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Lawless sequences of natural numbers

Dedicated to A. Heyting on the occasion of his 70th birthday

by

G. Kreisel

Introduction

The two main subjects of a theory of choice sequences are, of
course, the notion (or, perhaps, class of notions) of choice sequence,
and the operations applied to such sequences. Both points are well
illustrated by the theory of convergent sequences of rational
intervals [rn, rn], r for short, and, say, the (usual) sum operation.
These r obey the condition, for n = 0, 1, 2, ···,

Thus, ro is chosen arbitrarily, rô must lie in the interval

(r0, r0+1), rI in [r0, r’0), r’1 in (r0, r’0] ~ (r1, r1+2-1) and so on.
The sum, say t, of r and s is given by tn = rn+1+sn+1,
tn = r’n+1+s’n+1. To verify that t satisfies the basic condition

we use

and

For any n, the values of tn and t’ are given by rn+1 and sn+1,
respectively r’n+1 and s’n+1. No use is made of any mule or law that
may (or may not) be involved in the calculation of r and s.

Specifically, the values of tn and tn depend only on (a finite number
of) values of r and s and not, for instance in the case of recursive
rules for r and s, on the defining equations.
The example shows that even if we started with a specif ic class

of rules for constructing sequences of rational intervals, we should
be led to consider operations, such as the sum above, which are
quite meaningful without the restriction to this class, or, in fact,
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without any restriction on the rules. In short, such operations
apply to choice sequences. The reader may compare this situation
with the case of algebraic operations on the real numbers. Even
when we start with the specif ic structure of the reals, we see that
the algebraic operations use little of this structure; as we say
nowadays, they apply in any real closed field. In contrast to the
notion of real closed fields, the notion of choice sequence has a
rather clear informal meaning, and it is therefore useful to describe
more fully in informal terms the objects we are going to study.
(The description will be made more precise by the axiomatic
analysis in the body of the text.)

Informal destinctions. Let us look more closely at the
restrictions on the sequences r in the example above. What is

typical here, at least of most examples in analysis, is that we have
a rule, given in advance, telling us for each n what (finite) se-
quences [ro, r’0], ···, [rn, r’n] are "admitted"; and that any such
sequence can be continued, i.e., there is also a pair [rn+1, rn+1]
such that the rule admits

e.g.,

This type of restriction is called a spread.1
We may reformulate the restriction used in the example, and

thus obtain a useful generalization. Instead of imposing a condi-
tion on a sequence r directly, we start with an unrestricted sequence
of pairs of rationals, say (an, bn) and associate with it, in a canonical
manner, a sequence an, d’ such that

[an, àn] always satisfies our condition,
if [ao, b0 ···, [an, bn], ···, [am, bm] satisfies our condition
for n ç m then = a., à’ = bn for n  m.

DEFINITION. Put am = am, a:n = bm if [a0, boy, ..., [am, bm]
satisfies our condition. If not, let no, necessarily ~ m, be the first
n such that [ao, bo], ..-, [ano, bno] does not satisfy the condition.
(no = 0 means that bo ~ a0 or bo &#x3E; a0+1.) Put àm = an0-1 if

n0 ~ 0, and àm = ao if no = 0, for all m &#x3E; no. Put a’m = a0 + 2-(m+1)

1 The particular spread here considered is stochastic, i.e., the restriction on

[rn+1, r’n+1] depends only on [rn , r’n] and not on any [rm, r.i for m  n. Though
stochastic spreads are not of special foundational importance, they are technically
interesting. ( I owe this information to Dr. Troelstra. )
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if no = 0, and otherwise

