L. CARLITZ

Sets of primitive roots

Compositio Mathematica, tome 13 (1956-1958), p. 65-70

<http://www.numdam.org/item?id=CM_1956-1958__13__65_0>
Sets of primitive roots

by

L. Carlitz

1. Introduction. As a special case of a more general result [1, Theorem 1] the writer has proved that if \(a \) is a fixed integer \(\geq 1 \), then the number of integers \(x, 1 \leq x \leq p-1 \), such that \(x \) and \(x+a \) are both primitive roots (mod \(p \)) is equal to

\[
\frac{\varphi^2(p-1)}{p-1} + O(p^{1+\varepsilon}) \quad (\varepsilon > 0),
\]

where \(\varphi(p-1) \) is the Euler function. The more general result referred to is concerned with the number of solutions in primitive roots (mod \(p \)) of

\[
a_1 x_1 + \cdots + a_r x_r \equiv a \pmod{p}.
\]

It is natural to raise the following question. Let \(a_1, \cdots, a_{r-1} \) be fixed integers \(\geq 1 \). We seek the number of integers \(x \) (mod \(p \)) such that

\[
x, x+a_1, \cdots, x+a_{r-1}
\]

are all primitive roots. If \(N_r \) denote this number we show that

\[
N_r \sim \frac{\varphi^r(p-1)}{p^{r-1}} \quad (p \to \infty).
\]

The proof of (1.4) depends on some results of Davenport [2].

Indeed we can prove rather more. Let

\[
f_1(x), f_2(x), \cdots, f_r(x)
\]

denote polynomials with integral coefficients (mod \(p \)); there is no loss in generality in assuming that each \(f_i(x) \) is of degree \(\geq 1 \). Moreover we assume that the \(f_i(x) \) are relatively prime (mod \(p \)) in pairs and none is divisible by the square of a polynomial (mod \(p \)). If now \(N_r \) denotes the number of integers \(x \) (mod \(p \)) such that all the numbers (1.5) are primitive roots, then again (1.4) holds.

We also prove that if the polynomials \(g_i(x) \) satisfy the previous hypotheses then \(M_r \), the number of integers \(x \) (mod \(p \)) such that
where \((a/p)\) is the Legendre symbol and \(\epsilon_j = \pm 1\), satisfies

\[
(g_j(x)) = \epsilon_j \quad (j = 1, \ldots, r),
\]

More generally if \(f_1(x), \ldots, f_r(x), g_1(x), \ldots, g_s(x)\) are polynomials satisfying the previous hypotheses and \(N_{r,s}\) is the number of integers \((\text{mod } p)\) such that simultaneously all \(f_i(x)\) are primitive roots and (1.6) is satisfied, then

\[
2^s M_r \sim p \quad (p \to \infty).
\]

It should be noted that in these results the numbers \(r, s, \deg f_i, \deg g_j\) are kept fixed as \(p \to \infty\).

Since it is no more difficult, we prove the above results for arbitrary finite fields \(GF(q)\). Moreover in place of primitive roots we deal with numbers belonging to an exponent \(e\), where \(e | q - 1\). For the precise statement of the more general results see the theorems in §§ 3, 4.

2. Let \(GF(q), q = p^n\), denote an arbitrary finite field and put \(q - 1 = ef\). Numbers of \(GF(q)\) will be denoted by lower case Greek letters \(\alpha, \beta, \gamma, \ldots, \xi, \eta, \zeta\). Let \(\chi(\alpha)\) denote a character of the multiplicative group of \(GF(q)\), and let \(\chi_0(\alpha)\) denote the principal character. We now define a function \(\omega(\xi)\) by means of

\[
\omega(\xi) = \frac{1}{f} \sum_{d | e} \mu(d) \sum_{\chi \neq \chi_0} \chi(\xi),
\]

where \(\mu(d)\) is the Möbius function and inner sum is over the \(d\) character \(\chi\) such that \(\chi^{df} = \chi_0\). Then we have the following easily proved result.

Lemma 1. If \(\xi\) belongs to the exponent \(e\), then \(\omega(\xi) = 1\); for all other \(\xi\), \(\omega(\xi) = 0\).

It is convenient to transform (2.1) by means of

Lemma 2. The function \(\omega(\xi)\) defined by (2.1) satisfies

\[
\omega(\xi) = \varphi(e) \frac{\sum_{z | e} \mu(z_1) \sum_{\chi(\xi)} \chi(\xi) \left(z_1 = \frac{z}{(z, f)}\right)}{q - 1 \varphi(z_1) \sum_{\chi(z)} \chi(\xi)},
\]

where the inner sum is over the \(\varphi(z)\) characters belonging to the exponent \(z\).

