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On some non-Archimedean normed linear spaces
I

by

Pierre Robert

Introduction

This paper is the first of a series to be published under the same
title and numbered I, II, ....

In this work we study a non-standard type of pseudo-normed
linear spaces, herein called V-spaces.

V-spaces depart from the classical normed linear spaces ([7],
[36] ) in that the usual requirements on the norm function

(0.1) II(Xxll [ = |03B1|~x~ for all x and for all scalars oc,

(0.2) ~x+y~ ~ ~x~+~y~ for all x, y,
are replaced by

and, also, by the additional condition that the norm of an element
is either 0 or is equal to pn for a fixed real p, 1  p  oo, and some

integer n. A V-space is assumed to be complete with respect to its
norm and the field of scalars to have characteristic 0 ( [10] ). Thus,
in the usual terminology, a V-space is a complete strongly non-
Archimedean pseudo-normed linear space over a field of scalars
with characteristic 0 and a trivial valuation.
The author’s attention was directed to this abstract structure

by the following example. A classical method to obtain informa-
tion about the asymptotic behaviour of a real valued function is
to compare it with the elements of an "asymptotic sequence" of
functions (see Erdelyi [9], van der Corput [38], [39]). C. A.
Swanson and M. Schulzer [32], [33], have extended this method
of comparison to functions defined on some neighbourhood of a
non-isolated point of a Hausdorff space and with ranges in an
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arbitrary Banach space. It will be shown, in Part III, that when
applied to the elements of a linear space of functions, the results
of this method can be expressed by assigning to each function a
norm under which the space is a V-space.

Linear spaces satisfying the defining properties of a V-space,
except for the retention of (0.1) in place of (0.3), have been
systematically investigated by A. F. Monna [24], [25]. Most of
the results of Monna are valid under the additional conditions
that the space be separable or locally compact. Except in trivial
cases, V-spaces are neither locally compact nor separable.

In Parts 1 and II we investigate the basic topological and
algebraic properties of V-spaces. A notion of utmost importance
in this work is that of "distinguishability". "Distinguished sets"
and "distinguished bases" are defined in Section 5, Part I. The
concept of distinguishability has been introduced by Monna
[24, V], [25, I] under a different name and through another
formal definition. Monna has shown that in non-Archimedean
normed linear spaces over a field with a non-trivial valuation,
distinguished bases exist only under restrictive conditions. How-
ever, by use of a modified form (Theorem 1-6.1) of the classical
Riesz’s Lemma ([7], [36]), it is proved in Part II that a V-space
admits a distinguished basis. It follows (Theorem 1-5.6) that an
element belongs to the space if and only if it is a sum of a formal
series in terms of the elements of a distinguished basis. Thus,
the rôle of a distinguished basis in a V-space is similar to the rôle
of a complete orthogonal basis in a Hilbert space.
We also consider V-algebras and give theorems on the existence

of inverses and on the spectra of elements of a V-algebra. Most of
these theorems are simple modifications of the classical theorems
of the theory of normed rings ([7], [26]).
Examples of V-spaces and V-algebras will be displayed in Part

III. "Asymptotic spaces" are constructed by widening the scope
of the method of C. A. Swanson and M. Schulzer [32], [33], referred
to above. We also define "moment spaces" in which, for example,
one can interpret the methods of Lanczos [21] or Clenshaw [2]
for the approximation of the solutions of certain differential

equations.
Later Parts will be devoted to the study of linear and non-linear

operators on V-spaces. By setting a proper norm on these opera-
tors, the set of bounded operators forms a V-space of which the
set of bounded linear operators is a subspace.
Elementary theorems of the theory of bounded linear operators
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on Banach spaces still apply in V-spaces. However, important dif-
ferences will be exemplified: a continuous linear operator is not nec-
essarily bounded; the uniform boundedness theorem does not hold.
We give a simple characterization of bounded linear operators.