Note that the values of each am, a:n still only depend on a finite
number of values of (ai, bi) (i  m ), but not merely on, say,
am, bm.
The general principle involved is that we start with an un-

restricted sequence, and apply an operation to it to form a new
sequence. For any given spread, as shown in the example, we have
an operation which maps an unrestricted sequence into the spread
and leaves invariant any sequence that is already in the spread.
These operations are of the same kind as the sum operation above.
We shall return in Section 4 to the technical question what opera-
tions other than mappings into spreads are useful.
Once we think of restrictions we are led, as in Brouwer’s [2],

p. 323 (2), to consider more sophisticated versions: restrictions
on restrictions, so-called second order restrictions; third order
restrictions on second order restrictions and so forth. Brouwer
himself did not pursue his ideas, perhaps because he realized too
quickly that a theory of general higher order restrictions might
be hopelessly complicated (and inelegant even when compared
to the horrors of the worst kind of intuitionistic mathematics);
cf. footnote, p. 142, in [3].2
The sequences to be considered in detail in the present paper

are those where the simplest kind of restriction on restrictions is
made, namely some finite initial segment of values is prescribed,
and, beyond this, no restriction is to be made.3 1 expressed this
idea by absolutely free in [6], but shall call these sequences lawless

2 1 am indebted to A. S. Troelstra for the reference to [2] and to S. A. Kripke for
the reference to [3]. Correction. On p. 180 of [8] 1 misinterpreted Brouwer’s footnote
on p. 142 of [3] to refer to lawless sequences. Dr. Troelstra pointed out to me that
higher order restrictions are meant.

3 More precisely one first makes a general restriction on the species from which
the elements of the sequence are chosen; here natural numbers. The work extends

directly to any countable decidable species. To avoid a possible misunderstanding
it is as well to note the following distinction. The restriction involved in the notion
of lawless sequence is intended to mean that in any particular context only a
finite initial segment is used, not that the sequence is given by an initial segment
once and for all. (Formally, such independence of context would be expressed by
modifying axiom 2.3 on p. 15. putting "3n" between "Voc" and "~03B11"; evidently
several of the axioms of Section 2, e.g. 2.4, are false for this second kind of

notion.) In brief, the theory of lawless sequences cannot be said to be about
operations on a "finite amount of information".
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here.4 (We consider sequences of natural numbers; so in the ex-
amples above, pairs of rationals would be coded by a natural
number. )

Principal result (Section 2). We consider the context in

which the subject of sequences first presents itself, namely we
have variables for natural numbers, constructive number theoretic
functions (i.e., rules), lawless sequences, and species of such

objects, and consider compound expressions built up logically.
We find a complete analysis of lawless sequences in this contexte
Precisely, we give enough basic properties of the objects discussed,
to construct, for any assertion A in the present context, a A’ not
containing symbols for lawless sequences at all, which is equivalent
to A. More formally, A H A’ follows from the particular proper-
ties (axioms) of our basic notions.s The theory of the notions
other than lawless sequences, i.e., of the notions involved in A’,
is given in Section 1. The theory of Section 2 is specialized to
binary sequences in Section 3, superseding results on a fragment
given in [6].

General discussion. The following comments on the principal
results, may, 1 believe, be useful before reading the technical
sections; of course the latter can be read independently.

Elsewhere ([8], 2.523 on p. 136 and 2.622 on p. 140). 1 have
described theorems similar to the principal result above as elimina-
tion results. There I thought of the results as means of "getting
rid" or "analyzing away" certain notions of choice séquence
(for reasons given in footnote 12 below). But the principal result
is not to be interpreted in this way. We have simply discovered

4 The term lawless was proposed by Gôdel (in conversation) after he had seen the
properties of absolutely free sequences given in my paper [8]. (Neither of us knew
at the time Brouwer’s earlier anaiysis. ) In choosing between the two terms one faces
the familiar issue between freedom and licence (lawlessness). Ten years ago I

certainly felt that even the thought of restreint, e.g., the possibility of a diet, was
a restriction of freedom, and so 1 naturally used "absolutely free". With the years
the lure of licence has diminished: hence the present title. May healthier and
livelier (nowadays called "hippier") readers not be misled by it 1

