A. S. TROELSTRA

Finite and infinite in intuitionistic mathematics

Compositio Mathematica, tome 18, n° 1-2 (1967), p. 94-116

<http://www.numdam.org/item?id=CM_1967__18_1-2_94_0>
Finite and infinite in intuitionistic mathematics
by
A. S. Troelstra

1. Introduction

Various investigations in the domain of intuitionistic mathematics constitute our point of departure; in the first place, an unpublished manuscript of a lecture, held by J. J. de Iongh in December 1956 in Amsterdam, concerning notions of finiteness of different constructive content ([4]).

Further important sources were the treatment of relations between cardinalities by L. E. J. Brouwer in [1] and the investigations of A. Heyting on the countability predicates ([2]).

We are trying to treat and to extend these researches from a common point of view.

In the second paragraph general relations of a certain kind are introduced; in the next paragraph these relations are used to define various notions of finiteness and infiniteness, relations between cardinalities, and countability predicates.

In the last paragraph some notions of finiteness, not defined by means of the relations of § 2, are discussed.

I am indebted to prof. J. J. de Iongh for his permission to make use of his results, and to prof. dr. A. Heyting for his valuable help and criticism.

2. P-Q- and P-Q-T-relations

A relation is a binary predicate; relations will be denoted by capitals: R, P, Q, T, \ldots. Species ([3], 3.2.1) will be denoted by lower case letters: a, b, c, \ldots.

Inclusion, product and relative product of two relations R_1, R_2 will be written as $R_1 \subseteq R_2$, $R_1 \cap R_2$, $R_1 R_2$ respectively. The relative product binds stronger than the product does. We remark the following general laws:

\begin{align*}
R_1(R_2 \cap R_3) &\subseteq R_1 R_2 \cap R_1 R_3 \\
(R_1 \cap R_2)R_3 &\subseteq R_1 R_3 \cap R_2 R_3 \\
(R_1 R_2)R_3 & = R_1(R_2 R_3)
\end{align*}
The identity relation will be designated by I. We have a general rule:

$$R_1 \subseteq R_2 \Rightarrow R_1 S \subseteq R_2 S \text{ and } SR_1 \subseteq SR_2.$$

As a consequence we have for example:

$$I \subseteq R_1, \quad R_3 \Rightarrow R_2 \subseteq R_1 R_3 R_2.$$

$$I \subseteq R_2 \Rightarrow R_1 R_3 \subseteq R_1 R_2 R_3.$$

For predicates in general we use sometimes set-theoretic notions for sake of convenience, so for example:

$$(x)(P_1(x) \rightarrow P_2(x)) \iff P_2 \subseteq P_1.$$

Further we use $a \in P$, $a \notin P$, $P_1 \cap P_2$, $P_1 \cup P_2$ etc.

A function φ acting on an argument x is always denoted with parentheses: $\varphi(x)$. We define

$$\varphi a = \varphi[a] = \{y : (\exists x)(y = \varphi(x) \& x \in a)\}.$$

If φ is explicitly stated to be bi-unique in the context, φ^{-1} denotes the inverse mapping; in all other cases we define

$$\varphi^{-1}(x) = \{y : \varphi y = x\}.$$

Further we use

$$\varphi^{-1} a = \varphi^{-1}[a] = \{y : \varphi y \in a\}.$$

DEFINITION 2.1: A mapping φ will be called bi-unique if we have:

$$\varphi(x) = \varphi(y) \rightarrow x = y.$$

REMARK 2.1: A weaker notion of bi-uniqueness is given by the condition:

$$x \neq y \rightarrow \varphi(x) \neq \varphi(y).$$

If the domain of φ is a, and the equality in a is stable (that is, $\forall \forall(x = y) \rightarrow x = y$ for all $x, y \in a$), then this weaker notion is equivalent to the stronger one.

DEFINITION 2.2: A species b is called detachable with respect to a, or detachable in a, if $b \subseteq a$, and

$$(x)(x \in a \rightarrow x \in b \lor x \notin b)$$

is valid (see [3], 3.2.4 def. 2).

REMARK 2.2: This notion can be weakened in many ways; one of the most simple is:

$$(x)(x \in a \rightarrow \neg \forall x \in b \lor \neg \forall x \in b).$$
However, if a is weakly detachable in this sense with respect to b, and b with respect to c, we cannot be sure that a is weakly detachable with respect to c; so this is not a useful notion.

We define the following relations between species:

Definition 2.3:

aPb: $b \subseteq a$.

$aP_s b$: b is detachable with respect to a.

aQb: b is the image of a by some mapping.

$aQ_s b$: b is the image of a under a bi-unique mapping.

aTb: a is congruent with b, that is, we have:

\[x \in a \rightarrow \forall x \in b \quad \text{and} \quad x \in b \rightarrow \forall x \in a. \]

$[3]$, 3.2.4, def. 1

$aT_s b$: aTb and $a \subseteq b$ (this is Brouwer's notion of halfidentity introduced in [1]).

P, P_s, Q, Q_s, T, T_s will be called the basic P-Q-T-relations, P, P_s, Q, Q_s will be called the basic P-Q-relations.

Definition 2.4: A P-Q-relation is a continued relative product of basic P-Q-relations; a P-Q-T-relation is a continued relative product of basic P-Q-T-relations.

We want to investigate the P-Q-relations first. For these relations we introduce a stronger notion of inclusion and identity.

Definition 2.5: Suppose R is a P-Q-relation. If we have a_0Ra_n, and this is testified by the sequence: $b_1 \subseteq a_0$, $\varphi_1 b_1 = a_1$, $b_2 \subseteq a_1$, $\varphi_2 b_2 = a_2$, \ldots, $\varphi_n b_n = a_n$ (possibly $b_1 = a_0$, and/or φ_n is the identity), then $\bigcup_{i=0}^n a_i$ is called a substratum of the assertion a_0Ra_n.

Definition 2.6: For P-Q-relations R_1, R_2 we define $R_1 \subseteq_s R_2$ (substratum-inclusive) by:

\[(a)(b)(c)(Ed)(aR_1 b \text{ with a substratum } c \rightarrow aR_2 b \text{ with a substratum } d \subseteq c).\]

R_1, R_2 are called substratum-identical ($R_1 =_s R_2$) if $R_1 \subseteq_s R_2$ and $R_2 \subseteq_s R_1$.