As applications of this important theorem we derive a result of
H. F. Davis [4] and indicate how asymptotic expansions of the
Laplace transforms of certain functions of two variables can be
obtained (see V. A. Ditkin and A. P. Prudnikov [6] ).
Theorem IV 6.5 allows the comparison of the spectra of two

bounded linear operators when the norm of their difference is less
than 1. The result is obtained by showing that an inequality
proved by C. A. Swanson [34], [35] for linear transformations
with eigenvalues on a Hilbert space can be modified into an
equality in V-spaces. 
The problem considered by C. A. Swanson and M. Schulzer in

[32] and [33] is that of the existence and approximation of
"asymptotic solutions" of certain equations in Banach spaces.
In Part V, we extend the results of Swanson and Schulzer to
arbitrary V-spaces and V-algebras (Theorems 2.2, 3.2, 4.3). Our
methods of proof are different than those of [32] and [33]. Our
hypotheses are weaker and consequently our proofs are more
involved. Possible simplifications of the hypotheses are mentioned.

In Part VI we consider continuous linear functionals. It is
known that continuous linear functionals on a V-space are

bounded (Monna [24], III) and that the Hahn-Banach Theorem
is valid (Monna [24], III, Cohen [3], Ingleton [17]); we give a
new proof of the latter using distinguished bases.
The main result of this chapter is a representation theorem for

linear functionals on certain bounded V-spaces. The representa-
tion theorem is a generalization of a theorem of H. F. Davis [4]
which asserts that the space of continuous linear functionals on
the space of asymptotically convergent power series in a real
variable is isomorphic to the space of polynomials in that variable.

It is shown (Section VI-2) that a new norm, called "*norm",
can be defined on the set of finite linear combinations of the
elements of a distinguished basis of a V-space X, and that, under
this norm, this set is a V-space isomorphic to a subspace of the
dual of X. This isomorphism is isometric and is obtained by use
of a particular type of inner product.

In Parts IV, V and VI, applications of the theorems are shown
using some of the examples of asymptotic spaces described in
Part III.
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1. Definitions and notations

DEFINITION 1.1. A pseudo-valued space is a non-Archimedean

pseudo-normed linear space over a trivially valued field with
characteristic 0.

Thus, if X is a pseudo-valued space, F its field of scalars, 0 and
0 are the additive identities of X and F, respectively, then

for all x E X and ah oc E F, oc mA 0,

for all x, y e X.

It follows easily that for all x, y e X, 1 x 1 e 1 y implies:

DEFINITION 1.2. A pseudo-valued space X will be called a
valued space if

(1.5) |x| = 0 implies x == 0.

2. Topological properties

The topology considered on the (pseudo)-valued space X is the
topology induced by the metric d:

The open ball S(x, r), the closed ball S’(x, r) and the sphere
B (x, r), with center x and radius r, are defined by

THEOREM 2.1. If X is a (pseudo-) valued space, then

(i) for any x, y e X and r,

(where 0 denotes the empty set).
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(ii) For any x E X and r &#x3E; 0, S(x, r), S’(x, r), B(x, r) are all
closed and open.

THEOREM 2.2. If X is a (pseudo-) valued space and r &#x3E; 0, then

(i) S( 0, r) and S’(0, r) are subspaces of X;
(ii) The quotient topologies on the quotient spaces X/S(03B8, r)

and XjS’( 0, r) are both discrete.

PROOF: (i) is easily verified.
(ii) The natural mapping from a topological group to one of

its quotient groups is a continuous open mapping. The points in
the quotient groups X/S(O, r) and X/S’(03B8, r) are translates of
the balls S(03B8, r) and S’(0, r) respectively. The balls S(03B8, r) and
S’(0, r) are both closed and open (Theorem 2.1. (ii)), hence the
points in the quotient groups are both closed and open ([28],
p. 59).

3. Sequences and series

THEOREM 3.1. If X is a (pseudo-) valued space:

(i) A sequence {xn} in X is a Cauchy sequence if and only if

(ii) A series 03A3nxn in X is a Cauchy series if and only if

The proof of this theorem is omitted. It is a mere modification
of the proof of a similar theorem for fields with a non-Archimedean
valuation. See [31], p. 28 or [40], p. 240.
The proof of the following theorem is also omitted (cf. Lemma

5.5 below). Part (i) is quoted, without proof, in [29], p. 139.

