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Arithmetical Extensions of Relational Systems
by

Alfred Tarski and Robert L. Vaught

Introduction

We consider mathematical systems each of which is formed

by an arbitrary set, some relations among the elements of the
set, and possibly some operations on these elements. Two such
systems are called similar if, roughly speaking, they have the same
number of relations and the same number of operations, and
corrcsponding relations and opérations have the same ranks. Two
similar systems 9t and 6 are called arith1netically equivalent if

every sentence of the first-order predicate logic which is true in
one of these systems is also true in the other; if, in addition 9t is
a subsystem of 6, then fl5 may be called an arithmetically equivalent
Extension of 9î. We introduce in this paper a stronger notion, that
of arithmetical extension. A system 6 is said to be an arithmetical
extension of a subsystem of fl5 if, whenever some elements of
R satisfy a formula (of the first-order predicate logic) in 8l, they
also satisfy it in (S, and conversely. The notion of arithmetical
extension proves to be very useful in applications. As we shall
see, in many cases it is easy to show that a given system  is an
arithmetical extension of a given system 9î, although a direct

proof, by some other method, of the consequent fact that ? and C5
are a rithmctically équivalent is difficult or unknown. A simple
explanation of this plienomenon is that, in establishing properties
holding for all formulas, we can apply an inductive procedure,
while, in general, no such procedure can be used to establish
properties llolding exclusively for sentences (i.e., formulas without
free variables). For essentially the same reason it is much easier
to define the truth of sentences in terms of the satisfaction of
formulas - instead of defining the notion of truth directly ; cf.

[14], p. 307 (the numbers in brackets refer to the bibliography at
the end of the paper).
Thé paper is divided into three sections. In § 1 we defirie, in a

rigorous ways, the main notions involved in our discussion and
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we study general properties of arithmetical extensions; in par-
ticular we establish some useful criteria (necessary and sufficient
conditions) for one system to be an arithmetical extension of
another system. § 2 deals with problems related to the well known
Lôwenheim-Skolem theorem. In its original form this theorem
amounts to the statement that every infinite relational system
is arithmetically equivalent to a denumerable system. Using some
elementary properties of arithmetical extensions we give what
seems to us a new, very simple, and natural proof of this theorem.
Moreover, we obtain some improvements, not only of the original
Lôwenlieim-Skolem theorem, but also of its generalizations which
can be found in the literature. Indeed, we show that, for every
infinite relational system 9î of power a and every infinite cardinal
b, there is a system  of power b such that 9î is an arithmetical
extension of Q5 in case b  a, and 6 is an arithmetical extension
of 91 in case a~b.

In the first theorem of § 3 we state a purely algebraic condition
which is sufficient (though not necessary) for a system fl5 to be
an arithmetical extension of a system 91. This condition is that,
given any finite set A’ of elements of 9î and any single element
b of 6, there is an automorphism of fl5 which leaves all the elements
of A’ unchanged and carries b into an element of 8t. A number
of examples are given in which this theorem is applied to establish
the arithmetical equivalence of known mathematical systems.
The most important consequence thus obtained is that any two
free algebras with infinitely many generators over the same class
of algebraic systems (e.g., the class of all groups or of all lattices
replace by) are arithmetically equivalent. When applied to groups,
this result presents a partial confirmation of a conjecture made by
Tarski that any two free groups with at least two generators are
arithmetically equivalent. This conjecture (which was the
stimulus for the investigations in § 3) still remains an open
question. It is closely related to another problem which also
remains open, the decision problem for the elementary theory
of free groups (see [18], p. 85).1)

1) The notion of arithmetical extension and most of the results in § 1 and § 2
are due to Tarski and were discussed in his seminar at the University of California,
Berkeley, during the academic year 1952-53; however, Theorems 1.11 and 2.2
were obtained by both authors independently, and Theorem 1.12 and the examples
following it were found by Vaught. The results in § 3 are due to Vaught. Most of
them were included in Chapter 3 of his doctoral dissertation [19], which was
prepared under Tarski’s guidance, and submitted to the University of California
in June, 1954; they were summarized in [21]. This paper was prepared for publi-
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§ 1. Général properties of arithmetical extensions

The meaning of notions and symbols to be used will, for the
most part, be explained; for more detailed information the reader
ip referred to [16], [17], and [18].

Greek letters oc, 03B2, ..., e, q, ... will represent arbitrary ordinals;
finite ordinals, i.e., natural numbers, will be represented by the
letters k, l, m, n, .... Given an ordinal a, an a-termed sequence
will be represented by x = (xo, ..., xee ...)03BE03B1 or sometimes

simply by ~x0,..., xe, ...~. Ordinary infinite sequences, with

oc = (0, and finite n-termed sequences will be represented by
~x0, ..., xn, ...~ and ~x0, ..., xn-1~, respectively. Given a sequence
x = ~x0, ..., xn, ...~ of members of some set, a natural number
k, and an element a of the set, we denote by ae(k/a), or by
(xo, ... iVk-1, a, xk+1, ...), the sequence y = ~y0, ..., Yn, ...)
such that yk = a, and yn = xn for n ~ k. For any given set A,

. A«- denotes the set of all a-termed sequences of which all the
terms belong to A ; by A(’) we denote the set of all sequences
x ~ A03C9 which are eventually constant, i. e., such that, for some m,
xn = xm for all n ~ m.
By a ( f initary) relation, and, specifically, by a relation of rank

n, among the elements of A, we understand an arbitrary subset
of A n. A relational system is a sequence 9î =:: ~A, Ro, ..., R03BE, ...~03BE03B1
in which A is a non-empty set and each Re is a relation among
the elements of A ; oc is called the order of 91. Instead of "relational

system" we shall sometimes say simply "system". Elements of
the set A are referred to as elements of the system 9î; the system
9î is called infinite if the set A is infinite, and we speak of the power
of 9t meaning the power of A. In most discussions it is tacitly
assumed that all the systems A, Ro, ..., Re, ...~03BE03B1 involved
are similar, i.e., that they, all have the same order oc and, for
each e  a, all relations Re have the same rank n03BE. By means
of well known devices, mathematical systems formed by a non-
empty set A, some relations among its elements, some operations
on its elements, and some distinguished members of it can alsa
be treated as relational systems. However, at two places it will
be convenient to use systems with distinguished elements,

v4) Ro,..., Re, ... ; a0, ..., a~,...~03BE03B1,~03B2
explicitly; the necessary modifications in earlier definitions and
theorems which would justify this use are clear and will be omitted.

cation while Tarski was working on a research project in the foundations of mathe-
matics sponsored by the National Science Foundation, U.S.A.