Remark 2.3: A species is defined as a property of mathematical objects, which themselves have been or could have been defined earlier. So in a natural way a hierarchy of types for species is introduced ([3], 3.2.8) which can be extended to all types corresponding to constructive ordinals.

Predicates can be considered as properties, and are to be
considered as completely defined only if a certain class (class used as synonymous with species) of species is given, on the elements of which the meaning of the predicates is defined. (So a predicate also ought to have a type.) Some predicates, for example equality between species, admit a "systematic ambiguity"; for species of every type equality between them can be defined in the same manner. The \(PQT \)-relations also admit this systematic ambiguity as regards their definition.

The validity of \(PQT \)-relations between certain given species depends on the class of species to which we suppose the meaning of the relation to be restricted in a given context, since the definition of a relative product requires existential quantification.

As a consequence, equality between two relations of this kind also depends on the presupposed class of species.

A substratum-identity between two relations holds on every class of species \(s \) with the property:

\[
 a \in s \land b \subseteq a \rightarrow b \in s.
\]

Equality in general holds between two relations on every class of species with adequate properties (depending on the proof of the equality). E.g. in lemma 2.4 a class of species with the properties

\[
a \in s \land b \subseteq a \rightarrow b \in s,
\]

\[
a \in s \rightarrow \{ x : x \subseteq a \} \in s
\]
is certainly adequate.

Remark 2.4: We have: \(I \subseteq P, P \subseteq P; I \subseteq Q, Q \subseteq Q; I \subseteq T, T \subseteq T; QQ = Q; PP = P; TT = T. \)

Notation 2.1: \(R_p, R'_p \), \ldots resp. \(R_q, R'_q \), \ldots will be used to denote either \(P \) or \(P' \), resp. \(Q \) or \(Q' \) (e.g., \(aRqb \) can denote either \(aQb \) or \(aQ'b \)).

We now proceed with four lemmas.

Lemma 2.1: \(R'_p \subseteq R_p \Rightarrow R_pR_QR'_p = R_pR_Q \).
\(R_Q \subseteq R'_Q \Rightarrow R_QR_PR'_Q = R_PR'_Q \).

Proof: De Iongh has already demonstrated in [1] \(PP = PQ \); in fact the proof shows that we have \(PP = PQ \). We generalize his argument. Suppose \(a_1 \subseteq a, \varphi a_1 = b_1, b \subseteq b_1 \). Then we have \(\varphi^{-1}b \subseteq a_1 \subseteq a \).

If \(a_1 \) is detachable with respect to \(a \), \(b \) with respect to \(b_1 \), then also \(\varphi^{-1}b \) is detachable with respect to \(a \), since:
\(x \in a \rightarrow x \in a_1 \vee x \notin a_1 \)
\(x \in a_1 \rightarrow \varphi(x) \in b_1 \)
\(\varphi(x) \in b_1 \rightarrow \varphi(x) \in b \vee \varphi(x) \notin b \)
\[\rightarrow x \in \varphi^{-1}b \vee x \notin \varphi^{-1}b \]
\(x \notin a_1 \rightarrow x \in \varphi^{-1}b. \)

So \(\varphi^{-1}b \) is detachable with respect to \(a \), and the first part of the lemma is established. The second line is proved in the following way:

\[
R_p R'_q C_s R_q R_p R'_q C_s R_p R_q R_p R'_q = s R_p R_q R'_q = s R_p R'_q.
\]

Lemma 2.2: \(P_s Q \subseteq Q P. \)

Proof: Suppose \(a P_s Q d \), demonstrated by \(a_1 \subseteq a \), \(\varphi a_1 = d \).

Define \(\varphi' \) by:
\[
\begin{align*}
 x \in a_1 & \rightarrow \varphi'(x) = \varphi(x) \\
 x \notin a_1 & \rightarrow \varphi'(x) = x.
\end{align*}
\]

Then we can write \(d \) as
\[
\{ y : (Ex)(x \in a_1 \& y = \varphi(x)) \}.
\]

So we have \(aQ Pd \) with substratum \(a \cup \varphi a_1 \).

Lemma 2.3: \(P_s R_q = R_q P_s. \)

Proof: Suppose \(a P_s Q b; a_1 \subseteq a \), \(\varphi a_1 = b \).

Define \(\varphi' \) by:
\[
\begin{align*}
 x \in a_1 & \rightarrow \varphi'(x) = \varphi(x) \\
 x \notin a_1 & \rightarrow \varphi'(x) = \{ x, \varphi a_1 \}.
\end{align*}
\]

Then we have:
\[
b = \{ y : (Ex)(x \in a_1 \& \varphi(x) = y) \}, \quad b \subseteq \varphi'a.
\]

If \(\varphi \) is one-to-one then so is \(\varphi' \).

Lemma 2.4: \(P Q \subseteq Q P Q_s. \)

Proof: Suppose \(a P Q b \), \(a_1 \subseteq a \), \(\varphi a_1 = b. \) (\(\varphi \) only defined on \(a \)).

Now we define successively:
\[
x \in a \rightarrow \varphi(x) = \varphi^{-1}[\varphi(x)]
\]

with \(\varphi^{-1}[\varphi(x)] = \{ y : y \in a \& \varphi(y) = \varphi(x) \} \).

\(\varphi a = a_2. \)

Since \(\varphi \) is defined on \(a_1 \) only, we can proceed:
and define φ' by: $\varphi'(\varphi(x)) = \varphi(x)$.

So $\varphi' a_3 = b$. We have to show φ' is a one-to-one mapping:

$\varphi'(\varphi(x)) = \varphi'(\varphi(y)) \Rightarrow \varphi(x) = \varphi(y) \Rightarrow \varphi^{-1}[\varphi(x)] = \varphi^{-1}[\varphi(y)] \Rightarrow \varphi(x) = \varphi(y)$.

These lemmas may be combined in the following theorem:

Theorem 2.5: a) Scheme I shows all possible P-Q-relations with respect to substrate-identity.

b) Scheme II shows all possible P-Q-relations.

(The dashed arrows in scheme I are inclusions which have not been proved with respect to substratum-inclusion).

