Yum-Tong Siu

Analytic sheaf cohomology with compact supports

Compositio Mathematica, tome 21, no 1 (1969), p. 52-58

<http://www.numdam.org/item?id=CM_1969__21_1_52_0>
Analytic sheaf cohomology with compact supports

by

Yum-Tong Siu

Among many other results Andreotti and Grauert proved in [2] the following:

(1) Suppose \(n \) is a non-negative integer and \(\mathcal{F} \) is a coherent analytic sheaf on a Stein space \(X \) such that \(\text{codh} \mathcal{F} \geq n \) (where \(\text{codh} \mathcal{F} \) = homological codimension of \(\mathcal{F} \)). Then \(H^p(X, \mathcal{F}) = 0 \) for \(p < n \). (Cf. Prop. 25, [2]).

Reiffen proved in [6] the following:

(2) Suppose \(n \) is a non-negative integer and \(\mathcal{F} \) is a coherent analytic sheaf on a complex space \(X \) such that \(\dim \text{Supp} \mathcal{F} \leq n \) (where \(\text{Supp} \mathcal{F} \) = support of \(\mathcal{F} \)). Then \(H^p(X, \mathcal{F}) = 0 \) for \(p > n \). (Cf. Satz 3, [6]).

In this note we prove converses of these statements:

Theorem 1. Suppose \(n \) is a non-negative integer. If \(\mathcal{F} \) is a coherent analytic sheaf on an open subset \(G \) of a Stein space \(X \) and \(H^p(G, \mathcal{F}) = 0 \) for \(p < n \), then \(\text{codh} \mathcal{F}_x \geq n \) for \(x \in G \).

Theorem 2. Suppose \(n \) is non-negative integer, \(\mathcal{F} \) is a coherent analytic sheaf on a Stein space \(X \), and \(G \) is an open subset of \(X \). If \(H^p(G, \mathcal{F}) = 0 \) for \(p > n \), then \(\dim (G \cap \text{Supp} \mathcal{F}) \leq n \).

For the proofs of Theorems 1 and 2 we need the following Lemma:

Lemma 1. Suppose \(G \) is an open subset of \(\mathbb{C}^N \), \(x \in G \), and \(A \) is an at most countable subset of \(G \setminus \{x\} \). Then there exists a holomorphic function \(f \) on \(\mathbb{C}^N \) such that \(f(x) = 0 \) and \(f(y) \neq 0 \) for \(y \in A \).

Proof. Let \(F \) be the vector space of all holomorphic functions on \(\mathbb{C}^N \) vanishing at \(x \). \(F \) is a Fréchet space with the topology of uniform convergence on compact subsets of \(\mathbb{C}^N \). For \(y \in A \) let \(\varphi_y : F \to \mathbb{C} \) be defined by \(\varphi_y(f) = f(y) \) for \(f \in F \). Let \(K_y = \text{Ker} \varphi_y \). \(K_y \) is a nowhere dense closed subspace of \(F \). For, if we take \(g \in F \) such that \(g(y) \neq 0 \), then for any open neighborhood \(U \) in \(F \) of
h ∈ K_y we have λg + h ∈ U - K_y for λ ∈ C - {0} with |λ| sufficiently small. By Baire category theorem \(\bigcup_{\nu \in A} K_y \neq F \). \(f \in F - \bigcup_{\nu \in A} K_y \) satisfies the requirement.

Lemma 2. Suppose \(\mathcal{G} \) is a coherent analytic sheaf on an open subset \(G \) of \(\mathbb{C}^N \). There exist subvarieties \(X_p \) in \(G \), either empty or of pure dim \(p \), \(0 \leq p \leq N-1 \), such that, for every \(x \in G \), if a non-identically-zero holomorphic function-germ \(f \) at \(x \) does not vanish identically on any non-empty branch-germ of \(X_p \) at \(x \) for any \(p \), then \(f \) is not a zero-divisor for the stalk \(\mathcal{G}_x \) of \(\mathcal{G} \) at \(x \).