84

In order to simplify the notation we shall henceforth restrict
ourselves to an explicit discussion of relational systems ~A, R~
formed by a non-empty set A and a single ternary relation R.
However, with two exceptions concerning systems with non-
denumerable orders, all our results extend, with virtually no
changes in the proofs, to arbitrary relational systems; the two
exceptions will be pointed out and discussed.

’rhe notions of isomorphism of two relational systems and of
autornorphism of a system are assumed to be known. The relational
System 3t = ~A, R~ is said to be a subsystem of the system
6 = ~B, 5) if A is a subset of B (A c B ) and R = S~A3. Under
the same conditions Q5 is called an extension of 9t; it is called a

proper extension if, in addition, A =1=- B.
Given a non-empty class K of systems, by the union of K we

understand the system A, R~ in which A is the set-theoretical
union of ail sets B and R is the set theoretical union of all relations
S occurring in the systems ~B, 5) of K. In general, the union
of K need not be an extension of each system belonging to K;
this is the case, however, under some additional assumption,
e.g., if K is a direcied class of systems, i.e., if any two systems in
K have a common extension whieh is also in K.

We construct a formalized theory T of relational systems
A, R~. T is simply the first-order predicate logic, with an infinite
sequence ~v0,..., vn, ...~ of variables; with four logical constants,
the negation symbol ~, the conjunction syinbol 1B, the existential

quantifier V, and the identity symbol ~; and with a single non-
logical constant, the three-placed predicate P. The f ormulas of T
are the members of the smallest class which contains all the atomic

formulas, vm ~ v,. and P(vm, v., vp ) (m, n, p = 0, 1, 2, ... ), and
is closed under the operations of forming the negation ~~ of an
expression ~, the conjunction ~ A y of two expressions ~ and y,
and the existential quanti f ication V vk~ of an expression ~ under
a variable Vk (k = 0, 1, 2, ... ). Sentences of T are formulas without
free variables. When speaking of formulas and sentences without
further qualification, we shall mean formulas and sentences of
the theory T.
The notions of satisfaction and truth will play an essential part in

our discussion and therefore will be defined here in a formal way. The
definition of satisfaction is given in a recursive form (cf. [14], p. 311 ) :

DEFINITION 1.1. We say that x satisfies ~ in a relational system
? = ~A, R~ if x ~ A(03C9), ~ is a formula, and one of the followiiig
live conditions holds:
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(i) ~ is of the form V1n ~ Vn, where in and n are natural numbers,
and xm = X n;

(ii) ~ is of the form P(vm, Vn, vp), where m, n, a-iid p are natural
numbers, and ~xm, Xn, xp) ~ R;

(iii) ~ is of the form 03C8, where 1p is a for1nula which is not
satisfied by x;

(iv) ~ is of the f orm 03C8’ A 03C8", where 03C8’ and 1p" are forlnulas which,
are both satisfied by x;

(v) ~ is of the f orm V Vk1p, where k is a natural nuniber, 03C8 is a

formula, and there is an elen2ent a E A such that x(k/a) satisfies 1p.
As an easy consequence of this definition we obtain

THEORF,M 1.2. Suppose 9î = ~A, R) and et) = ~B, 5) arc

relational systems, the function h maps m isomorphically onto ,
x is any sequence in A (03C9), and ~ is a f ormula. Then ~x0, ..., X n, ...)
satisfies ~ in 9t i f and only i f ~h(x0), ..., h(xn), ...~ satisfies ~
in .

DEFINITION 1.3. A sentence 03C3 is said to be true in the re=

lational system 9t = ~A, R) i f every sequence x E A(03C9) satisfies
a in R. ( Under the same conditions we say that R is a model of 03C3.)
As is readily seen, the word "every" can be replaced in 1.3

by "some". ,

The notions of arithmetical equivalence and arithl11£tical extension
will now be formally defined.

DEFINITION 1.4. The syste1ns m and  are said to be arith=

metically (or elementarily) equivalent i f every sentence which
"true in 9t is also true in 6, and conversely.
COROLLARY 1.5. Any two systenis which are is01norphic are

arithmetically equivalent.
PROOF: by 1.2, 1.3, and 1.4.

DEFINITION 1.6. The system  = ~B, S) is called an arith=

metical extension of the system R = ~A, R) if the following
two conditions are satisfied,:

(i ) 6 is an extension of R;
(ii) for every forlnula cp and every sequence x E A(03C9), if x satisfies

~ in 9î, it also satisfies ~ in 6, and conversely.
By considering negations of formulas and making use of 1.1(iii),

one easily sees that an equivalent formulation of Definition 1.6
is obtained if in condition 1.6(ii) the implication in both directions
is replaced by the implication in either of the two directions. An
analogous remark applies to Definition 1.4.
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COROLLARY 1.7. Il (S is an arithmetical extension of R, then
9t and S are arithmetically equivalent.
PROOF: by 1.3, 1.4, and 1.6.

THEOREM 1.8. (i) Every system is an arithmetical extension of
itself.

(ii) Il 91’ is an arithmetical extension of R and 9t" is an arith-
metical extension of 9î’, then R" is an arithmetical extension of 9î.

(iii) I f a system 91 and an extension R’ of R have a common
arithmetical extension 9î", then R’ is an arithmetical extension of 9t.

PROOF: obvious, using 1.6.

Another general property of arithmetical extensions is stated
in the following theorem:

THEOREM 1.9. Il K is a non-empty f amily of systems such that
any Two systems in K have a common arithmetical extension which
is also in K, then the union o f K is a common arithmetical extension
of all members of K.
PROOF: Let 91 = ~A, R~ be the union of K and consider all

formulas ~ for which the following condition holds:

(1) if fl5 = ~B, 5) is any system in K and x ~ B(03C9), then x
satisfies ~ in 8t if and only if x satisfies ~ in (S.