Proof:

Scheme I
a) Scheme I is the result of the application of the lemmas 2.1 and 2.2. After application of lemma 2.1 all one- and two-factor relative products remain, and further QP_sQ_s, P_sQ_sP, QPP_s, P_sQP, QP_sQ_sP, P_sQPQ_s.

Lemma 2.2 implies:

$$
Q_sP \subseteq P_sQ \subseteq QPP = QP; \quad QP \subseteq QPP_s \subseteq QQPP = QP
$$

and $QPQ_s \subseteq P_sQPQ_s \subseteq QPPQ_s = QPQ_s$.

b) Application of lemma 2.3 results in:

$$
Q_sP_s = P_sQ_s, \quad P_sQ = QPP_s = QPP_s, \quad \text{and} \quad P_sQ_sP = Q_sP_sP = Q_sP.
$$

Lemma 2.4 implies $PQ = QPQ_s$.

We are able to show, by means of some examples, that the inclusions, denoted by dashed arrows and numbered I, …, V in scheme I cannot be strengthened to substratum-inclusions.

To describe these and other counterexamples we introduce a standard problem for which no solution is known.

Notation 2.2: \{1, 2, …, n\} = \bar{n}, \(\emptyset = \bar{0}\). The species of natural numbers will be denoted by $\bar{\omega}$, the species of real numbers by Ω.

We introduce the predicate $\Pi_\alpha^k(m)$, k, n, $m \in \bar{\omega}$, $\Pi_\alpha^k(m) \leftrightarrow m$ is the number of the last decimal of the n^{th} sequence of ten consecutive sevens in the decimal notation for π^k. Further we define “floating” numbers r_k in the following manner:
Example 2.1: Refutation of II and III in scheme I.
These inclusions can be disproved simultaneously by refuting $P_s Q_s C_\ast Q P_s$. We consider:

$$a = \{n : n = 1 \lor (n = 2 \& (E m) \Pi_1^1(m))\}.$$

A subspecies a_1 of a is defined by:

$$a_1 = \{n : n \in a \& n = 2\}.$$

a_1 is detachable with respect to a. We define a mapping φ on a_1:

$$2 \in a_1 \Rightarrow \varphi(2) = 1 + r_1.$$

We put $\varphi a_1 = b$.

φ is a bi-unique mapping from a_1 onto b. So we have $a P_s Q_s b$ with a substratum $d_1 \subseteq d$. If $a Q P_s b$ is demonstrated by $\varphi 'a = b_1$, $b_1 P b$, $d_1 = a \cup b_1 \subseteq d$, then we have to be sure that $\varphi '(1)$ is well defined. As long as it is unknown if $(E m) \Pi_1^1(m)$ holds, the only element of $a \cup b$ of which it is certain that it is contained in d, is 1, so $\varphi '(1) = 1$.

Necessarily, $2 \in a_1$ implies $\varphi '(2) = 1 + r_1$. Therefore it cannot be proved that b is detachable with respect to $b_1 = \varphi 'a$.

Example 2.2: Refutation of inclusion IV in scheme I. Take

$$a = \bar{a}, a_1 = \{n : (E m) \Pi_1^1(n)\}. a_1$$

is detachable with respect to a. We define a mapping φ by:

$$2 n \in a_1 \Rightarrow \varphi(2 n) = n + r_{2 n}$$

$$2 n + 1 \in a_1 \Rightarrow \varphi(2 n + 1) = n + r_{2 n + 1}$$

$$\left\{ \begin{array}{l}
\varphi a_1 = b.
\end{array} \right.$$

The substratum is equal to $a \cup b$.

If we want to show $a Q P_s Q_s b$, then we must construct b_1, b_2, φ', φ'' such that $\varphi 'a = b_1$, b_2 detachable with respect to b_1, $\varphi''b_2 = b$; φ'' is a bi-unique mapping.

If we do not know a solution to our standard problem, $2 n$, $2 n + 1 \in a_1$ is possible, while it is unknown whether $n + r_{2 n}$ and $n + r_{2 n + 1}$ differ or not. So φ'' can only be the identity.

There remains to be shown that $a Q P_s b$ cannot be proved. We have:

$$\varphi'(1) = n \lor \varphi'(1) = n + r_{2 n} \lor \varphi'(1) = n + r_{2 n + 1}.$$

As long as our problem is completely unsolved, $\varphi'(1) = n$ is the only possibility. Since it is always possible that $n + r_{2 n}$ or
$n + \tau_{2n+1}$ belongs to b, it is impossible to show that b is a detachable subspecies of b_1.

Example 2.3: Refutation of inclusion I in scheme I. Take $a = [0, 1] \cup [2, 3]$, $a_1 = [0, 1] \subset a$. a_1 is detachable with respect to a.

If we take $\varphi(x) = 3x$, then $\varphi a_1 = [0, 3] = b$. So we have $aP_{Q,b}$, with a substratum $[0, 3]$. If we wanted to prove $aQ_{s,b}$ by aQ_{s,b_1}, $b_1 Pb$, $a \cup b_1 \subset [0, 3]$, b_1 has to be $[0, 3] = b$. But it is impossible to prove $aQ_{s,b}$, since the only detachable subspecies of $[0, 3]$ are \emptyset and $[0, 3]$, as a consequence of the fan theorem ([3], 3.4.3 theorem 2).

Example 2.4: Refutation of inclusion V in scheme I. Take $a = 2$. We define $a_1 \subset a$:

$$a_1 = \{x : (x = 1 \& (En)\Pi_1^{2m}(n) \& (k)(k < m \rightarrow \gamma (En)\Pi_1^{2k}(n))) \vee (x = 2 \& (Em)\Pi_1^{2m+1}(n) \& (k)(k < m \rightarrow \gamma (En)\Pi_1^{2k+1}(n)))\}.$$

We define a mapping φ ($\varphi a_1 = b$) in the following way:

1. $1 \in a_1 \& (En)\Pi_1^{2m}(n) \& (k)(k < d \rightarrow \gamma (En)\Pi_1^{2k}(n)) \Rightarrow \varphi(1) = d$.
2. $2 \in a_1 \& (En)\Pi_1^{2m+1}(n) \& (k)(k < e \rightarrow \gamma (En)\Pi_1^{2k+1}(n)) \Rightarrow \varphi(2) = e$.

