L. A. RUBEL

A relation between Fourier and Mellin averages

Compositio Mathematica, tome 17 (1965-1966), p. 146-148

<http://www.numdam.org/item?id=CM_1965-1966__17__146_0>
A relation between Fourier and Mellin averages

by

L. A. Rubel

We establish a relation here between additive and multiplicative convolution averages of a bounded function. The real numbers are a locally compact Abelian group, under the operation of addition, with Haar measure \(dt \). The positive real numbers are a locally compact Abelian group, under the operation of multiplication, with Haar measure \(dt/t \). Given a bounded Lebesgue measurable function \(g \), with \(g(x) \) defined for all real numbers \(x \), we may study its behaviour for large values of \(x \) by forming certain averages. One kind is with respect to integrable functions on \((-\infty, \infty) \), the other with respect to integrable functions on \((0, \infty) \) where we use only the restriction of \(g \) to \((0, \infty) \). In each case, integrability is with respect to the appropriate measure, and the average depends only on the behaviour of \(g \) at \(+\infty \). We call the first kind of average a Fourier average, the second kind a Mellin average, and we establish a connection between them. We shall assume that all our functions are Lebesgue measurable.

Main Theorem. If \(g \) is bounded, \(K \geq 0 \),

\[
\int_{-\infty}^{\infty} K(t)dt = 1, \quad H \geq 0, \quad \text{and} \quad \int_{0}^{\infty} H(t)dt/t = 1,
\]

then

\[
\limsup_{x \to \infty} \int_{0}^{\infty} H(x/t)g(t)dt/t \leq \limsup_{x \to \infty} \int_{-\infty}^{\infty} K(x-t)g(t)dt.
\]

The next result follows from the main theorem on normalizing \(K \) so that \(\int_{-\infty}^{\infty} K(t)dt = 1 \) (i.e. replacing \(K(t) \) by \(K(t)/\int_{-\infty}^{\infty} K(s)ds \)), and writing \(H = H^+ - H^- \), where \(H^+(t) = \max (H(t), 0) \) and \(H^-(t) = -\min (H(t), 0) \). Now considering the normalizations of \(H^+ \) and \(H^- \), the main theorem and the corresponding result for \(\lim \inf \) may be applied.

Tauberian Theorem. Suppose \(g \) is bounded,

\[
K \geq 0, \quad 0 < \int_{-\infty}^{\infty} K(t)dt < \infty,
\]

and

\[
\lim_{x \to \infty} \int_{-\infty}^{\infty} K(x-t)g(t)dt = 0.
\]
If
\[\int_0^\infty |H(t)| \frac{dt}{t} < \infty, \]
then
\[\lim_{x \to \infty} \int_0^\infty H(x/t) g(t) \frac{dt}{t} = 0. \]

Proof. We need the following result from [2, p. 1005].

Lemma 1. Given a bounded function \(g \) and \(0 < \xi < 1 \), let

\[L(\xi) = \lim sup_{x \to \infty} \frac{1}{x-\xi x} \int_{\xi x}^x g(t) dt, \]

and let \(L(1) = \sup_{0 < \xi < 1} L(\xi) \). There exists a bounded function \(g^* \) such that \(g^* \leq g \) and \(\lim_{x \to \infty} x^{-1} \int_0^x g^*(t) dt = L(1) \).

Let us write \(A = \lim sup \int_0^\infty H(x/t) g^*(t) \frac{dt}{t} \) and \(B = \lim sup \int_0^\infty K(x-t) g(t) dt \). We must prove \(A \leq B \), which obviously follows from the next two lemmas.

Lemma 2. \(A \leq L(1) \).

Lemma 3. \(L(1) \leq B \).

We prove Lemma 2 via Lemma 1. Since \(g \leq g^* \) and \(K \geq 0 \), we have \(A = \lim sup \int_0^\infty H(x/t) g^*(t) dt \). But since \(\lim x^{-1} \int_0^x g^*(t) dt = L(1) \) (i.e., the Cesaro limit of \(g^* \) is \(L(1) \)), we may apply the Mellin form of the Wiener Tauberian theorem [1, p. 296] to conclude that \(\lim \int_0^\infty H(x/t) g^*(t) \frac{dt}{t} = L(1) \), and hence \(A \leq L(1) \). In more detail, we have \(\lim x^{-1} \int_0^x g^*(t) dt = L(1) \), and we may write \(x^{-1} \int_1^x g^*(t) dt = \int_0^\infty g^*(t) C(x/t) \frac{dt}{t} \), where \(C(s) = 0 \) for \(0 < s < 1 \), and \(C(s) = s^{-1} \) for \(s \geq 1 \). Denoting by \(C^\wedge \) the Mellin transform of \(C \), \(C^\wedge(r) = \int_0^\infty t^{i r} C(t) \frac{dt}{t} \), we have \(C^\wedge(r) = (1-i r)^{-1} \). Since \(C^\wedge(r) \neq 0 \) for real \(r \), we obtain the conclusion.

To prove Lemma 3, it is enough to do it under the special hypothesis that for some \(N \), \(K(x) = 0 \) for \(|x| \geq N \). The general case follows on letting

\[K_N(x) = \begin{cases} K(x) / \int_{-N}^N K(t) dt & \text{for } |x| \leq N \\ 0 & \text{for } |x| > N, \end{cases} \]

and then letting \(N \to \infty \). Let us write

\((K \ast g)(x) = \int_{-\infty}^x K(x-t) g(t) dt \).

We shall prove that for \(\xi < 1 \),

\[\int_{\xi x}^x (K \ast g)(y) dy = \int_{\xi x}^x g(t) dt + o(x). \]

If this is done, we get
\[L(\xi) \leq \limsup_{y \leq z \leq \xi} (K * g)(y) \]

from which Lemma 3 follows directly. To prove (1), write

\[I(x) = \int_{\xi}^{x} (K * g)(y)dy = \int_{-\infty}^{\infty} g(t) \int_{\xi}^{x} K(y-t)dy dt. \]

But \(\int_{\xi}^{x} K(y-t)dy \) vanishes if \(t < \xi x - N \) or \(t > x + N \). And \(\int_{\xi}^{x} K(y-t)dy = \int_{\xi-x-N}^{\xi-x-N} K(y)dy \). Hence

\[I(x) = \int_{\xi-x-N}^{\xi-x-N} g(t) \int_{\xi-x-N}^{x-t} K(y)dy dt. \]

We write \(\int_{\xi-x-N}^{x-N} = \int_{\xi-x-N}^{\xi-x-N} + \int_{\xi-x-N}^{\xi-x-N} + \int_{\xi-x-N}^{\xi-x-N} \). For \(\xi x + N < t < x - N \), \(\int_{\xi-x-N}^{\xi-x-N} K(y)dy = 1 \), and for any \(a \) and \(b \) with \(a < b \),

\[0 \leq \int_{a}^{b} K(y)dy \leq 1. \]

Hence

\[I(x) = \int_{\xi-x-N}^{\xi-x-N} g(t)dt + 0(1) = \int_{\xi}^{\xi} g(t)dt + 0(1), \]

and the proof is complete.

REFERENCES

G. H. Hardy

L. A. Rubel

(Oblatum 25-3-63) University of Illinois