91 is obviously an extension of every member of K. Hence it
follows directly from 1.1(i), (ii) that (1) holds for all atomic

formulas. Also, by 1.1(iii), (iv), if (1) holds for each of two
formulas ~ and y, then (1) holds as well for ~~ and for ~ A 03C8.

Let now ~ be any formula for which (1) holds and vk be any
variable. Let  = B, 5) be any system in K and x any sequence
in B(o). If x satisfies ~ vk~ in 8t, then, by 1.1(v), there is an

element a E A such that the sequence x(k/a) satisfies ~ in 8t.

By the definition of the union of a class of systems, there is
a system ’ = ~B’, S’~ ~ K for which a E B’. By hypothesis 
and 6’ have a common arithmetical extension " = ~B", S"~
in K. Clearly, x(k/a) ~ B"(03C9). Therefore, by (1), x(k/a) satisfies

~ in "; hence, by 1.1(v), x satisfies ~ vk~ in ", and consequently
by 1.6, x satisfies V vkcp in . In a similar (though simpler) way
one shows that, if x satisfies V VkCP in , it also satisfies ~ vk~
in 91. Thus, whenever (1) holds for a formula ~, it holds for the
formula ~ vk~ as well.
By now applying the principle of induction for formulas (or

the definition of a formula) of the theory T, we arrive at the
conclusion that (1) holds for all formulas. Hence, by Definition 1.6,
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9t is an arithmetical extension of every system belonging to K,
and this is what was to be proved.

It can easily be shown by means of examples that 1.9 (as op-
posed to 1.8) expresses a specific property of arithmetical exten-
sions which applies neither to isomorphic extensions nor to arith-
metically equivalent extensions.

In the next theorem we give a new characterization of arith-
metical extension, which will prove very useful in applications.
This characterization is simpler than the one originally given in
1.6 inasmuch as it avoids any semantical reference to the smaller

of the two systems involved.

THEOREM 1.10. The following two conditions are (severally)
necessary and (jointly) sufficient for a system  = ~B, 5) to be an
arithmetical extension of a system ~A, R~:

(i) fl5 is an extension of 9î;
(ii) for every f ormula ~, every natural number k, and every

sequence x E A (00), i f x satisfies ~ vk~ in , then there is an element
a e A such that x(kla) satisfies ~ in .
PROOF: The necessity of the conditions clearly follows from

1.1(v) and 1.6.

To show the sufficiency, we assume that conditions (i) and
(ii) hold and we derive from them condition 1.6(ii) by induction
on the formula ~ involved in this condition. From 1.1(i)-(iv),
it obviously follows that 1.6(ii) holds for every atomic formula
(and every sequence x ~ A(03C9)) and that 1.6(ii) holds for ~ ~
and ~ A y whenever it holds for and y. Suppose now that
1.6(ii) holds for a given formula and consider the formula
~ vk~ (where k is any natural number). If a sequence x E A(03C9)
satisfies V vk~ in , then, by 1.10(ii), we can find an element
a e A such that x(k/a) satisfies ~ in @; since x(kla),E A(03C9), we
conclude from our inductive assumption that x(k/a) satisfies ~
in 9t, and therefore, by 1.1(v), x satisfies V vk~ in 9t. By means
of a similar (though still simpler) argument, one shows that also,
conversely, if x satisfies V VkCP in R, it satisfies V vk~ m (g as well.
Thus condition 1.6(ii) holds for V vk~ whenever it holds for ~. It
follows now that 1.6(ii) holds for every formula, and the proof
is completed.

Still another characterization of the notion of arithmetical

extension, and, indeed, a reduction of this notion to that of
arithmetical equivalence is given in the following
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THEOREM 1.11. Given any relational syste1n ffi = ~A, R) and
any extension 6 = ~B, S) of 9î, the following two conditions are
equivalent:

( i )  is an arithmetical extension of 9t;
(ii) f or every finite sequence (ao, ..., an-l) of elements of .4,

the systenis ~A, R, ao,..., an-l) and ~B, S, ao,..., an-l) are
arithmetically equivalent.

I f, moreouer, we let 9t’ = ~A, R, a’ il ...~03BE03B1 and

(g’ = ~(B, oe ..., a’03BE, ...~03BE03B1, where ~a’0, ...,a’03BE, ...~03BE03B1 is
any (finite. or trans f inite ) sequence such that the set of all its terms
coincides with A, then condition (i ) is equivalent, as well, to each

of the following Two conditions:
(iii) É5’ is an arithmetical extension of 9t’;
(iv) 9f and ’ are arithmetically equivalent.
PROOF: Condition (ii) is, of course, to be understood as re-

ferring, not to the original formalized theory, T, but to formalized
theories T n obtained from T by including in its vocabulary ’n

new non-logical constants - the individual constants co, ..., cn-1.
Similarly, conditions (iii) and (iv) refer to the theory T’ obtained
by adding the 03B1-termed sequence of distinct individual constants
co, ..., c03BE, ...~03BE03B1.
To prove the theorem, we establish four implications: (i)~(iii)

~ (iv) - (ii) - (i). In the argument we use certain intuitively
obvious properties of satisfaction and truth which apply to for-
malized theories with individual constants or concern connections
between two theories that differ from each other only by the
presence or absence of certain constants. Tliese properties can Oe
rigorously (and very easily) established by induction on for-

mulas based upon formal definitions of satisfaction and truth for
the theories involved.
To obtain (i) ~ (iii) suppose that (i) holds and consider a

formula ~ of T’ and a sequence x ~ A(03C9) which satisfies ~ in 9tB
In general ~ contains individual constants. For simplicity assume
that § contains only one such constant, say ce, Let vk be a variable
not occurring in ~ and let ~’, be the formula obtained from ~
by replacing ce by vk everywhere. By the definition of satisfactioii
for T’, the séquence x(k/a’03BE) satisfies ~’ in 9î’. Since ~’ contains no
individual constants and hence is a formula of T, this sequence
also satisfies ~’ in R; therefore, by (i) and 1.6(ii), it satisfies ~’
in 6 and, hence, also in ’; consequently, x satisfies ~ in C’. In
case ~ contains more than one individual constant, the proof is
essentially the same. Thus, by 1.6, ’ is an arithmetical extension
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of R’ and (iii) holds.
The implication (iii) ~ (iv) follows directly from Corollary

1.7 (applied, not to the original theory T, but to tlie theory T’ ).
The implication (iv) -&#x3E; (ii) is obvious.