The substratum of $aPQb$ is equal to $a \cup b$; only natural numbers occur as elements of $a \cup b$. Suppose we were able to prove aPQ_{b_1}, without having a solution to our standard problem, by exhibiting b_1, b_2 such that aQ_{b_1}, $b_1 Pb_2$, $b_2 Q_{b}$ with $a \cup b_1 \cup b \subset a \cup b$, or equivalently, $b_1 \subset a \cup b$.

If $\varphi' a = b_1$, the only possibilities are: $b_1 = \{1, 2\}$, $\{1\}$, or $\{2\}$. As it is always possible that b contains two elements, the only possibility is $\{1, 2\} = b_1$. So there remains to show the impossibility of proving aPQ_{b}.

If aPQ_{b} was demonstrated by aP_{b_1}, $\varphi''b_1 = b$, b_1 is a species of the following type:

$$b_1 = \{x : (x = 1 \& F_1) \vee (x = 2 \& F_2)\}.$$

If $1 \in a_1$ is known, we have no guarantee that $(2 \in a_1 \vee 2 \notin a_1)$ is known. Therefore, the definition has to take the following form:

$$b_1 = \{x : (x = 1 \& 1 \in a_1) \vee (x = 2 \& 2 \in a_1 \& (1 \in a_1 \& 2 \notin a_1) \rightarrow c \neq d)\}.$$

This definition does not agree with the symmetry of the problem; hence, if we only know $2 \in a_1$, we cannot be sure that $2 \in b_1$,
so we do not know if \(\varphi b_1 \) is empty or not, while \(b \) cannot be empty.

We proceed with the treatment of the system of \(P-Q-T \)-relations. We do not intend to give a complete system of reductions, but instead we restrict ourselves to the derivation of the most important reductions in the system which guarantee its finiteness.

In the next theorem we restrict ourselves to combinations with \(T_s. \) only.

Theorem 2.6:

- \(T_sP = PT_s = PT = TP \)
- \(PR_QT_s = PR_QT \)
- \(T_sR \subseteq RT_s, \) if \(R \) is a \(P-Q \)-relation.

Proof:

a) \(aTa', a'PB \Rightarrow (a \cap b)TB, \ aP(a \cap b); \) hence \(TP \subseteq PT_s \subseteq PT. \)

b) \(aPa', \ \varphi a' = b', \ b'Tb = (b' \cap b)Ts, \ \varphi^{-1}[b' \cap b] \subseteq a' \subseteq a, \) so \(PR_QT \subseteq PR_QT_s \subseteq PR_QT. \)

c) Analogous to a), \(aTs, a'P_s \Rightarrow aP_s(a \cap b), \ T_sP_s \subseteq P_sT_s. \)

Now we suppose \(aTs, a' = b; \) then \(\varphi a = b', \ b'Tb. \) So \(T_sR_Q \subseteq R_QT_s. \) After this, c) can be proved by induction for every \(P-Q \)-relation \(R. \)

Remark 2.5: In the proof of theorem 2.6c) we used \(aTb \rightarrow \varphi aT \varphi b, \) where \(\varphi \) is not necessarily defined on \(a \cup b. \) The proof of this rule is as follows:

\[
y \in \varphi a \rightarrow (\exists x)(x \in a \& \varphi(x) = y); \ so \ \forall x \in b.
\]

\[
x \in b \rightarrow \varphi(x) = y \in \varphi b, \ so \ \forall x \in b \rightarrow \forall y \in \varphi b, \ q.e.d.
\]

Corollary 2.6.1. \(T_sRT_s = RT_s \) if \(R \) is any \(P-Q \)-relation, since \(RT_s \subseteq T_sRT_s \subseteq RT_sT_s = RT_s. \) This implies that the number of relative products of \(P, P_s, Q, Q_s \) and \(T_s \) is finite.

Theorem 2.7: \(TTR = TRT_s \) if \(R \) is any \(P-Q \)-relation.

Proof: Since \(TP = PT \), we may restrict ourselves to the possibilities \(R = R_Q, P_s, P_sR_Q. \)

a) Suppose \(aTR_QTb, \) i.e. \(aTa', \ \varphi a' = b', \ b'Tb = (b' \cap b)Ts, \varphi^{-1}[b' \cap b] \subseteq a' \subseteq a, \) so \(TR_QT = TR_QT. \)

b) Suppose \(aTR_QTb, \) i.e. \(aTa', \ a'P_s a'', \ \varphi a'' = b', \ b'Tb = (b' \cap b)Ts, \ \varphi^{-1}[b' \cap b] \subseteq a'' \Rightarrow aT((a' - a'') \cup \varphi^{-1}[b' \cap b]); \ (a' - a'') \cup \varphi^{-1}[b' \cap b])P_s \varphi^{-1}[b' \cap b], \) since \(x \in (a' - a'') \cup \varphi^{-1}[b' \cap b] \Rightarrow x \in a' - a'' \lor x \in \varphi^{-1}[b' \cap b]. \)

If \(x \in a' - a'', \) then \(x \notin \varphi^{-1}[b' \cap b]. \)
Consequently, $TPsRQT = TPsRQT_s$. In the case that φ is the identical mapping we have $TPsT = TPsT_s$.

Corollary 2.7.1: There are only finitely many P-Q-T-relations.

Remark 2.6: We could have introduced a specialization of the relation $aPb : aT,b$, defined by: $aT,b \iff bT,a$. Every relation aTb can be written as aT,T,b (because $aT(a \cap b), (a \cap b)T,b$) or as aT,T,b (because $aT,a \cup b), (a \cup b)T,b$). Consequently $T,T = T,T_s$.

Definition 2.7: Suppose R to be a P-Q-T-relation and P a predicate of species; P is said to be invariant with respect to R, if we have:

$$b_1 R b_2 \rightarrow (b_1 \in P \rightarrow b_2 \in P).$$

Theorem 2.8: R is a P-Q-T-relation, and P a predicate of species. With every P a predicate P_1 is associated by:

$$x \in P_1 \iff (Ey)(y \in P \& yRx).$$

P_1 is invariant with respect to R for every P, if and only if $RR = R$.

