 \). Similarly, if

\[
(3.2) \quad \liminf_{r \to \infty} e^{-r k_0} \int_0^{\pi} |g(i \theta + r) - 1|^{-1} d\theta = 0
\]
then the sum in (1.3) converges for \(r \to \infty \) and equals \(r \{ k \} - \mu_1^{-1}, k \geq k_0 \geq 0 \). Note that the sum remains a finite one and (3.2) holds if the number of lattice-points of \(\mu \) in \((0, \infty)\) is finite.

Postscript. Further investigations have led to the stronger result that theorem 3 continues to hold if (1.7) and (1.10) are replaced by \(\zeta_1(-r) < 1 \) and \(\zeta_1(r) < 1 \). The condition in theorem 4 that \(\zeta((0, \infty)) = 0 \) can be dropped. We refer to van der Genugten [4].

REFERENCES

C. Stone

C. Stone

C. Stone

B. B. van der Genugten

(Oblatum 10–3–69)