Proof. For \(0 \leq p \leq N-1 \), define a subsheaf \(\mathcal{G}_p \) of \(\mathcal{G} \) on \(G \) as follows: for \(x \in G \), \((\mathcal{G}_p)_x = \{ s \in \mathcal{G}_x \} \) for some subvariety \(A_s \) of dimension \(\leq p \) in some open neighborhood \(U_s \) of \(x \) in \(G \) there exists \(t \in \Gamma(U_s, \mathcal{G}) \) such that \(t_x = s \) and \(t_y = 0 \) for \(y \notin A_s \). \(\mathcal{G}_p \) is a coherent analytic subsheaf of \(\mathcal{G} \) and \(\dim \text{Supp} \mathcal{G}_p \leq p \).

For, if \(\varphi : N^0 \rightarrow \mathcal{G} \) is a sheaf-epimorphism on an open subset \(D \) of \(G \) (where \(N^0 \) is the structure-sheaf of \(\mathbb{C}^N \) and \((\text{Ker} \varphi)_p \) is the \(p \)-th step gap-sheaf of \(\text{Ker} \varphi \) in the sense of Thimm (Def. 9, [9]), then \(\mathcal{G}_p = \varphi((\text{Ker} \varphi)_p) \) on \(D \) and by Satz 3, [9] \((\text{Ker} \varphi)_p \) is coherent and \(\dim \{ x \in D | (\text{Ker} \varphi)_p(x) \neq (\text{Ker} \varphi)_p \} \leq p \). Let \(X_p \) be the union of \(p \)-dimensional branches of \(\text{Supp} \mathcal{G}_p \). We claim that these satisfy the requirement.

Suppose \(f \) is a non-identically-zero holomorphic function-germ at a point \(x \) of \(G \) not vanishing identically on any non-empty branch-germ of \(X_p \) at \(x \) for any \(p \). We have to prove that \(f \) is not a zero-divisor for \(\mathcal{G}_x \). Suppose the contrary. Then there exist \(g \in \Gamma(U, N^0) \) and \(h \in \Gamma(U, \mathcal{G}) \) for some connected open neighborhood \(U \) of \(x \) in \(G \) such that \(g_x = f \), \(h_x \neq 0 \), and \(gh = 0 \). Let \(Z = \text{Supp} \ h \) and let \(p \) be the dimension of the germ of \(Z \) at \(x \). \(0 \leq p \leq N-1 \). By shrinking \(U \) we can assume that \(\dim Z = p \). \(h \in \Gamma(U, \mathcal{G}_p) \) and \(Z \subset \text{Supp} \mathcal{G}_p \). Since \(\dim \text{Supp} \mathcal{G}_p \leq p \) and at \(x \) \(Z \) has dimension \(p \), \(Z \) and \(X_p \) have a branch-germ \(A \) in common at \(x \). \(gh = 0 \) implies that \(f \) vanishes identically on \(A \). Contradiction.

Lemma 3. Suppose \(\mathcal{S} \) is a torsion-free coherent analytic sheaf on a normal reduced irreducible complex space \(Z_0 \). Then the set \(E \) of points in \(Z_0 \) where \(\mathcal{S} \) is not locally free is a subvariety of codimension \(\geq 2 \).

Proof. Let \(m = \dim Z_0 \). \(D \) is a subvariety in \(Z_0 \) (Prop. 8, [1]). Suppose the Lemma is false. Then \(D \) contains an \((m-1) \)-dimensional branch \(A \). Let \(M \) be the set of all regular points of \(Z_0 \).
Since dim \((Z_0-M) \leq m-2\), there exists \(x \in M \cap A\). There is a non-identically-zero holomorphic function \(f\) on some connected open neighborhood \(U\) of \(x\) in \(M\) such that \(f\) vanishes identically on \(A \cap U\). Since \(\mathcal{I}\) is torsion-free, for \(y \in U\) \(f_y\) is not a zero-divisor for \(\mathcal{I}_y\). Let \(\mathcal{I} = \mathcal{I}/f\mathcal{I}\) on \(U\). \(F = \{y \in U\mid \text{codh } \mathcal{I}_y \leq m-2\}\) is of dimension \(\leq m-2\) ([Satz 5, [7]]). There exists \(z \in U \cap A - F\). codh \(\mathcal{I}_z = m\). \(\mathcal{I}\) is locally free at \(z\), contradicting that \(z \in D\). q.e.d.