Finally, to establish (ii) ~ (i), suppose that (ii) holds. Consider
a formula ~ (of T) and a sequence x ~ A(03C9) which satisfies ~ in 9î.
Replace all the distinct variables Vko’ ..., vkn-1 which occur free
in ~ by the constants co, ..., Cn-1, respectively; the resulting
expression ~’ is a sentence of T n. Clearly, ~’ is true in the system
A, R, xk0, ..., xkn-1 ~. Hence, by (ii) and 1.3, ~ is also true in
~B, S, Xko ..., xkn-1~, and therefore x satisfies ~ in . Consequently,
6 is an arithmetical extension of R and (i) holds. This completes
the proof.2)

Theorems 1.10 and 1.11 have presented criteria for one relational
system to be an arithmetical extension of another. In Theorem.
1.12 we give a criterion for one system to be isomorphic to an
arithmetical extension of another.

THEOREM 1.12. Let T’ be the formalized theory obtained by ad-
joining the sequences of distinct individual constants ~c0, ..., ce, ...~03BE03B1
to the theory T, where oc is the sînallest ordinal with the power a.

Let 9’t = ~A, R) be a relational system of the power a. Then, in
order that a system 6 = ~B, S) be an arithrnetical extension of a
system is01norphic to 9î, the following conditioib is necessary and

sufficient :
(i) Given any set 27 of sentences of the theory T’, i f there exists

a sequence a E A ex such that every sente’nee of 1 is true in the system
~A, R, ao, ..., a03BE, ...~03BE03B1’ then there exists a sequence b E B« such
that every sentence of 03A3 is true in the system ~B, S, bo, ..., be, ...~03BE03B1.
PROOF. The necessity of (i) follows immediately from 1.11(i), (iv)

and 1.5. To establish the sufficiency of (i), we suppose that
(i) holds and let ~a0, ..., a03BE, ...~03BE03B1 be a transfinite sequence,
the set of whose terms coincides with A. Let 1 be the set of
all sentences of T’ true in the system 8t’ = ~A, R, ao, ..., a03BE, ...~03BE03B1.
By (i), there exists a (finite or transfinite) sequence b E B03B1 such that
all sentences of 03A3 are true in the system ’ = ~B, S, bo, ..., be, ...~03BE03B1.
Let C be the set of all terms of the transfinite sequence b, and let

2) It was noticed by Vaught that, using e ither 1.10 or 1.11, one can easily obtain
the following result which concerns the notion of 0393-completeness, recently introduced
by Henkin ill [10] :

Every model of a coiiiplete and 0393-complete theory is an arithmetical extension of the
subsystem fonned by its r-designated elements.
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E = ~C, S~C3~ and E’ = ~C, S~C3, bo, ..., b03BE, ...~03BE03B1. All

the sentences of the forms c03BE = c~ or P(c03BE, c~, c03B6) (03BE, q, Ç  03B1)
which are true in R’ are also true in ’, and hence are true in the

subsystem E’ of @’; the same applies to the negations of these
sentences. Consequently, the systems 9T and %’ are isomorphic.
Therefore by 1.5, all sentences true in E’ are true in m’and,
hence, in ’. By the remarks after 1.6, it follows that @’ and Z"
are arithmetically equivalent. Therefore, by 1.11,  is an arith-
metical extension of S, which is isomorphic to 91. This completes
the proof.

It may be remarked that condition (i) of 1.12 may be considered
as stating that certain propositions involving infinite conjunc-
tions must hold in 6 if they hold in m. As a result, (i), unlike
some similar conditions we have considered earlier, does not imply
its own converse.

We close this section on elementary properties of arithmetical
extensions with some examples showing that various possible
partial converses of 1.5 and 1.7 as well as an antisymmetry law
for the relation "isomorphic to an arithmetical extension of "

fail to hold. As we shall show, it can happen that (1) a system  is
an isomorphic extension but not an arithmetical extension of a system
9î; (2) a system 6’ is an arithmetically equivalent extension of a
system 91’ but is not an arithmetical extension of any system isomor-
phic to 91’; and (3) each of two systems 9t" and " is an arithmetical
extension of a system isomorphic to the other, though 9t" and "
are not isomorphic. In the examples we give, all systems involved
are denumerable. The problems whether (2) could occur at all
and whether (3 ) could occur for denumerable systems were proposed
to us by Roland Fraïssé, who had earlier found non-denumerable
examples of (3).

In all the examples, we deal with systems ~A, R~, where R
is a binary relation which simply orders A. In particular, we shall
be partly concerned with discretely ordered systems having a
first element and no last element, i.e., with simply ordered systems
having a first element, and in which every element has an im-
mediate successor, and every element except the first has an
immediate predecessor. We shall make use of some consequences
of the decision method for the first-order theory of such systems,
which was originally found by Langford. One such consequence is
that two ordered systems of the respective order types w and
03C9+03C9*+03C9 are arithmetically equivalent (cf. [15], p. 301 ). Another
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consequence is that, roughly speaking, any formula, of the first-
order theory of such systems, involving n elements (i.e., having
n free variables) can be reduced to a canonical form in which it is
represented as a disjunction of conjunctions of formulas, each
’stating’ that a pair of the elements are equal, or that one precedes
another, or that there are at least (or exactly) a certain natural
number of elements between two of the elements (or after one
of the elements, or before one of the elements).3)
To obtain an example of (1), let  be the natural numbers

together with their usual ordering, and 9î be the positive integers
with the same ordering. Then 6 is an isomorphic extension of 9î,
but not an arithmetical extension of 9î, for the first element of
9t is the second element of .
For (2), let ’ be a simply ordered system of the order type

03C9 · 17 (where q is the order type of the rational numbers together
with their usual ordering). Since 6’ has a subsystem of the type
q, it has, by the well known theorem of Cantor, a subsystem of
any given denumerable order type, and in particular one of type
(03C9+03C9*+03C9). 7y, which we take for R’. As we saw, any two

systems of the respective types 03C9 and 03C9+03C9*+03C9 are arithmetically
equivalent; by a result of FEFERMAN [3], it follows that the

ordinal products of these systems by a system of type q are again
arithmetically equivalent. Hence 9î’ and ’ are arithmetically
equivalent. Now, it is clear that 9î’ has a sequence (zo, ..., xn ...~
of members such that, for each k, xk+1 is the immediate predecessor
of Xk; on the other hand, (S’ has no such séquence of members.
From these facts and 1.12 it follows easily that (5’ is not an

arithmetical extension of any system isomorphic to 9î’.