A character \(\chi\) belongs to the exponent \(k\) if \(k\) is the least integer
\[\omega(\xi) = \frac{1}{f} \sum_{d \mid n} \mu(d) \sum_{\chi} \sum_{x \in \mathcal{E}} \chi(\xi), \]

where \(\chi^{(\xi)} \) has the same meaning as in (2.2). In the next place the right member of (2.3) is equal to

\[\frac{1}{f} \sum_{z \mid d \mid q-1} \sum_{\chi^{(\xi)}} \chi(\xi) \sum_{z \mid d \mid q-1} \frac{\mu(d)}{d}, \]

where the innermost sum is over all \(d \) satisfying the indicated conditions. Now put \(z_0 = (z, f) \), \(z = z_0 z_1 \), \(f = z_0 f_1 \); \(z \mid df \) is equivalent to \(z_1 \mid d \). Put \(d = z_1 u \); then

\[\sum_{z \mid d \mid q-1} \frac{\mu(d)}{d} = \sum_{u \mid z_1^{-1}} \frac{\mu(z_1 u)}{z_1 u} = \frac{\mu(z_1)}{z_1} \sum_{u \mid z_1^{-1}} \frac{\mu(u)}{u} \]

\[= \frac{\mu(z_1)}{z_1} \frac{\varphi(e)}{e} \frac{z_1}{\varphi(z_1)} = \frac{\varphi(e)}{e} \frac{\mu(z_1)}{\varphi(z_1)}. \]

This evidently proves (2.2).

Lemma 3. Let \(\chi_1, \ldots, \chi_r \) denote non-principal multiplicative characters and let \(f_1(x), \ldots, f_r(x) \) denote quadratfrei polynomials with coefficients in \(GF(q) \) that are relatively prime in pairs and of degree \(\geq 1 \). Put

\[S = S(f, \chi) = \sum_{x \in GF(q)} \chi_1(f_1(x)) \cdots \chi_r(f_r(x)). \]

Then

\[|S(f, \chi)| \leq (k-1)q^{1-\theta_k}, \]

where \(k = \deg f_1 + \cdots + \deg f_r \) and

\[\theta_3 = \frac{1}{4}, \quad \theta_k = \frac{3}{2(k+4)} \quad (k \geq 4). \]

For proof see Davenport [2].

As a matter of fact by a theorem of André Weil [3], we may take \(\theta_k = \frac{1}{2} \); however we shall not make use of this deeper result.

3. Let \(e_1, \ldots, e_r \) be integers such that \(e_i \mid q-1 \) and let \(N_r \) denote the number of \(x \in GF(q) \) such that \(f_i(x) \) belongs to the exponent \(e_i \) for \(i = 1, \ldots, r \); here the \(f_i(x) \) are polynomials with coefficients in \(GF(q) \). Extending the definition (2.1) in an obvious way we define the set of functions \(\omega_1(\xi), \ldots, \omega_r(\xi) \) such that \(\omega_i(\xi) = 1 \) if \(\xi \) belongs to the exponent \(e_i \), while \(\omega_i(\xi) = 0 \) otherwise. Then it
is clear that
\[N_r = \sum_{\alpha} \omega_1(f_1(x)) \cdots \omega_r(f_r(x)). \]

Put \(\varepsilon_i f_i = q-1, i = 1, \ldots, r. \) Substituting from (2.2) in (3.1) we get
\[N_r = \frac{\varphi(e_1) \cdots \varphi(e_r)}{(q-1)^r} \sum_{z_i' \in z_i} \frac{\mu(z'_1) \cdots \mu(z'_r)}{\varphi(z'_1) \cdots \varphi(z'_r)} \]
\[\cdot \sum_{\chi'_1(\varepsilon_1), \ldots, \chi'_{r}(\varepsilon_1)} \alpha \chi_1(f_1(x)) \cdots \chi_r(f_r(x)), \]
where \(\chi_i \) runs through the \(\varphi(z_i) \) characters belonging to the exponent \(z_i' \), and
\[z'_i = \frac{z_i}{(z_i, f_i)} \quad (i = 1, \ldots, r). \]

Consider first the terms in the right member of (3.2) corresponding to principal characters \(\chi_i \). Since \(\chi_i \) belongs to \(z_i \) it follows that all \(z_i = 1 \) and therefore we get
\[\frac{\varphi(e_1) \cdots \varphi(e_r)}{(q-1)^r} \sum_{\alpha} \chi_0(f_1(x)) \cdots \chi_0(f_r(x)) \]
\[= \frac{\varphi(e_1) \cdots \varphi(e_r)}{(q-1)^r} q + O \left(k \frac{\varphi(e_1) \cdots \varphi(e_r)}{(q-1)^r} \right). \]