Lemma 4. Suppose \(P\) is an \(m\)-dimensional complex manifold. Suppose \(\mathcal{O}\) is the structure-sheaf of \(P\), \(\mathcal{I}\) is a locally free sheaf on \(P\), and \(\mathcal{L}\) is the sheaf of germs of holomorphic \((m, 0)\)-forms on \(P\). If \(H^m_\ast(P, \mathcal{I}) = 0\), then \(\Gamma(P, \text{Hom}_\mathcal{O}(\mathcal{I}, \mathcal{L})) = 0\).

Proof. Let \(B\) and \(B^*\) be respectively the holomorphic vector-bundles canonically associated with the locally free sheaves \(\mathcal{I}\) and \(\text{Hom}_\mathcal{O}(\mathcal{I}, \mathcal{L})\). For \(0 \leq p \leq m\) let \(\lambda(0, p)\) denote the vector-bundle of \((0, p)\)-forms on \(P\). Let \(\mathcal{A}^{(0, p)}(B)\) denote the sheaf of germs of infinitely differentiable sections in \(B \otimes \lambda(0, p)\) and let \(\mathcal{D}^{(0, p)}(B^*)\) denote the sheaf of germs of distribution-sections in \(B^* \otimes \lambda(0, p)\). Let \(\Gamma_\ast(P, \mathcal{A}^{(0, p)}(B))\) denote the set of all global sections in \(\mathcal{A}^{(0, p)}(B)\) with compact supports.

\[
0 \to \mathcal{I} \to \mathcal{A}^{(0, 0)}(B) \xrightarrow{\overline{\partial}} \cdots \xrightarrow{\overline{\partial}} \mathcal{A}^{(0, m-1)}(B) \xrightarrow{\overline{\partial}} \mathcal{A}^{(0, m)}(B) \to 0
\]

are fine-sheaf-resolutions for \(\mathcal{I}\) and \(\text{Hom}_\mathcal{O}(\mathcal{I}, \mathcal{L})\) respectively. \(H^m_\ast(P, \mathcal{I}) = 0\) means that

\[
\alpha : \Gamma_\ast(P, \mathcal{A}^{(0, m-1)}(B)) \to \Gamma_\ast(P, \mathcal{A}^{(0, m)}(B))
\]

induced by

\[
\overline{\partial} : \mathcal{A}^{(0, m-1)}(B) \to \mathcal{A}^{(0, m)}(B)
\]

is surjective. \(\Gamma_\ast(P, \mathcal{D}^{(0, 0)}(B^*))\) and \(\Gamma_\ast(P, \mathcal{D}^{(0, 1)}(B^*))\) are respectively the duals of \(\Gamma_\ast(P, \mathcal{A}^{(0, m)}(B))\) and \(\Gamma_\ast(P, \mathcal{A}^{(0, m-1)}(B))\).

\[
\beta : \Gamma_\ast(P, \mathcal{D}^{(0, 0)}(B^*)) \to \Gamma_\ast(P, \mathcal{D}^{(0, 1)}(B^*))
\]

induced by \(\overline{\partial} : \mathcal{D}^{(0, 0)}(B^*) \to \mathcal{D}^{(0, 1)}(B^*)\) is the transpose of \(\alpha\). (Cf. [8]). \(\beta\) is therefore injective. \(\Gamma(P, \text{Hom}_\mathcal{O}(\mathcal{I}, \mathcal{L})) = 0\). q.e.d.

Proof of Theorem 1: Since \(X\) is Stein, by imbedding \(X\) and extending \(\mathcal{F}\) trivially we can assume w.l.o.g. that \(X = \mathbb{C}^N\) and
n > 0. Fix \(x \in G \). For \(0 \leq m \leq n \) we are going to construct by induction on \(m \) holomorphic functions \(f_0 \equiv 0, f_1, \ldots, f_m \) on \(G \) such that \(f_1(x) = \cdots = f_m(x) = 0 \), \((f_1)_x \neq 0, \ldots, (f_m)_x \neq 0 \), and for \(1 \leq k \leq m \)

\[
0 \to \mathcal{F}/\sum_{i=0}^{k-1} f_i \mathcal{F} \xrightarrow{\varphi_k} \mathcal{F}/\sum_{i=0}^{k-1} f_i \mathcal{F} \to \mathcal{F}/\sum_{i=0}^{k} f_i \mathcal{F} \to 0
\]

is an exact sequence on \(G \), where \(\varphi_k \) is defined by multiplication by \(f_k \).