Finally, to give an example of (3), we let 9î" be a simply
ordered system of the type 03C9+(03C9*+03C9)·~ and 6" be one of the
type 03C9+(03C9*+03C9)· ~+03C9*+03C9. It is easily seen that each system
is isomorphic to an initial segment of the other. Moreover, each
of the two systems is an arithmetical extension of any of its initial

segments isomorphic to the other; this is easily seen from 1.6,
by noting that both systems are discretely ordered with a first
element and no last element, and by referring to the canonical
form of formulas (in the theory of such systems), which was
previously described. Thus, each of 3f and " is an arithmetical
extension of a system isomorphic to the other. On the other hand,
it is clear that 9î"’ and " are not isomorphic to each other.

3) Essentially this result is stated and proved in [8], pp. 234-263. The proof
is by the method of eliminating quantifiers.
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§ 2. Applications to the Lôwenheim-Skolom Theorem.

We turn now to problems related to the Lôwenheim-Skolem
theorem. One of the known generalizations of this theorem can
be formulated as follows:

If R = ~A, R) is a i-elational systein of an in f inite power a and
b is any infinite cardinal, then there is a relational system e = ~B, 5)
of powe1. b which is arithmetically equivalent to m.4)
The question naturally arises whether a system (S with the

desired properties can be found among subsystems of 9î in case
b ~ a, and among extensions of 8t in case a ~ b. The answer is
known to be affirmative (but the proof for the case b ~ a is not
available in the literature).5) We want to improve this result
here by showing that in case b ~ a we can find a system @ (of
power b) of which 9t is an arithmetical extension, while in case
a ~ b we can find a system (B (different from ffi) which is an

arithmetical extension of 91.
In case b ~ a, our result is an immediate consequence of the

THEOREM 2.1. Let 9t = ~A, R~ be a relational system of a.n

infinite power a, let C be a subset of A of power c, and let b be an
infinite cardinal for which c ~ b ~ a. Then the14e exists a system
6 = ~B, S~ of power b such that C C B and 9t is an arithmetical
extension of G.

PROOF: We begin by choosing a fixed well-ordering of A , to
which we shall be referring when we speak of the first element
in A having a certain property.
We now define recursively an increasing sequence ~D0, ..., D n,...~

of subsets of A. For Do we take any subset of A which includes C
and is of power b. Dn+1 is defincd as the set of all elements b of
A such that, for some sequence x E D(03C9)n, some natural number k,
and some formula ~, b is the first element in A for which x(k/b)
satisfies ~ in 9î. Using the formula v0 ~ v, we easily see that
Dn C Dn+1 for every n. Let now B be the union of all the sets

4) For relational systems of finite or denumerable orders this result was obtained
by Tarski. For systems of non-demimerable orders the result requires an additional
assumption (see the concluding remarks of this section), and with this assumption
it was established by Henkin, and independently, by A. Robinson. More detailed
historical information can be found in [20], footnote 3, pp. 467-8, as well as [6],
footnote 7, p. 413, and footnote 34, p. 427.

1) For the case b ~ a (and for systems of at most denumerable orders) this
result was obtained by Tarski and stated in [16], p. 712, Theorem 23. Regarding
the case a  b, see the proof of Theorem 2.2 below.
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D n (n = 0, 1, 2, ... ), and let @ = ~B, S) be the eorresponding
subsystem of 9t (S = R ~ B3). Obviously, C Ç B, and it is a

simple matter to show that B is of the power b. We want now to
show that condition 1.10(ii) holds. Thus, suppose that the sequence
x E B(w) satisfies the formula V VkCP in Sl. Since x has only finitely
many different terms, there must be a natural number n such

that x ~ D(03C9)n. Furthermore, by 1.1 (v) there is an element b E A

for whieh x(k/b) satisfies ~ in 91. It we take b as the first élément
of A with this property, then, by definition, b E D.+,, and therefore
b ~ B. Thus 1.10(ii) is seen to hold. Consequently, by 1.10, ?
is an arithmetical extension of , which completes the proof.

2.1 implies as a direct conséquence the original Löwenheim-
Skolem theorem, by which every infinite relational system is

arithmetically equivalent to a denumerable system. Hence the
method used in establishing 2.1 automatically provides a simple
proof for the original Lôwcnheim-Skolem theorem. 6)7)
The second result in this section, Theorem 2.2, is an analogue

of Theorem 2.1 for the case a ~ b (or, more precisely, it is an

analogue of the particular case which is obtained by taking the
empty set for C). While the proof of 2.1 is rather simple in itself,
we do not know of any method which would permit us to derive
this theorem directly from results whose proofs are available in
the literature. We shall see that, on the contrary, such a method
can be successfully applied to obtain a simple proof of 2.2.

THEOREM 2.2. Let 9t = (/1 , R~ be an infinite relational system
of power a and let b be any cardinal such that a ~ b. Then there
exisis a system (5 = ~B, S) of power b which is a proper arith-
1netical extension of 91.

s) In Skolem’s papers [12] and [13] we find a result which is stronger tlian what
we have just formulated as the original Lôwenlieim-Skolem theorem and to which
2.1 is more closely related; namely, the result that every infinité relational system
has an arithmetically equivalent denumerable subsystem. The methods applied
in [12] and [13] could be used to obtain new proofs of 2.1. They seem to us, however,,
to be less simple and natural than the method we have actually applied. Unlike
our method, they are based upon a reduction of formulas to normal forms, and the
resulting proofs, wlien presented in a completely precise and detailed manner, are
rather involved.