Proof: Suppose $RR = R$. This implies $x \in P_1 \& xRy \Rightarrow (Ez)(z \in P \& zRx); \Rightarrow zRRy$; hence $(Ez)(z \in P \& zRy)$, so $y \in P_1$.

Conversely, let P_1 be invariant with respect to R for every P. We have to show $(x)(y)(xRRy \rightarrow xRy)$. Take P to be defined by: $x \in P \iff x = x_0$, and suppose $x_0 RRy_0$. We obtain $(Ez)(z \in P \& zRy_0)$; so $z \in P_1$, $y_0 \in P_1$. Therefore we have $x_0 R y_0$ according to the definition.

Corollary 2.8.1: If R is a P-Q-T-relation, composed of basic P-Q-T-relations R_1, R_2, \ldots then P_1 (defined as before) is R-invariant for every P if and only if $RR_i = R$, $i = 1, 2, \ldots$ (or stated otherwise, P_1 is R_i-invariant ($i = 1, 2, \ldots$) for every P).

3. Applications

We introduce the notion of comparison-relation by the following definition:

Definition 3.1: A comparison-relation is a relation R, such that $I \subset R$.

Remark 3.1: The most important examples of comparison-relations are transitive (i.e. $RR = R$).
A reflexive and transitive relation R on a species b always induces a half-order relation (partial ordering) on a system of equivalence classes of b. (See [3], 7.3.1, def. 1).

We divide this paragraph into different sections for the applications.

A. Cardinalities.

DEFINITION 3.2: The cardinal number of a species a is a predicate $k(a); x \in k(a) \iff aQ_x x$.

To obtain a good analogue to the corresponding classical notions of "\geq" and equality for cardinal numbers we define:

DEFINITION 3.3: A cardinality-relation R is reflexive, transitive, $Q_s R = R$ and $R Q_s = R$.

Of the $P-Q$-relations of scheme II, Q_s, Q, $P_s Q_s$, PQ_s, $P_s Q$, PQ fulfil these requirements.

In [1] Brouwer has considered Q_s (equivalence, German: equivalent), Q (denoted by \subseteq, German: überdeckt), $P_s Q_s$ (in the special case of the notion "zählbar"), PQ_s (denoted by \geq) and PQ (denoted by \geq, German: überlagert). Brouwer also considers notions denoted by \subseteq (German: superponiert) and \geq (German: übergeordnet), corresponding to QT_s and PQT_s.

The six $P-Q$-cardinality-relations are all different; in [2] counterexamples to the inclusions $P_s Q \subset Q$, $PQ \subset P_s Q$, $P_s Q_s \subset Q_s$ and $Q \subset Q_s$ are presented. $PQ \subset PQ_s$ cannot be proved as is shown by example 2.4. We complete the counterexamples by:

Example 3.1: $PQ_s \subset Q$ and $PQ_s \subset P_s Q_s$ are not provable. Take $b \subset \bar{\omega}$, $b = \{n : \gamma (Em) \Pi^*_1(m)\}$. Q_s is represented by the identity, so $\bar{\omega} PQ_s b$.

![Diagram](attachment:image.png)
We do not know if \(b \) contains an element or not, so \(\overline{\omega}Qb \) cannot be proved.

In the same manner \(\overline{\omega}PsQsb \) cannot be proved, because this requires the existence of a method which produces the elements of \(b \), if there are any, and no such method is known.

\section*{B. \(P\cdot Q\cdot T \)-notions of finiteness.}

\textbf{Definition 3.4:} Suppose \(R \) to be a comparison-relation. The predicate \([R] \) is defined by:

\[
x \in [R] \iff (\exists n) (\forall Q_sRx & n \in \overline{\omega} \cup \{0\}).
\]

Especially, \([Q_s]\) represents the notion of finiteness. If \(R \) is a \(P\cdot Q\cdot (T) \)-relation, then \([R]\) is a \(P\cdot Q\cdot (T) \)-notion of finiteness. Without restriction we may suppose \(Q_sR = R \).

\[\text{Scheme IV}\]
Remark 3.2: A detachable subspecies of a finite species is a finite species.

We discuss all P-Q-notions of finiteness, but as far as other P-Q-T-notions of finiteness are concerned, we restrict ourselves to the most important ones.

Scheme IV contains all the P-Q-T-notions of finiteness which we want to discuss.

Theorem 3.1: Scheme IV contains all P-Q-notions of finiteness with their intersections.

Proof: By using remark 3.3 and supposing R to satisfy $QsR = R$, we obtain from scheme II the following notions of finiteness: $[Q_s]$, $[Q]$, $[QP]$, $[PQ]$, $[PQ_s]$ and $[Q_sP]$. Since we have:

\[a \text{ discrete and } a \in [Q] \Rightarrow a \in [Q_s] \]

(a species is called discrete if for every pair x, y of its elements $x = y \lor x \neq y$ holds) only $[PQ_s] \cap [QP]$ does not necessarily coincide with a P-Q-notion of finiteness.

Remark 3.3: If we require substrate-equivalence instead of equivalence, the set of P-Q-notions of finiteness is only enlarged by $[QPQ_s]$.

Remark 3.4: $[Q_s]$, $[Q]$, $[QP]$, $[PQ]$ have already been considered by J. J. de Iongh. The only new notion is $[PQ_s]$ as is shown by example 3.2, 3.3.

Example 3.2: $[PQ_s]$ is not contained in $[QP]$.
Take $a = \bar{2}$, $b = \{x : (x = 1 \& (Ex)\Pi_1^1(x)) \lor x = 2\}$. We define a mapping φ by:

\[\varphi(2) = 2, \varphi(1) = d \text{ if } \Pi_1^1(d); \varphi b = c. \]

Therefore $aPQ_s c$. If we suppose $aQP c$, then $(Ex)\Pi_1^1(x) \lor (Ex)\Pi_1^1(x)$ could be decided, and in the first case, d could be determined; but no decision method is known.