The case \(m = 0 \) is trivial. Suppose we have constructed \(f_0 \equiv 0, f_1, \ldots, f_m \) for some \(0 \leq m < n \). (3) implies that

\[
H^p(G, \mathcal{F}/\sum_{i=0}^{k-1} f_i \mathcal{F}) \to H^p(G, \mathcal{F}/\sum_{i=0}^{k} f_i \mathcal{F}) \to H^{p+1}(G, \mathcal{F}/\sum_{i=0}^{k} f_i \mathcal{F})
\]

is exact for \(p \geq 0 \).

Since \(H^p(G, \mathcal{F}) = 0 \) for \(p < n \), by induction on \(k \) we obtain from (4) that, for \(0 \leq k \leq m \)

\[
H^p(G, \mathcal{F}/\sum_{i=0}^{k} f_i \mathcal{F}) = 0 \quad \text{for} \quad p < n-k.
\]

Let \(\mathcal{G} = \mathcal{F}/\sum_{i=0}^{m} f_i \mathcal{F} \). For the coherent analytic sheaf \(\mathcal{G} \) on \(G \) we have in \(G \) subvarieties \(X_p \), of pure dim \(p \) or empty, \(0 \leq p \leq N-1 \), satisfying the requirement of Lemma 2. Since \(H^p(G, \mathcal{G}) = 0 \) by (5) \(m \), from the construction in the proof of Lemma 2 we can choose \(X_0 = \emptyset \). Let \(X_p = \bigcup_{i \in I_p} X_p^i \) be the decomposition into irreducible branches, \(1 \leq p \leq N-1 \). For \(X_p \neq \emptyset \) take \(x_p^i \in X_p^i - \{x\} \). Let \(G - \{x\} = \bigcup_{j \in J} G_j \) be the decomposition into topological components. Take \(x_j \in G_j \). Let

\[
A = \{x_p^i \mid i \in I_p, 1 \leq p \leq N-1, X_p \neq \emptyset \} \cup \{x_j \mid j \in J\}.
\]

\(A \) is at most countable. There exists by Lemma 1 a holomorphic function \(f \) on \(G \) such that \(f(x) = 0 \) and \(f(y) \neq 0 \) for \(y \in A \). For \(z \in G \) \(f_z \) cannot vanish identically in any non-empty branch-germ of \(X_p \) at \(z \) for any \(p \). Therefore for \(z \in G \) \(f_z \) is not a zero-divisor for \(\mathcal{G}_z \). Set \(f_{m+1} = f \). The sequence \(f_0 \equiv 0, f_1, \cdots, f_m, f_{m+1} \) satisfies the construction requirement. The construction is complete. \((f_1)_x, \cdots, (f_m)_x \) is an \(\mathcal{F}_x \)-sequence in the sense of (27.1), [5].

\(\text{c.d.d.} \)

Proof of Theorem 2. Again w.l.o.g. we can assume that \(X = \mathbb{C}^N \). Let \(Y = \text{Supp} \mathcal{F}, D = G \cap Y, \) and \(\dim D = m \). We have to prove that \(m \leq n \). Suppose the contrary. Then \(n < m \) and \(H^p(G, \mathcal{F}) = 0 \) for \(p \geq m \).