7) It may be remarked that Theorem 2.1, as applied to a model of any set of
axioms for set theory (e.g., either the Zermelo-Fraenkel or von Neumann-Bernays
axiom system ) yields the so-called Skolem paradox (cf. [13]) in the stronger form:
any model 91 of a set of axionts for set fheory lias ci denumerable subsystem  such that

9t is an arithmetical extension of e, i.e., such that every arithmetical notion is R-
absolute (in the sense of Godel [5], p. 42). 
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PROOF: By applying the well-ordering principle we arrange
the elements of A in a transfinite sequence ~a0, ..., a03BE, ...~03BE03B1
without repeating terms, and we put

It is known that every relational System ? of an infinite power a
has a proper arithmetically equivalent extension of any given
power ~ a. This result was established independently by Henkin
([6], p. 417, Theorem 2) and A. Robinson ([10], p. 74, Theorem
6.6.5). It applies to every system 9t of an arbitrary order y,

provided that the power c of y at most equals b. Thus we can
apply this result to the system R’ (since in this case y = oc, and
c = a ~ b, and we obtain a system ’ of the form

which has the power b and is an arithmetically equivalent exten-
sion of 9î’. Hence, by 1.11, the System (S = ~B, S~, which is of
power b, is an arithmetical extension of the system 9î, and the
theorem is proved.

By analyzing the proof just outlined we notice that this proof,
even when applied exclusively to relational systems of at most
denumerable order, essentially depends upon the discussion of
formalized theories with non-denumerably many symbols. This
may be regarded as a defect reducing the esthetic value of the
proof, and the problem naturally arises of finding a simple and
elegant proof of 2.2 which would be free from this defect. It

would sufficç-to find such a proof for the weaker statement that
every infinite system has at least one proper arithmetical exten-
sion ; for this partial result combined with 1.9 can be used as a
base for transfinite induction yielding arithmetical extensions of
arbitrarily large powers.8)

In proving both 2.1 and 2.2 we have made full use of the axiom
of choice. (At the beginning of the proof of 2.2, and in the statement
and proof of 1.11, the application of the well-ordering principle
can be avoided if we agree to consider relational systems in which

8) A proof, along these lines, of Theorem 2.2 is known, but is by no means simple.
It is essentially the same proof which was originally found by Tarski, in 1928,
for the generalized Lôwenheim-Skolem theorem (see footnote 5), although in the
original argument the notion of arithmetical extension was only implicitly involved.
The method used in the first part of the proof (i.e., in showing that every infinite
system has at least one proper arithmetical extension) is related to one developed
in [12]. Altogether the proof is complicated and will not be reproduced here.
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relations and distinguished elements are indexed, not necessarily
by ordinals, but by elements of arbitrary sets. However, the
axiom of choice will still be involved in the proof of the Henkin-
Robinson result from which 2.2 was derived. ) The use of the axiom
of choice in these proofs is essential. Indeed, Vaught has shown
that each o f the theorems 2.1 and 2.2 (as well as certain other
generalizations of the Löwenheim-Skolem theorem) implies the axiom
of choice in its general forme (Cf. [22].)
Theorems 2.1 and 2.2 are the only formally stated results of

this paper whose proofs do not automatically extend to relational
systems of arbitrary (possibly non-denumerable) order ô. To

make such an extension possible the hypotheses of each of the two
theorems must be provided with the additional assumption that the
power b of 03B4 at most equals b. It is easily seen that in the case
of 2.1 this assumption is essential. On the other hand, Robinson
in [10] (pp. 76f.) outlines a method which would permit us to
prove 2.2 with no additional assumption. Unfortunately, his

argument seems to contain an error, and it actually enables us
to establish 2.2 only if the condition a ~ b is replaced in the
hypothesis by the stronger condition 2a ~ b. Thus it still remains
dubious whether 2.2 applies to relational systems of arbitrary
order in case a = b, and also (unless we assume the generalized
continuum hypothesis) in case a  b  2a.

§ 3. Applications to spécial algebraic systems.

We begin by obtaining a condition of a purely algebraic
character which is sufficient for a system 8t to be an arithmetical
extension of a system .

THEOREM 3.1. The following two conditions are (jointly) sufficient
for a system 6 = ~B, S~ to be an arithmetical extension of a system
R = A, R~:

(i ) 6 is an extension of R.
(ii) f or any finite subset A’ of A and any element b &#x26;f B, there

exists an automorphism f of 6 such that f(a’) = a’ for every a’ e A’,
and f(b) E A.
PROOF: Assuming conditions (i) and (iiJ above, we shall show

that condition (ii) of Theorem 1.10 holds. Suppose that ~ is any
formula, k is a natural number, x is a sequence belonging to A(03C9),
and x satisfies ~ vk~ in . By 1.1(v), there is a member b of B
such that x(k/b) satisfies in 6. Since x belongs to A(03C9), the set
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A’, consisting of all the terms xz for which i ~ k, is finite. By (ii),
there is an automorphism f of 6 such that f(xi) == xi for every
i ~ k, and f (b ) E A. Now

x(k/f(b)) = ~f(x0), ..., f(xk-1), f(b), f(xk+1), ...~.
Therefore x(k/f(b)) satisfies ~ in , by 1.2, while f(b) E A. Thus
1.10(ii) is established, and the theorem follows, by 1.10.9)

It should be emphasized that 3.1 holds as well for relational
systerns having arbitrarily many relations.