Part (ii) follows from Theorem 3.1 (ii) and inequality (1.3).

THEOREM 3.2. If X is a (pseudo-) valued space:
(i) A convergent series is unconditionally convergent, i.e. any

reordering of its terms converges to the same sum(s).
(ii) If 03A3nxn is convergent and has sum x, then

4. Compactness

In this section we give a characterization of the compact subsets
of a (pseudo-) valued space X.
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If the topology of X is discrete, a subset of X is compact if and
only if it is finite. Thus X itself is not compact. Since each point
forms a neighbourhood of itself, X is locally compact.

If the topology of X is not discrete, then X is neither compact
nor locally compact. Indeed every neighbourhood V of 0 contains
a ball S(03B8, r) for some r. This ball contains a point x such that
|x| ~ 0. Thus V contains the discrete subspace generated by x.
We shall use the following definition:

DEFINITION 4.1. Let A C X. The set S2(A ) defined by

will be called the norm range of A.

THEOREM 4.2. Let X be a (pseudo-) valued space, and A be a
subset of X.

(i) A is compact if and only if for each r &#x3E; 0 it is a finite union
of disjoint compact subsets K1, K2, ..., Kn(r), such that x EKi
and y E Kj implies

(ii) If A is compact and does not contain 0, except possibly as
an isolated point, then its norm range 03A9(A) is finite.

PROOF: (i) A set is certainly compact if it is a finite union of
compact sets.
For the converse, let A be compact and r &#x3E; 0 be arbitrary.

The family

is an open cover of A. We can extract from Q a finite subcover

{S(x1, r), S(x2, r), ..., S(xn(r), r)} such that the S(x2, r) are dis-
joint. (See th. 2.1. (i)). Then (1.8) is satisfied with Ki replaced by
S(xi, r). Take Ki = A n S(xi, r). Ki is compact since it is the

intersection of a compact set and a closed set (Th. 2.1. (ii ) ). Then
(1.8) holds.

(ii) Since 0 is at most an isolated point of A, there exists r &#x3E; 0

such that

Consider, for this particular value of r, the sets Ki, i = 1, 2, ..., N(r)
of (i). Then, 0 o Ki, x E Ki and y E Ki imply
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By (1.4), |x| = |y| and the conclusion follows.

REMARKS : (i) The fact that the valuation on the field F is the
trivial valuation is responsible for a high discretization in a

(pseudo-) valued space. As a result, we may say, loosely speaking,
that compactness is a very restrictive property and that it is
rather difficult for a subset of a (pseudo-) valued space to be
compact.
No convex set is compact unless it is reduced to a single point

(or to a subset of S(03B8, 0)). No set with a non-empty interior is
compact unless the space is discrète and the set is finite.
One can expect that compactness will not play an important

rôle in this theory.
(ii) The results of Theorem 4.2 may be compared with Property

4, in Theorem 2 of Monna, [24], Part I, page 1048.
Monna has shown that if a non-Archimedean normed linear

space over a field of scalars with the trivial valuation is locally
compact, then the field of scalars is finite. ([24], Part II, p. 1061.)

5. Distinguished bases

Let A be a subset of a topological linear space X, over a field F.
The subspace (A ) generated by A is the set of all the finite linear
combinations of elements of A. The topological closure of (A )
will be denoted by [A ] and be called the closed subspace generated
by A. 
We introduce the following definition:

DEFINITION 5.1. Let A be a subset of a topological linear space
X.

(i) A is said to be a completely independent set if

(ii) A is called a complete basis if it is a completely independent
set and [A] = X.

Clearly, in an arbitrary topological linear space, a completely
independent set is also linearly independent. The converse is not
true as is shown by the following example. Let C[0, 1] be the
space of all the real valued continuous functions f on [0, 1], with
the uniform norm:
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let X be the subspace of C[0, 1] generated by 03A60 u Eo, where

It is known (Weierstrass’ Theorem) that the set 00 is a com-
pletely independent set which is a complete basis but not a Hamel
basis of X. Thus 03A60 u Eo is a linearly independent but not com-
pletely independent set.