5 ’rwo "refinements" are worth noting. First (for reasons set out in 1.1 below)
our formal language contains not only spécifie species, explicitly defined from
constants, but species variables. Second, there is also a proof theoretic result (but
not established in the present paper): if A can be formally derived from our axioms
for lawless sequences and constructive objects (numbers and constructive functions)
then A’ can be derived from our axioms for constructive objects. This syntactic
result is quite elementary, for instance derivable on primitive recursive arithmetic.
This provides the classical consistency proof left open in [6], p. 386.
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enough about lawless sequences to be able to assert A ~ A’ : this
does not "get rid" of lawless sequences since they are involved in
A itself! In other words, the situation is parallel to the elimination
of quantifiers in certain axiomatic theorems. More specifically,
recall that our formal systems are not complete. So not all state-
ments A’ are decided. It may well turn out that some A is evident
for our interpretation, while A’ is not: in this case we should

convince ourselves of A’ by using the result A ~ A’. (Note how-
ever, by the second result in footnote 5, that, at the present time,
any such use of lawless séquences seems to be eliminable since
the axioms of Section 2 seem to codify all known informal prin-
ciples valid for lawless sequences of natural numbers.)
An "unusual" feature of our exposition of the subject is the

explicit use of "constructive function" as a primitive concept. Of
course, it is used implicitly when the notion of constructive
function is "defined" as in recursion theory, since the notion is
involved in the quantifier combination Vx3y in Vx3yT(e, x, y).
Besides certain technical advantages, this explicit use is relevant
to the informal discussions of the notion of choice sequence

particularly by Myhill [12] and Troelstra [13]. They have con-
sidered certain problematic forms of the axiom of choice (problem-
atic, because one considers not arbitrary selection operators, but
extensional or even continuous ones). To disentangle the roles of
constructive functions and of choice sequences in these discussions,
one must avoid a premature identification between constructive
functions and some defined concept. (The literature is discussed
briefly at the end of Sections 1 and 4.) 6
A principal tool in our analysis is the notion of Brouwer operation

(Section 1) which is intended to formulate generally the continuity

g Correction. Another context where questions about constructive functions were
misstated as being about choice séquences, is in connection with Gôdel’s result on
Heyting’s predicate calculus (see e.g. [8], p. 146, 2.741). If the latter is complete
then, for each primitive recursive property A (n ) we have

where aB ranges over all constructive functions taking the values 0 or 1, and aBx
dénotes the séquence aB0, ···, aB(x-1)&#x3E;. Note that (~aB)(x ~ y)A(aBx) is

a decidable property of y, and équivalent to (~03B1*B)(x ~ y)A(a*Bx), where 03B1*B
ranges over choice séquences taking values 0 or 1 only. Gôdel’s argument establishes
(*), but only the weaker result

was stated. NB. The 03B1*B; are not lawless séquences, but choice séquences of the kind
used in analysis and illustrated in the introduction.
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property, i.e., dependence on an initial segment illustrated by the
sum operation at the beginning of the introduction. The basic
question, implicit in [1 ], is whether alt completely defined opera-
tions on choice sequences are Brouwer operations. The present
paper does not attempt to answer this question; but it verifies
that Brouwer operations are continuous, and that the familiar,
independently defined operations on choice sequences are Brouwer
operations. More generally, we give closure properties of this
class (species) of operations. Perhaps most important, we reduce
the problem, in the case of lawless sequences, to the question,
whether all continuous operations are Brouwer operations (by
virtue of the evident axioms of Section 2). Though the problem of
non-extensional operations discussed in [12] does not arise for
lawless sequences, it appears in Section 4 in connection with
certain derived notions of choice sequence involving both con-
structive functions and lawless sequences.
Throughout this paper Heyting’s formal rules of intuitionistic

logic are used. These rules are valid not only for the Brouwer-
Heyting interpretation of the logical particles, but also for Gôdel’s
interpretation in [4]. The axioms of the theory of (completed)
constructive objects in Section 1 hold for both interpretations
(when Gôdel’s is extended to a formalism with inductively
defirmed species). But Gôdel’s interpretation is not valid for the
theory of lawless sequences in Section 2 since, on his interpreta-
tion, we have

by footnote p. 113 of [7], which does not apply when we take
03B1x = 0 for Ax, where oc is a variable for lawless sequences of
natural numbers.

1. Constructive number theoretic functions
and Brouwer operations

We confine the description to essentials.

Variables: x, y, z, ··· for natural numbers; a, b, c, ··· for

monadic number theoretic functions; X, Y, Z for species, some-
times written Xn,m to indicate that X has n number and m
function arguments (this will be Xn,m,0 in the notation of the next
section to indicate that there are no arguments of lawless se-
quences).
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Constants: 0 and + for the successor (we write t+ for +t); j1 and
j2 for inverse pairing functions and KO,l for the species of Brouwer
operations. 