In certain applications of 3.1, we shall be concerned with

relatiollal systems W = ~A, O~ in which the ternary relation 0
may be construed as a binary operation, i.e., such that for any
x, y E A there exists at most one z for which (z, y, z~ E 0 (if such
a z exists, it is denoted by O(x, y)). Such systems will be called
generalized algebras. If, moreover, U is closed under the operation
0, i.e., 0(x, y) exists for all x, y E A, then 91 is called an algebra.
By a generalized subalgebra of a generalized algebra U = ~A, O~

we mean a subsystem 3t’ = ~A’, 0 rl A’3~ of St such that, wherever
x, y E A’ and 0 (x, y ) exists, then 0 (x, y ) E A’. The generalized
subalgebra of W generated by a subset X of A is the subalgebra
~A’, O~ A ’3) of U, where A’ is the intersection of all A " such
that A" d X and ~A", O~ A"3~ is a generalized subalgebra of
91; under the same circumstances, we say that an arbitrary
element of A’ is generated by X. Clearly, every element of A’ is
generated by some finite ’3ubset of X.
The following theorem was suggested to us by BJARNI JôxssoN

as a means of generalizing three subsequent theorems, 3.3, 3.4,
and 3.5, and unifying their proofs 10):
THEOREM 3.2. Suppose the generalized algebra B = ~B, 0) is

generated by an in f inite set Y in s-uch a way that every permutation
o f Y can be extended to an au.tomorphism o f B. Let X be-any infinite
subset o f Y and 2[ = ~A, 0’) be the generalized subalgebra of B
generated by X. Then B is an ai-ithmetical extension of U.

9) Fraïssé in [4], p. 177, has defined, in a purely mathematical way, relations
called n-subparenté borneé (n = 1, 2, 3, ... ) bet,,’een systems R and 6 (in symhols,
Rñ 6), for which he has proved that a necessary and suff icien t condition for ? to
be arithmetically equivalent to  is that, for every n, Rñ 6. Using condition (ii)
of Theorem 1.11, we may construct an alternative proof of Theorems 3.1 by showing
by induction on n that for any n and p and any members bo, ..., bp-1 of B,

~A, R, bo, ..., bp-1~ñ (B, S, bo, ..., bp-1~.
10) In our original version of § 3, we derived 3.3 and 3.5 separately, and directly

from 3.1.
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PROOF: We shall show that condition 3.1(ii) holds. Suppose
that A’ is any finite subset of A and b is any member of B. All

the elements of A’ are generated by some finite subset Xl of X,
and b is generated by some finite subset Y’ of Y. Let Y’ = X 2 U Y ",
where X2X and Y"Y-X. Noting that X-(X1~X2) is

infinite, one sees easily that there exists a permutation g of Y
such that g(x) = x for every x~ X1 U X2, while g(y) ~ X for
every y E Y". By hypothesis, g may be extended to an automor-
phism f of 58. From the facts that g is an automorphism, and that
g(x) = x for every x E Xl, and that every member of A’ is generated
by X1, it clearly follows that f(a’) = a’ for every a’ E A’. Likewise,
from the facts that f(y’) E A for every member y’ of Y’, and that
b is generated by Y’, and that f is an automorphism, we see that
f(b) ~ A. Thus 3.1(ii) holds, and the theorem follows by 3.1.

For the next theorem we shall need to rely upon some well
known results concerning free algebras. A class K of algebras is
called equational if, roughly speaking, K consists of all and only
those algebras in which each of a certain set X of sentences
is true, the sentences of 1 all being equations (preceded by
universal quantifiers). (For a precise definition, cf. [17], III,
p. 57.) Given an equational class K, an algebra U = ~A, O~ and
a set X, we say that X generates U freely over K if (i) U ~ K, (ii)
X generates U, and (iii) any function on X into, an algebra U’
of K can be extended to a homomorphism of 91 into U’. Under
the same circumstances, we say that 91 is a K-free algebra with c
generators, where c is the power of X. The following facts are
well known (cf., e.g., [1], pp. vü-ix): Il K is an equational class
of algebras, then (1) for every cardinal number c =1=- 0, there exists
a K-free algebra with c generators, and any two such algebras are
isomorphic ; (2) i f X generates 21 freely over K, then every permutation
of X may be extended to an automorphism o f U; (3) i f Y generates
58 freely over K, X is a non-empty subset of Y, and 21 is the sub-
algebra of 58 generated by X, then X generates % freely over K.

THEOREM 3.3. Let K be an equational class o f algebras. Then
(i) i f Y generates B = ~B, O~ freely over K, X is an infinite

subset o f . Y, and 21 is the subalgebra of 58 generated by X, then B
is an arithmetical extension of U;

(ii) o f any two K-free algebras with in f initely many generators
one is isomorphic to an arithmetical extension of the other, and hence
the two algebras are arithmetically equivalent.
PROOF: In view of property (2) of free algebras stated above,
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(i) follows at once from 3.2. (ii) follows from (i), in view of

properties (1) and (3) above.
The question arises whether this result may be strengthened

to apply in some way to K-free algebras with finitely many gen-
erators. As remarked in the introduction, Tarski has conjectured
that any two free groups with at least two generators are arith-

metically equivalent. The analogous statement for K-free algebras
in general is not true, as may be seen, for example, by considering
free Boolean algebras, since the free Boolean algebra with n
generators is the Boolean algebra with 22" elements. One may also
ask whether a sentence true in all K-free algebras with finitely
many generators is necessarily true in the K-free algebra with
No generators. Dana Scott showed us that the answer here is

also negative. Again, Boolean algebras provide a simple example,
for all the free Boolean algebras with finitely many generators
are atomistic, while the free Boolean algebra with No generators
is atomless.

THEOREM 3.4. Let  = ~C, +, -, .) be a commutative ring
and assume that all the elements of C have been arranged in a
sequence ~c0, ..., ce, ...~03BE03B1 without repeating terms. Then

(i) 2f B = ~B, +’, -’, ·’, c0, ..., ce, ...~03BE03B1 is the polynomial
ring over  generated by an in f inite set Y of unknowns, and 91 is
the subalgebra of B generated by an in f inite subset X of Y, then 0
is an arithmetical extension of U;

(ii) any two polynomial rings over  with in f initely many un-
knowns are arithmetically equivalent.