Example 3.3: $[QP]$ is not contained in $[PQ_s]$ and $[Q]$.
Take $a = 3$. We define φ by: $\varphi(1) = 1$, $\varphi(2) = 1 + r_1$, $\varphi(3) = 3$; $\varphi a = b$. We define $c \subseteq b$ by:

\[c = \{x : x = 1 \lor x = 1 + r_1 \lor (x = 3 \& (Ex)\Pi_1^1(x))\}. \]

It follows from example 2.4 that $[PQ]$ is not contained in $[PQ_s]$ or $[QP]$. Other counterexamples to show the difference
between P-Q-notions of finiteness are easily found and have already been given by de Iongh.

De Iongh has given an example of a species from $[Q_sT_s]$, not belonging to $[PQ]$, with unstable equality. Here we present counterexamples within Ω.

Example 3.4: $[QT_s]$ is not contained in $[PQ]$, $[Q_sT_s]$.

r_j, a floating number, has already been defined; if

$$r_j = \sum_{i=1}^{\infty} a_{i,j} 10^{-i},$$

we define:

$$s_j = \sum_{i=1}^{\infty} b_{i,j} 10^{-i}$$

with $b_{i,j} = a_{i,1}$ if $(Ey)(y \leq i \& \Pi'_1(y))$, $a_{i,2}$ if $(Ey)(y \leq i \& \Pi'_1(y))$.

We introduce a species c:

$$c = \{r_1, r_2\} \cup \{0\} \cup \{s_i\}_{i=1}^{\infty}.$$

For every $i > 3$ we have:

$$\forall \forall (s_i = r_1 \lor s_i = r_2 \lor s_i = 0),$$

but we cannot prove $s_i = r_1 \lor s_i = r_2 \lor s_i = 0$. So $c \in [PQ]$, $c \in [Q_sT_s]$ cannot be proved.

Example 3.5: $[PQT_s]$ is not contained in $[QT_s]$, $[PQ]$.

We modify example 3.4 by defining a species d:

$$d = c \cup \{x: x = 1 \& (Ey)\Pi'_1(y)\}.$$

The reasoning is along the same lines as in the preceding example.

If we restrict ourselves to subspecies of the natural numbers, scheme IV is much simplified, the result being scheme V.

$$[Q_s] \rightarrow [Q_sP] \rightarrow [PQ_s] \rightarrow [PQ] \rightarrow [PQT_s]$$

Scheme V

This is shown with the aid of the following theorem:

Theorem 3.2: For subspecies of ω, $[Q_sPT_s] = [Q_sP]$.

Proof: Suppose $\bar{a}Q_sPT_s a$. Without essential restriction we may suppose: $\bar{a}PT_s a$. For natural numbers we have: $(m)(m \leq n \lor n < m)$. If $b \subset \bar{a}$, $bT_s a$, we get: $m \leq n \rightarrow m \in n$, $m > n \rightarrow m \notin b$, $m \notin b \rightarrow m \notin a$, hence $a \subset \bar{a}$.
Corollary 3.2.1: Subspecies of natural numbers are always discrete; using this together with theorem 3.2 we obtain scheme V from scheme IV.

C. Predicates of countability.

Definition 3.5: If R is a comparison-relation, $\langle R \rangle$ is the predicate defined by:

$$x \in \langle R \rangle \iff \bar{R}x.$$

If $QsR = R$, and R a P-Q-, respectively a P-Q-T-relation, then $\langle R \rangle$ is called a P-Q-, respectively a P-Q-T-predicate of countability or countability-predicate.

Remark 3.5: To a certain extent the countability-predicates have already been introduced by Brouwer in [1]; Brouwer's countability-predicates have been studied extensively by Heyting in [2]. We restrict ourselves to P-Q-countability-predicates.

Theorem 3.3: Scheme VI contains all P-Q-countability-predicates and their intersections.

\[
\begin{array}{ccc}
\langle Q_S \rangle & \langle Q_S P_S \rangle & \langle Q_S P \rangle \\
\langle Q_S P_S \cap Q \rangle & \langle Q \rangle & \langle Q_P \rangle \\
\langle PQ_S \rangle & \langle PQ_S \cap QP \rangle & \langle QP \rangle \\
\langle PQ \rangle & \langle PQ \rangle & \langle PQ \rangle
\end{array}
\]
PROOF: The P-Q-countability-predicates of scheme VI are obtained by taking the relations R of scheme II which satisfy $Q_sR = R$. The following intersections have to be considered:

a) $\langle Q_sP_s \rangle \cap \langle Q \rangle$,
b) $\langle Q_sP \rangle \cap \langle Q \rangle$,
c) $\langle Q_sP \rangle \cap \langle QP_a \rangle$,
d) $\langle PQ_s \rangle \cap \langle QP_s \rangle$,
e) $\langle PQ_s \rangle \cap \langle QP \rangle$,
f) $\langle PQ_s \rangle \cap \langle Q \rangle$.

We now extend a theorem of [2] to:

\[\bar{P}QP_s a, \text{ a discrete } \Rightarrow \bar{P}Q_s P_s a. \]

In fact, suppose $\bar{P}Qa''$, $a'' = \{\varphi(1), \varphi(2), \ldots\}$, $a' P_s a$, then we construct a':

\[a' = \{i : i \in a \land (j)(j < i \rightarrow \varphi(i) \neq \varphi(j))\} \]

and we get $\bar{P}Q_s P_s a$. This reduces b), f), to a) and c), d) to $\langle Q_sP_s \rangle$.

The difference between many countability-predicates of scheme VI can be demonstrated easily by means of counterexamples, as is done in [2].

In [2] the following countability-predicates and intersections of these predicates are shown to be different: $\langle PQT_s \rangle$ (Dutch: uittelbaar, German: auszählbar), $\langle QT_s \rangle$ (Dutch: doortelbaar, German: durchzählbar), $\langle PQ \rangle$ (Dutch: overtelbaar, German: überzählbar), $\langle PQ \rangle \cap \langle QT_s \rangle$, $\langle Q \rangle$ (Dutch: opsombaar, German: aufzählbar), $\langle PQ_s \rangle$ (Dutch: aftelbaar, German: abzählbar), $\langle PQ_s \rangle \cap \langle QT_s \rangle$, $\langle PQ_s \rangle \cap \langle Q \rangle$ (Dutch: telbaar, German: zählbar), $\langle Q_sP_s \rangle \cap \langle Q \rangle$.