Relations : = (at least between numerical terms), V(a, x, y)
for function evaluation, also written a(x) - y or ax = y.
The usual formation rules for terms and f ormulae are used where

terms are understood to be numerical valued. The only function
"terms" are the function variables and function constants.
The axioms are divided into groups.

1.1. Closure conditions on the notion o f species expressing that
the basic relations are species, that logical operations can be used
to form species and that specialization of some arguments of a
species yields a species. (Definitions of species by quantification
of species variables are not used in the basic theory; see below.)
These axioms are exactly parallel to the class formation rules

in the theory of classes (see e.g. App. A of [9] ). Proof theoretically
the theory below is equivalent to a system obtained by replacing
axioms involving universal species quantification by axiom
schemata applied to definable relations. But such a schema leaves
open whether the corresponding axiom is valid for arbitrary
species or whether it depends on some special property of the
definable relations (such as extensionality of Tl and K0,1 in our
case).

1.2. Successor axioms. ~x x+ = 0, ~x~y(x+ = y+ ~ x = y),
and

One then derives in the usual way induction for Xn+1,m, and the
theorems

etc. 

1.3. Pairing axioms : ~x~y!z (j1z = x 1B j2Z = y).
For any function term t, we can "regard" t as defining a function

of two variables by using the convention (eliminable abbreviation )

whence by use of the pairing axioms we also have

The fact that t(x, y ) = z is in 41-form will be of use in Section 2.
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1.4. Closure conditions on the species o f constructive f unctions,
expressing the existence of a function, say Ô, such that ~x (Ôx = 0 ),
closure under composition, substitution, and permutation of

variables (when functions are regarded as binary); alternatively
one could use 03BB-terms.
To state the two elementary axioms of choice (the countable

axiom of choice A C -NF, from numbers "N" to functions "’F";
and the axiom of dependent choices DC - F ) we need an abbrevia-
tion for X containing at least one function argument b:

Note that our closure conditions imply

By use of A C -NF and induction, one derives closure under
primitive recursion.

1.4.1. Note that this derivation is much less elementary than
the usual proof that the recursion equations together with the
usual computation procedure provide a mechanical rule for com-
puting primitive recursive functions. For the function b in

A C -NF is thought of as defined from a proof of the premise
which definition is not frima jacie mechanical or recursive ([8],
p. 131, 2.35). One of the interesting consequences of certain
recursive realizability interpretations is that (within a limited
context), AC - NF or DC - FF are satisfied, in the sense of these
interpretations, even if one restricts oneself to mechanical rules.
But, while A C -NF is evident for the general notion of con-
structive function, the verification of a realizability interpretation
is never immediate.

1.4.2. We shall need concatenation theory to state the axioms for
Brouwer operations. We use the coding of [10], which is slightly
different from Kleene’s, but use Kleene’s ân for the (canonical)
representation of the sequence x0, ···, ai, · · four 1  n.

We use variables m, n, ... for natural numbers when we think
of them as codes for finite sequences, say 03BE1, ···, 1 ek. The empty
sequence has number 0.

j1m == k, the length of the sequence,
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j2M = 03BD(03BE1, ···, 03BEk) where j103BD(03BE1, ···, 03BEk) = Si , j203BD(03BE1, ···, 03BEk) =
03BD(03BE2, ···, 03BEk) if k &#x3E; i, = 0 if k = 1. (Thus v is a many-one num-
bering of finite sequences which is made 1-1 by giving the length
of the séquence.)

As usual we shall use * for concatenation, but write n * m for

*(n, m) (which in turn is to be interpreted according to con-
vention 1.3).
Note that if ~x(j2x  x) we can decide primitive recursively

whether any given n is in the range of v.