PROOF. Let K be the class of all systems ~D, +", -", ·",
do, ..., de, ...~03BE03B1 in which the axioms for commutative rings
are true and in which, moreover, -"d03BE = d~, d03BE+"d~ = d03B6, or
de - "d~ = d03B6 whenever - c03BE = c.. c03BE+c~ = ce, or c03BE · c~ = c03B6,
respectively (e, q, 1  a ). Then K is an equational class of algebras
(constants being regarded as 0-termed operations). From the
hypothesis of (i), it is easily seen that Y generates B freely over
K. Hence (i) follows from 3.3 (applied to algebras of arbitrary
order) ; (ii) is an immediate consequence of (i ).11 )
THEOREM 3.5. Let  = ~C, +, -, ’, ~ be a field and assume

that all the elements of C have been arranged in a sequence
~c0, ..., cç’ ...~03BE03B1 without repeating terms. Then

11) We may also prove 3.4 (i) more simply by deriving it from 3.2, which (as was
mentioned above) gives a common basis for 3.3, 3.4, and 3.5. However, it is perhaps
of interest that 3.4 can be derived directly from 3.3, in the way just indicated.
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(i) f B = ~B, +’e -’, .’ * ’e co, ..., ce, ...~03BE03B1 is a pure
transcendental extension of  generated by the infinite set Y of
elements algebraically independent with respect to , and U is the
generalized subalgebra of B generated by an’infinite s2.cbset X o f Y,
then 58 is an arithmetical extension of 2t;

(ii) any two pure transcendental extensions of  o f infinite degree
are arithmetically equivalent.
PROOF: (i ) follows from 3.2, in view of the well knowli fact

that any permutation of Y can be extended to an automorphism
of B; (ii) follows immediately from (i ). It should be noted that
we are considering fields as systems having a division operation,
and thus not as algebras, but as generalized algebras.

In a recent paper [11], Sikorski has defined a general notion
called the K-free product of an indexed system of algebras, each
belonging to a given class K of algebras. (This product does not

. always exist.) He shows that a K-free algebra with a generators
is the K-free product of a replicas of the K-free algebra ,vitI1 one
generator, when K is equational, and that the K-free product
coincides with the usual free product of groups, when K is the
class of all groups.12) Using this notion, 3.3 may be generalized
as follows :

TIIEOREM 3.6. Let ~Ui~i~I be an indexed system of algebras of
the class K, and supposes J is a subset of I such that, jor every i E I,
either there are only f initely many i’ E I f or which 21i and 21i, are
isomorphic, and all such i’ belong to J, or there are in f initely many
such i’ and in f initely many of them belong to J. Suppose the algebras
~Ui~i~I have a K-free product B, and  in the K-free product
of the algebras ~Ui~i~J. Then B is (isomorphic to) an arithmetical
extens ion of .
PROOF: The theorem may be derived from 3.1, in a manner

analogous to the proof of 3.2.

As other examples where 3.1 may be applied, we may mention
weak direct powers and cardinal multiples. Given a set 1 and a
relational system 9î == ~A, R~, having an element e such that
~e, e, e) E R, the weak direct power RI (relative to e) is defined
to be the system ~B, 5) where B is the set of all funetions i on I
into A such that f(i) = e for all but a finite number oi’ i E I,
and S is the set of all triples ~f, g, h) such that f, g, h E B and, for

12) Both here and in the last paragraph of this paper a group must be considered
as a system with either one binary opération, left hand (or right hand) division,
or else one binary operation, multiplication, and one unary operation, inversion.
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each i~I, ~f(i), g(i), h(i)~ E R. Given a relational system A = ~A, R~
and a set I, the cardinal multiple I. 9î is defined to be the

system ~B’, S’~, where B’ is the set of all couples ~i, a~ such that
i E I, and a E A, and S’ is the set of all triples «i, a0~, ~i, a1~,
~i, a2» such that i ~ I and ~a0, a,, a2~ E S.
By applying 3.1, we see easily that the weak direct power 9t,

of a relational system 9t (relative to an element e) is isomorphic
to an arithmetical extension of the weak direct power RJ, provided
that J is an in f inite subset of I. Similarly, we may show that the
cardinal multiple I - 9t is an arithmetical extension of the cardinal
multiple J · 91, provided that J is an in f inite subset of I. These
results may be generalized to apply to infinite weak direct products
and infinite cardinal sums in the same way that 3.3 was generalized
in 3.6. It should be remarked that generally much stronger results
concerning sentences holding in weak direct powers and cardinal
multiples have been obtained by other methods by Mostowski
and Feferman, respectively (cf. [9], [2], and [3]).
Our various applications of Theorem 3.1 all establish the pos-

sibility of reducing the discussion of the arithmetical properties
of systems of a given class to those of the denumerable or, roughly
speaking, ’denumerable formed’, systems of the class. In this way,
they resemble the Lôwenheim-Skolem theorem. Generally, it would
seem, nonetheless, that there is no possibility of obtaining
these results directly from the Lôwenheim-Skolem theorem. It
may be remarked, however, that Theorem 3.3(ii), for the special
case of free groups, can be obtained by an application of the
Lôwenheim-Skolem theorem in the stronger form given in 2.1.
Indeed, suppose a and b are cardinal numbers, with a ~ b ~ N0,
and 2[ is a group freely generated by a set X of power a. For the
set C of 2.1, we take a subset of X of the power b. Applying 2.1,
we obtain a subgroup of power b, including C, such that X
is an arithmetical extension of 58. It is well known that 113 is,
as a subgroup of a free group, a free group itself; 113 clearly has at
most b generators; and, since 113 includes the set C, 58 must have
at least b generators. Thus, a free group with a generators is shown
to be isomorphic to an arithmetical extension of a free group
With 6 generators.

Examples of arithmetical extensionality, as found in this section
by the method of Theorem 3.1, must, of course, be of a rather
spécial nature. It may be interesting to mention, in closing, another
source of such examples. Indeed, Tarski has remarded that, in
many situations where the so-called "method of eliminating
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quantifiers" has been successfully applied, the strong results thus
obtained (which necessarily apply to formulas as well as sentences)
yield interesting and important cases of arithmetical extension-
ality. He has noted, in particular, that, from the results in his
monograph A decision method for elementary algebra and geometry
(prepared for publication by J. C. C. McKinsey, Berkeley, 1951),
it follows at once that

every real closed field is an arithmetical extension of each of its
real closed subfields,
and, similarly,

every algebraically closed field is an arithmetical extension of each
of its algebraically closed subfields.

University of California, Berkeley,
and

University of Washington.
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