The countability-predicates can be used to refine the P-Q-T-notions of finiteness; we demonstrate this in a few examples.

REMARK 3.6: If we define: $x \in [0] \Leftrightarrow x = \emptyset$, we have:

$\langle Q_s \rangle \subset [\emptyset] \cup (\langle P_sQ_s \rangle \cap \langle Q \rangle)$;
$\langle Q \rangle \subset [\emptyset] \cup \langle Q \rangle$;
$[Q_sP_s] \subset \langle Q_sP \rangle$;
$[PQ_s] \subset \langle PQ_s \rangle$;
$\langle PQ_s \rangle \subset \langle PQ_s \rangle$;
$[\langle QP \rangle \cap [PQ_s]] \subset (\langle PQ_s \rangle \cap \langle QP \rangle)$.

Example 3.6: $[QP]$ is not contained in $[QP] \cap \langle Q \rangle$.

Compare

\[t_1 = \{x : x = r_1 \lor x = r_2 \lor (x = 3 \land (Ey)P_1(y))\}. \]
\[t_2 = \{x : x = r_1 \lor x = r_2 \lor (x = 3 \land \neg (Ey)P_1(y))\}. \]

$t_1 \in [QP] \cap \langle Q \rangle$, since we can define a mapping φ:

We are not able to construct such a mapping from \bar{w} onto t_2.

Example 3.7: $[QT_s]$ is not contained in $[QT_s] \cap \langle Q \rangle$. This is demonstrated by a modification of example 3.4. A species e is given by the following definition:

$$e = \{x : x \in c \land (E y)P_2(y)\}.$$

c is the species defined in example 3.4. Since it is unknown whether e contains an element or not, $e \in \langle Q \rangle$ cannot be proved.

D. Notions of infinity.

Definition 3.6: If R is a comparison-relation, a predicate $\{R\}$ is defined by:

$$x \in \{R\} \iff xR\bar{w}.$$

If $RQ_s = R$, and R a P-Q- or a P-Q-T-relation, R is called a P-Q or a P-Q-T-notion of infinity.

Theorem 3.4: Scheme VII contains all P-Q-notions of infinity.

Proof: If R is a P-Q-notion of infinity, then we may suppose $RQ_s = R$. This is the case for $R = Q_s$, Q, P_sQ_s, P_sQ, PQ_s, PQ. Now $\{P_sQ\}$ is always equivalent to $\{Q\}$ as is seen by the following argument:

Suppose $aP_sQ\bar{w}$, so $a_1 \subset a$, $\varphi a_1 = \bar{w}$; then we define φ' by:
In the same manner we prove: \(\{P_sQ_s\} \subseteq \{Q\} \).

Remark 3.7: \(\{P_sQ_s\} \), respectively \(\{PQ_s\} \) correspond to Brouwer's notions "reduzierbar unendlich", respectively "unendlich" (see also [4], 3.2.5).

We demonstrate that \(\{Q\} \) is a new notion by two examples.

Example 3.8: \(\{PQ_s\} \) is not contained in \(\{Q\} \).

The segment \([0, 1]\) cannot be mapped onto \(\omega\); in fact, \([0, 1]\) may be represented by a fan (finitary spread, see [3], 3.1); a mapping onto \(\omega\) would have assigned a natural number to every element of the fan, and so \([0, 1]\) would have been split up into denumerably many detachable subspecies, each of which contains at least one element. This is impossible because of the fan-theorem; compare [3], 3.4.3, th. 2.

Example 3.9: \(\{Q\} \) is not contained in \(\{P_sQ_s\} \).

The union of continua, \(v = \bigcup_{n=1}^{\infty} [n, n+\frac{1}{2}] \) can be mapped onto \(\omega\), by taking \(\varphi(x) = n \) for \(x \in [n, n+\frac{1}{2}]\); \(v\) cannot belong to \(\{P_sQ_s\} \), since this would require a proper subspecies of a continuum with at least one element to be detachable in this continuum.

Theorem 3.5: \(a \in \{PQ\} \Rightarrow a \notin [Q] \).

Proof: Suppose \(a \in \{PQ\} \cap [Q] \). Then \(a = \{b_1, \ldots, b_n\} \), \(b_1, \ldots, b_n \) not necessarily different. There are also \(x_1, \ldots, x_{n+1} \), such that \(\varphi(x_i) = i, x_i \in a \); so all \(x_i \) are different; hence we obtain a contradiction, and \(a \notin [Q] \).

We finish this paragraph by pointing out some interesting conclusions from corollary 2.8.1. \([PQ], \langle PQ \rangle, [PQT_s], \langle PQT_s \rangle \) are invariant with respect to \(P, Q \); the last two predicates also with respect to \(T \). It is easy to see that the union of two species from respectively \([PQ], \langle PQ \rangle, [PQT_s], \langle PQT_s \rangle \) again belongs to \([PQ] \) etc.

\(\{PQ\} \) is invariant with respect to union with an arbitrary species.

4. Other notions of finiteness

Definition 4.1: (Brouwer, see [3] 3.4.4) A species is called bounded in number by \(n \) (in short: bounded by \(n \)), if \(b \) cannot
contain more than \(n \) different elements; in other words, if \(b \) does not contain a finite subspecies with \(n+1 \) elements. If \(b \) is bounded by \(n \) for a certain \(n \), \(b \) is said to be bounded in number.

Definition 4.2: (de Iongh, [4]) A species \(b \) is said to be determined in number (by \(n \)), if \(b \) is bounded by \(n \), and contains finite subspecies with \(n \) elements.

Notation 4.1: If \(x \) is a species, we use the notation:

\[
\neg \neg (x \in [Q_\ast]) \iff x \in [Q_\ast]'.
\]

\(x \) is bounded in number \(\iff x \in [N] \).

Now we are able to prove:

Theorem 4.1:

a) \([N]\) is invariant with respect to \(PQT \).

b) \(x \) is determined in number \(\iff x \in [Q,T,J] \).

Proof: In [4] de Iongh proved the invariance of \([N]\) with respect to \(P \) and \(Q \) so the invariance with respect to \(T \) remains to be proved.