Let \(\mathcal{I} \) be the annihilating ideal-sheaf for \(\mathcal{F} \), i.e. for \(x \in \mathbb{C}^N \), \(\mathcal{I}_x = \{s \in \mathcal{O}_x \mid s \mathcal{F}_x = 0\} \). Let \(\mathcal{H} = \mathcal{O}_G/\mathcal{I} \). The sheaf of modules
\(\mathcal{F} \) can be regarded as over the sheaf of rings \(\mathcal{H} \). Let \(\mathcal{H} \) be the subsheaf of all nilpotent elements of \(\mathcal{H} \). The exactness of

\[0 \to \mathcal{H} \mathcal{F} \to \mathcal{F} \to \mathcal{F}/\mathcal{H} \mathcal{F} \to 0 \]

implies the exactness of

\[H^p_*(G, \mathcal{F}) \to H^p_*(G, \mathcal{F}/\mathcal{H} \mathcal{F}) \to H^{p+1}_*(G, \mathcal{H} \mathcal{F}) \quad \text{for} \quad p \geq 0. \]

Since

\[\dim G \cap (\text{Supp } \mathcal{H} \mathcal{F}) \leq m, \quad H^{p+1}_*(G, \mathcal{H} \mathcal{F}) = 0 \quad \text{for} \quad p \geq m \]

by Satz 3, [6]. Hence

\[H^p_*(G, \mathcal{F}/\mathcal{H} \mathcal{F}) = 0 \quad \text{for} \quad p \geq m. \]

Supp \((\mathcal{F}/\mathcal{H} \mathcal{F}) \) = Supp \(\mathcal{F} \). For, if for some \(x \in \mathbb{C}^N \), \(\mathcal{F}_x = \mathcal{H}_x \mathcal{F}_x \), then, since \(\mathcal{H}_x \) is contained in the maximal-ideal of the local ring \(\mathcal{H}_x \), we have \(\mathcal{F}_x = 0 \) by Krull-Azumaya Lemma ((4.1), [5]).

Let \(\mathcal{G} = (\mathcal{F}/\mathcal{H} \mathcal{F})|Y \) and \(\tilde{\mathcal{G}} = (\mathcal{H}/\mathcal{H})|Y \). \(\mathcal{F} \) is a coherent analytic sheaf on the reduced Stein space \((Y, \tilde{\mathcal{G}}) \). Supp \(\mathcal{G} = Y \) and \(H^p_*(D, \mathcal{G}) = 0 \) for \(p \geq m \).

Let \(\pi : Z \to Y \) be the normalization of \((Y, \tilde{\mathcal{G}}) \). Let \(\mathcal{G}' \) be the inverse image of \(\mathcal{G} \) under \(\pi \) (Def. 8, [3]) and let \(\mathcal{G}'' \) be the zeroth direct image of \(\mathcal{G}' \) under \(\pi \). There exists a natural sheaf-homomorphism \(\lambda : \mathcal{G} \to \mathcal{G}'' \) (Satz 7 (b), [3]). \(\lambda \) is bijective at regular points of \(Y \). Let \(\mathcal{R} = \text{Ker } \lambda \) and \(\mathcal{Z} = \lambda(\mathcal{G}) \). The exactness of

\[0 \to \mathcal{R} \to \mathcal{G} \to \mathcal{G}'' \to 0 \]

implies the exactness of

\[H^p_*(D, \mathcal{R}) \to H^p_*(D, \mathcal{Z}) \to H^{p+1}_*(D, \mathcal{R}) \quad \text{for} \quad p \geq 0. \]

Since \(\dim D \cap \text{Supp } \mathcal{R} < m \), \(H^{p+1}_*(D, \mathcal{R}) = 0 \) for \(p \geq m-1 \).

\(H^p_*(D, \mathcal{Z}) = 0 \) for \(p \geq m \). The exactness of

\[0 \to \mathcal{Z} \to \mathcal{G}'' \to \mathcal{G}''/\mathcal{Z} \to 0 \]

implies the exactness of

\[H^p_*(D, \mathcal{Z}) \to H^p_*(D, \mathcal{G}'') \to H^p_*(D, \mathcal{G}''/\mathcal{Z}) \quad \text{for} \quad p \geq 0. \]

Since \(\dim D \cap \text{Supp } \mathcal{G}''/\mathcal{Z} < m \), \(H^p_*(D, \mathcal{G}''/\mathcal{Z}) = 0 \) for \(p \geq m \).

\(H^p_*(D, \mathcal{G}'') = 0 \) for \(p \geq m \). Let \(L = \pi^{-1}(D) \). Since

\[H^p_*(L, \mathcal{G}') \approx H^p_*(D, \mathcal{G}'') \quad \text{for} \quad p \geq 0, \]

\(H^p_*(L, \mathcal{G}') = 0 \) for \(p \geq m \).