THEOREM 5.2. A complete basis A of a topological linear space
X is also a Hamel basis of X if and only if (A ) contains an open
set.

PROOF: If A is a Hamel basis (A) D X. Conversely, suppose that
(A ) contains an open set. Then (A ) contains an interior point and
(A ) is a subgroup of X. It is known ([18], p. 106) that any sub-
group of a topological group which contains an interior point is
closed (and open). Thus, A is a linearly independent set and
(A) = [A] = X.
Returning to the theory of valued spaces, we introduce the

notion of distinguishability in the following way.
DEFINITION 5.3. Let A be a non-empty subset of a (pseudo-)

valued space X.

(i) A is said to be a distinguished set if no element of A has
norm equal to 0, and, if for any finite subset of distinct points
x1, x2, ..., xn of A,

oc, E F, whenever 03B1i ~ 0 for i = 1, 2, ..., n.
(ii) A is called a distinguished basis of X if A is a distinguished

set and a complete basis of A.
In a later paper of this series, we show that there exists a norm

on the space X of the example above, under which X is a pseudo-
valued space. The Hamel basis 00 u Eo will be shown to be
neither a complete nor a distinguished basis.
The essential feature of a distinguished set A in a (pseudo-)

valued space is the following: if x, y ~ A, x ~ y and |x| 1 == 1 yi = r,
then |03B1x+03B2y| = r, except when 03B1 = 03B2 == 0.
The author has not been able to show the existence of distin-

guished bases in arbitrary (pseudo-) valued spaces. Nevertheless,
under an important additional assumption on the norm range of
the space, we shall prove, in Part II, that a (pseudo-) valued space
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has a distinguished basis. This assumption will be satisfied in all
the examples and applications to follow.

In the case of an arbitrary (pseudo-) valued space, we have:

THEOREM 5.4. A (pseudo-) valued space admits a Hamel basis
which is a distinguished set.
The proof is identical to the proof of the existence of a Hamel

basis in a linear space ([36], p. 45). A distinguished Hamel basis
is a maximal distinguished set.

Definition 5.3 (ii) is slightly redundant. Indeed, we shall prove
in Theorem 5.6(i) below that a distinguished set is completely
independent. Thus a distinguished basis A in a (pseudo-) valued
space X is a distinguished subset such that [A ] - X. To prove
Theorem 5.6 we shall need the following lemma, which is an

improvement over Theorem 3.2 (ii).

LEMMA 5.5. Let A be a distinguished subset of a (pseudo-)
valued space X. Let {xn} be an at most countable subset of A.
If an e F, (Xn =F 0 for each n, and x = 03A3n03B1nxn, then

PROOF: By Theorem 3.1 (ii), given r  |x1|, there exists N
such that for all n &#x3E; N, |xn| G r. By Theorem 3.2 (ii)

and, since A is distinguished,

Thus,

Note that this supremum is attained.

THEOREM 5.6. Let X be a (pseudo-) valued space.
(i) A distinguished subset A of X is completely independent.
(ii) If A is a distinguished basis of X, then every x E X can be

represented uniquely (except for order) by a series 03A3~n=1 ocnxn,
with xn ~ A, 03B1n E F, n = 1, 2, ....

PROOF: (i) Let xo be an arbitrary point of A. Suppose that
xo E [B], where B = AB{x0}. Then there exists a sequence {yn}
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in (B) which converges to xo. It follows that there exists an

element y of (B)

such that |y-x0|  |x0|, i.e.

This contradicts the distinguishability of A.
(ii) Since x E CAJ, there exists a sequence {yn : n = 1, 2, ...1

in (A ) which converges to x. Let z1 = y1 and zn = yn-yn-1 ~ (A )
for n = 2, 3, .... Then the series 1-’l z. converges to x.
Let

The set {xnj : n == 1, 2, ..., i - 1, 2, ..., p(n)} is a countable set.
Let its elements be ordered into a sequence {xm : m = 1, 2, ...}
such that |xm| ~ |xm+1| for all m.
For each integer m ~ 1, there exists an integer N(m) such that

Therefore, for each m, the number of integers n such that
xm = xnj for some j, 1 ~ j ~ p(n), is finite. The series 03A3~n=1 zn
can thus be reordered by grouping the terms in xm, for each
integer m.
The uniqueness (except for order) follows from Lemma 5.5.
Consequences of the above theorem are:
(i) If A is a distinguished subset of X, then

(ii) If A is a distinguished basis of X, then inf S2(A) = 0
when X is not discrete, and in any case S2(A) = 03A9(X)B{0}, i.e.
for every r e Q ( ), r ~ 0, there exists x e A such that 1 xi = r.