Suppose \(aTb \), with \(a \) bounded by \(n \). For arbitrary species \(c \) we introduce the predicate \(P_n(c) \), saying that \(c \) contains at least \(n \) different elements:

\[
P_n(c) \iff (Ex_0)(Ex_1) \ldots (Ex_{n-1})(\bigwedge_{i,j=0}^{n-1} x_i \neq x_j \land \bigwedge_{i=0}^{n-1} x_i \in c).
\]

So we have \(\neg P_{n+1}(a) \).

Suppose \(P_{n+1}(b) \). This implies the existence of \(n+1 \) different elements \(b_0, \ldots, b_n \in b \); hence

\[
\bigwedge_{i=0}^{n} \neg \neg b_i \in b \land \bigwedge_{i,j=0}^{n} b_i \neq b_j;
\]

we get:

\[
\neg \neg \left(\bigwedge_{i,j=0}^{n} b_i \neq b_j \land \bigwedge_{i=0}^{n} b_i \in a \right),
\]

hence

\[
\neg \neg (Ex_0) \ldots (Ex_n)(\bigwedge_{i,j=0}^{n} x_i \neq x_j \land \bigwedge_{i=0}^{n} x_i \in a),
\]

and this is equivalent to \(\neg \neg P_{n+1}(a) \). A contradiction arises, so \(\neg P_{n+1}(b) \) and \(b \in [N] \).

To prove b) of our theorem, we suppose \(a \) to be determined in number by \(n \), \(aPb \), \(b = \{b_1, \ldots, b_n\} \), \(i \neq j \rightarrow b_i \neq b_j \). We have:
A contradiction is the result, hence

\[x \in a \rightarrow \neg \neg (x = b_1 \lor \ldots \lor x = b_n). \]

Therefore, \(bT,a \), so \(a \in [QsT_s] \).

Remark 4.1: In [4] de Iongh also proved \([Q_i]''\) to be invariant with respect to \(PQ \); for species with a stable equality he proved \([N] \subseteq [Q_s]''\).

Theorem 4.2: If a species \(b \) with stable equality is bounded by 1, then \(b \in [PQ] \).

Proof: Take as a subspecies of \(\{1\} \):

\[\{x : x = 1 \land (Ey)(y \in b)\}. \]

If \(p \in b \), we take \(\varphi(1) = p \). \(\varphi \) is unique since

\[x \in b \land x' \in b \rightarrow \neg \neg x = x'; \Rightarrow x = x'. \]

Theorem 4.3: Suppose \(a \) is a species bounded by \(n \). If there is a partial ordering for the elements of \(a \), which fulfils the condition:

\[\neg (x < x') \land \neg (x' < x) \rightarrow x = x', \]

then \(a \in [PQT] \).

Proof: Define \(b \subset \bar{n} \) in the following manner:

\[b = \{i : i \in \bar{n} \land (Ex)(x \in a \land H_{i-1}(x) \land \neg H_i(x))\} \]

with:

\[H_0^0(x) \leftrightarrow (A \rightarrow A) \]
\[H_i^0(x) \leftrightarrow (Ex_1) \ldots (Ex_i)(x_1 < x_2 < \ldots < x_i < x \land \bigwedge_{j=1}^i \neg \neg x_j \in a) \]
\[H_i(x) \leftrightarrow \neg \neg H_i^0(x). \]

Now we are mapping \(b \) onto \(c \):

\[i \in b \Rightarrow \varphi(i) = p \text{ if } p \in a \land H_{i-1}(p) \land \neg H_i(p). \]

We have to show this mapping to be unique.

For this reason we suppose:

\[H_{i-1}(p) \land \neg H_i(p) \land H_{i-1}(p') \land \neg H_i(p'). \]
This is equivalent to:
\[\neg \neg (H^0_{i-1}(p) \& \neg H^0_i(p) \& H^0_{i-1}(p') \& \neg H^0_i(p')). \]
Thus we get:
\[p \in a \& p < p' \& H^0_{i-1}(p) \rightarrow H^0_i(p') \]
\[p' \in a \& p' < p \& H^0_{i-1}(p') \rightarrow H^0_i(p) \]
So \(p, p' \in a \& H^0_{i-1}(p) \& \neg H^0_i(p) \& H^0_{i-1}(p') \& \neg H^0_i(p') \) implies \(\neg (p < p') \& \neg (p' < p) \); therefore \(p = p' \).
As a result we have:
\[p, p' \in a \& \neg \neg (H^0_{i-1}(p) \& \ldots \& \neg H^0_i(p')) \rightarrow \neg \neg p = p'. \]
From our supposition \(\neg (x < x') \& \neg (x' < x) \rightarrow x = x' \) follows the stability of the equality, hence \(p = p' \).
Next we have to show \(a \neg Tc. \ aPc \) is trivial, so we only have to prove: \(x \in a \rightarrow \neg \neg x \in c. \)
For sake of convenience we introduce:
\[G_i(x) \iff x \in a \& H_{i-1}(x) \& \neg H_i(x). \]
Suppose \(x \in a, \ x \notin c. \) We obtain
\[G_i(x) \rightarrow x \in c \quad i = 1, 2, 3, \ldots \]
\[\neg G_1(x) \rightarrow \neg \neg H_1(x) \]
\[\neg G_2(x) \& H_1(x) \rightarrow \neg \neg H_2(x) \) etc.
Finally,
\[\neg G_n(x) \& H_{n-1}(x) \rightarrow \neg \neg H_n(x) \]
Thus,
\[x \in a \rightarrow c \Rightarrow H_n(x); \ \neg \neg H^0_n(x) \leftrightarrow H_n(x). \]
Since \(a \) is bounded in number, we have also:
\[T_{n+1} : (x_1)(x_2) \ldots (x_{n-1})((\neg \neg (x_1 < x_2 < \ldots < x_{n+1}) \& \]
\[\neg \neg \bigwedge_{j=1}^n x_j \in a \rightarrow \neg x_{n+1} \in a). \]
\(T_{n+1} \) contradicts \(H^0_n(x) \), hence also \(\neg \neg H^0_n(x). \)
Therefore, \(x \in a \rightarrow \neg \neg x \in c, \ q.e.d.. \)

REFERENCES

L. E. J. Brouwer,
A. Heyting,

A. Heyting,

J. J. de Jongh,

(Oblatum 18-5-65)