Let \(\mathcal{I} \) be the torsion subsheaf of \(\mathcal{G}' \) and let \(\mathcal{I} = \mathcal{G}'/\mathcal{I} \). On \(Z \) \(\mathcal{I} \) is coherent and torsion-free (Prop. 6, [1]). Since \(\text{Supp } \mathcal{G} = Y \),
Supp \(\mathcal{S} = Z \). The exact sequence \(0 \to \mathcal{I} \to \mathcal{G}' \to \mathcal{S} \to 0 \) gives rise to the exact sequence

\[
H^p_*(L, \mathcal{G}') \to H^p_*(L, \mathcal{S}) \to H^{p+1}_*(L, \mathcal{I}) \quad \text{for} \quad p \geq 0.
\]

Since \(\dim L \cap \text{Supp} \mathcal{I} < m \), \(H^{p+1}_*(L, \mathcal{S}) = 0 \) for \(p \geq m-1 \). \(H^p_*(L, \mathcal{S}) = 0 \) for \(p \geq m \). Let \(Z_0 \) be an \(m \)-dimensional branch of \(Z \) intersecting \(L \). \(H^p_*(L \cap Z_0, \mathcal{S}) = 0 \) for \(p \geq m \). Let \(M \) be the set of all regular points of \(Z_0 \) and let \(E \) be the set of points in \(Z_0 \) where \(\mathcal{S} \) is not locally free. By Lemma 3 \(\dim E \leq m-2 \). Since \(Z_0 \) is normal, \(\dim (Z_0 - M) \leq m-2 \). By Satz 3,\[[6],
\[
H^p_*(L \cap (M - E), \mathcal{S}) = 0 \quad \text{for} \quad p \geq m.
\]

Let \(\mathcal{O} \) be the structure-sheaf of \(Z_0 \) and let \(\mathcal{L} \) be the sheaf of germs of holomorphic \((m, 0)\)-forms on \(M \). By Lemma 4 \(I(L \cap (M - E), \text{Hom}_\mathcal{O}(\mathcal{S}, \mathcal{L})) = 0 \). Take \(x \in L \cap (M - E) \). Since \(\mathcal{L}_x \neq 0 \) and \(Z_0 \) is Stein, there exists \(s \in I(Z_0, \text{Hom}_\mathcal{O}(\mathcal{S}, \mathcal{O})) \) such that \(s_x \neq 0 \). Since \(Z_0 \) is Stein, there exist holomorphic functions \(g_1, \ldots, g_m \) on \(Z_0 \) such that the map \((g_1, \ldots, g_m): Z_0 \to \mathbb{C}^m \) has rank \(m \) at \(x \). \(dg_1 \wedge \cdots \wedge dg_m \) defines an element \(f \) of \(I(M, \mathcal{L}) \).

Let \(f_x \neq 0 \). Since \(\text{Hom}_\mathcal{O}(\mathcal{S}, \mathcal{L}) \approx \text{Hom}_\mathcal{O}(\mathcal{S}, \mathcal{O}) \otimes _\mathcal{O} \mathcal{L} \) on \(M \), \(s \otimes f|L \cap (M - E) \) is a nonzero element of \(I(L \cap (M - E), \text{Hom}_\mathcal{O}(\mathcal{S}, \mathcal{L})) \). Contradiction. q.e.d.

Remark. In Theorems 1 and 2 the assumption that \(X \) is Stein cannot be dropped altogether. Counter-examples can easily be constructed by letting \(X \) be a complex projective space and by using Theorem von Serre in [3]. However, easy modifications in the proof can show that Theorem 1 holds under the weaker assumption that holomorphic functions on \(X \) separate points.

REFERENCES

A. ANDREOTTI

A. ANDREOTTI and H. GRAUERT

H. GRAUERT and R. REMMERT

R. C. GUNNING and H. ROSSI

M. Nagata

H.-J. Reiffen

G. Scheja

J.-P. Serre

W. Thimm

Univ. of Notre Dame, Notre Dame Indiana 46556, U.S.A.