1.5. Brouwer operations, denoted by e, f, ···. These are intended
to be neighborhood f unctions defined on sequence numbers m so
as to induce an assignment of numbers to functions. Specifically,
em = x+ is to indicate that for all functions a "belonging" to the
neighborhood (03BE1, ···, 03BEk) with number m, i.e., for a such that
ay = 03BEy+1 for y  k or, again for aj1m = m (j1 m being the length
of the sequence m ! ), we assign the value x. If em = 0 we have
left open whether all functions in (03BE1, ···, 03BEk) get the same value.
An elementary consistency condition is therefore

The crucial continuity condition which generalizes the essential
properties of the sum operation in the introduction is

The critical point, stressed in the introduction, is the following
requirement on the quantifier combination Va3m. The existence
of m should not be derived by use of delicate properties or assump-
tions on possible rules for a, but, as in the case of the sum opera-
tion, should be insensitive to the class of rules considered. In the
present section, after having defined the species of Brouwer

operations, we shall do justice to this requirement by proving
1.51 for such operations e, using nothing about a except that its
values are determined! We do not even use such elementary closure
conditions as ~ab~x(bx = ax+). In the next section we shall
reformulate the requirement; instead of making restrictions on
the kind of proof of 1.51 to be used, we shall ask for a proof of a
different theorem, namely
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where oc ranges over choice sequences.?

A xioms for the species K0,1 of Brouwer operations. Let A [Y0,1]
denote the conjunction of

where ÿ is the number of the sequence consisting of the single
element y.

1.52 The axioms for Ko,l are: A [K] and

Note that this axiom expresses an induction principle which is
seen to hold if we think of K as generated according to the two
clauses A [K]. First we start with the neighborhood functions
1, 2, 3, which assign outright the value 0, 1, 2, ··· respectively
(to any a). Second, if e enumerates the sequence eO, el, e2, ... ·

in the sense

then e assigns to the sequence (aO, a1, ···) the value which ea°
assigns to (al, a2, ... ). If K is generated in this way, and X is
closed under these closure conditions, then X must contain K.
Note also that the induction principle, together with the other

axioms for constructive functions, implies a further strong closure
property of K, namely the axiom of choice 8

This closure condition makes the general theory of Brouwer

operations more elegant than giving an explicit list of Brouwer
operations.

7 We have here an instance of a very general principle, often applied without
analysis. We begin with an idea of a particular kind of argument or restriction to a
particular kind of evidence or proof. We then discover that this idea leads to the
same results, i.e., the same set of theorems (in a given language), as considering
a wider class of objects and allowing arbitrary proofs. A well known example of this
situation (already mentioned in the introduction) concerns the old idea of algebraic
proofs about real numbers stressed, for instance, in Sturm’s original publication.
This was later replaced by validity for all real closed fields. It should not be assumed
that a similar replacement will be useful for every informal notion of proof!

8 In contrast 1 do not see how to derive the axiom of dependent choices for
éléments of K, i.e. 

~e(Ke ~ f[Hf 039B X1,1(e,f)]) ~ Ve(Ke ~ f[Kf 039B f0 ~ e A ~xX1,1(fx,fx+1)])
where r e stands for ~m[f( * m ) = em] although it is intuitionistically valid.
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THEOREM. ~e[Ke ~ Ha3m3x(em = X+ n âjim = m)].
To avoid assuming closure conditions on the species of con-

structive functions, we prove a slightly stronger theorem by
induction on K:

PROOF. If e is a starting function, i.e., i, 2, ..., we take m = 0
and x = 0, 1, ... respectively. Next suppose that e0 = 0, iin = p
and ap = 03BEp+1 (here we use the fact that values of a are deter-
mined). By assumption, f~m[Kf A f m = e(03BEp+1 * m)]. In the

induction hypothesis, replace e by f, and n by n * 03BEp+1; if m is

such that

as required.
The elementary condition

follows by a straight induction on K. For further properties of K,
see [10].

1.6 Abbreviations. We write

and

where n. is the (1+y)th element of the sequence n.
The main theorem about K can be restated as

Note that the expression b(a) cannot be regarded as a function
of the two variables a and b, since we have -1 ~a~bx[b(a) = x].
In fact, by [10], using only the assumption that not all disjoint
constructively enumerable sets are constructively separable, we
have even -1 ~a~bx[Kb ~ b(a) = x].

In contrast (b|a) which, for a and b in K, is a composition
operation, can be extended to all pairs of constructive functions.
Formally, if C(e, f, g) expresses that g is the composition obtained
by applying (the functional with neighborhood function) e to f,
we have not only