If A is a distinguished basis of a (pseudo) valued space X,
the unique series

which converges to a given point x E X, will be called the expan-
sion of x in terms of A. According to Theorem 3.2 (i), the terms
of such an expansion can be reordered to give a non-increasing
series, i.e. a series such that |xn| ~ |xn+1| for all n &#x3E; 1.
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NOTATION: If x E X and y e A, we shall denote by (x, y)A the
coefficient of y in the expansion of x in terms of A. With this
notation (1.9) becomes

Assuming that a (pseudo-) valued space X admits a distin-
guished basis, we can state

THEOREM 5.7. All distinguished bases of X have the same
cardinality.

This theorem justifies:
DEFINITION 5.8. If a (pseudo-) valued space X admits a distin-

guished basis, the cardinality of this basis will be called the

(algebraic ) dimension of the space.
The proof of Theorem 5.7 is omitted; it is similar to the proof

given by Dunford and Schwartz ([7], p. 253) for the invariance
of the cardinality of complete orthonormal bases of a Hilbert
space 1.

Theorems 5.6 and 5.7 indicate that, to some extent, the rôles
of distinguished sets and distinguished bases in a (pseudo-) valued
space are similar to the rôles of orthogonal sets and orthonormal
bases in a Hilbert space ([7], pp. 252-253 ).

6. Modification of Riesz’s Lemma

We conclude Part 1 of this work by proving a modified version
of Riesz’s Lemma. This theorem will be used in Part II to prove
the existence of distinguished bases in certain types of pseudo-
valued spaces.

In the case of a normed linear space X over the real or complex
field with the usual valuations, Riesz’s Lemma can be stated as
follows ([36], p. 96; also [7], p. 578):

"Let Y be a closed, proper subspace of X. Then for each a
such that 0  cc  1, there exists a point x03B1 E X such that
~x03B1~ - 1 and ~y-x03B1~ &#x3E; a for all y E Y."

If X is a (pseudo-) valued space, the above statement must be
modified. The reason for the alteration is the impossibility of

1 If A and B are two distinguished bases of X, the only modification to [7],
p. 253, is the replacement of the words "... the inner product of a and b is
non-zero ···", or of the symbol "· · (a, b) ~ 0 ···" by "· · (a, b)B ~ 0 and
(b, a)A ~ 0 ···".
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finding, for each x such that |x| 1 =F 0, a scalar oc such that |03B1x| = 1
(unless, of course, |x| = 1 for ail x e X such that |x| ~ 0).

THEOREM 6.1. (Modified Riesz’s Lemma)
Let Y be a closed, proper subspace of a (pseudo-) valued space

X. For each a such that 0  a  1, there exists a point x03B1 e X
such that

PROOF: (i) If there exists z e X, |z| ~ 0, such that

take x03B1 = z for all oc, 0  oc  1.

(ii) If (i) fails, let xo E XBY and choose yo E Y such that

Define

Then, 03B4 ~ 03B4(y0)  1. Moreover 03B4(y)  1 implies |y-x0|  1 y and
hence |y| = |x0|; therefore, since Y is closed,

is bounded away from zero for y E Y. Thus

Let oc be given, 0  oc  1, and let

ô  ô’  1. There exists yl E Y such that

Let x03B1 = x0-y1. Then 

Now let y e Y. If |y-x03B1| ~ |x03B1| the proof is finished, so we
may assume
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Then 1 y = |x03B1|  |y1| (by (I.11)) so that 1 y+yl == 1 y, 1. Hence
since y+yi e Y, we have by the definition of c5:

and by (1.11)

This completes the proof.
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