We now assume that the polynomials \(f_i \) satisfy the hypotheses of Lemma 3. Then the remaining terms in (3.2) contribute
\[\frac{\varphi(e_1) \cdots \varphi(e_r)}{(q-1)^r} \sum_{z_i \in z_i} \frac{\mu(z'_1) \cdots \mu(z'_r)}{\varphi(z'_1) \cdots \varphi(z'_r)} \sum_{\chi'_i(\varepsilon_1)} S(f, \chi) \]
\[= O \left\{ \frac{\varphi(e_1) \cdots \varphi(e_r)}{(q-1)^r} \sum_{z_i \in z_i} \frac{1}{\varphi(z'_1) \cdots \varphi(z'_r)} \sum_{\chi'_i(\varepsilon_1)} |S(f, \chi)| \right\} \]
\[= O \left\{ \frac{\varphi(e_1) \cdots \varphi(e_r)}{(q-1)^r} \sum_{z_i \in z_i} \frac{\varphi(z'_1) \cdots \varphi(z'_r)}{\varphi(z'_1) \cdots \varphi(z'_r)} kq^{1-\theta_k} \right\}, \]
by (2.5). In the next place we have
\[\sum_{z_i \in z_i} \frac{\varphi(z'_1) \cdots \varphi(z'_r)}{\varphi(z'_1) \cdots \varphi(z'_r)} = O \{ f_1 \cdots f_r \sum_{z_i \in z_i} 1 \} = O(f_1 \cdots f_r q^{r\varepsilon}), \]
where \(\varepsilon > 0 \), and therefore the above estimate becomes
\[O \left\{ \frac{\varphi(e_1) \cdots \varphi(e_r)}{(q-1)^r} f_1 \cdots f_r k^q^{1-\theta_k + r\varepsilon} \right\} \]
\[= O(k^q^{1-\theta_k + r\varepsilon}). \]

Combining (3.2) with (3.3) and (3.4) we get
This proves

Theorem 1. Let \(f_1(x), \ldots, f_r(x) \) denote quadratfrei polynomials with coefficients \(\epsilon \in \text{GF}(q) \) that are relatively prime in pairs and of degree \(\geq 1 \); let \(e_1, \ldots, e_r \) denote positive integers such that \(e_i | q-1, \ i = 1, \ldots, r \). Let \(N_r \) denote the number of \(\alpha \in \text{GF}(q) \) such that \(f_i(\alpha) \) belongs to the exponent \(e_i \). Then \(N_r \) satisfies (3.5), where \(\theta_k \) is defined by (2.6) and \(k = \deg f_1 + \cdots + \deg f_r \).

In particular if all \(e_i = q-1 \) and \(k \) is fixed we get

Theorem 2. Let \(f_1(x), \ldots, f_r(x) \) satisfy the hypotheses of Theorem 1 and let \(N'_r \) denote the number of \(\alpha \in \text{GF}(q) \) such that \(f_i(\alpha) \) is a primitive root of \(\text{GF}(q) \) for \(i = 1, \ldots, r \). Then for fixed \(k \)

\[
N'_r \sim \frac{\varphi'(q-1)}{q^{r-1}} \quad (q \to \infty).
\]

If we take \(f_i(x) = x + \alpha_i, \ i = 1, \ldots, r, \) where the \(\alpha_i \) are distinct, then for \(q = p \), (3.6) reduces to (1.4).

4. Let the polynomials \(f_1(x), \ldots, f_r(x) \) have the same meaning as in Theorem 1. For \(q \) odd we define the character \(\psi(\alpha) \), \(\alpha \in \text{GF}(q) \), as equal to \(+1, -1, 0 \) according as \(\alpha \) is equal to a square, a non-square, or zero in \(\text{GF}(q) \). Let \(\epsilon_i = \pm 1, \ i = 1, \ldots, r \) be assigned. We consider the number of \(\alpha \) such that

\[
\psi(f_i(\alpha)) = \epsilon_i \quad (i = 1, \ldots, r).
\]

If \(M_r \) denotes this number then clearly the sum

\[
\sum_{\alpha} \prod_{i=1}^r \{1 + \epsilon_i \psi(f_i(\alpha))\}
\]
differs from \(2^r M_r \) by at most \(k \). Expanding the product in (4.2) and applying Lemma 3 we obtain

Theorem 3. \((q \) odd). If the polynomials \(f_1(x), \ldots, f_r(x) \) satisfy the hypothesis of Theorem 2 and \(\epsilon_i = \pm 1, \ i = 1, \ldots, r \) are assigned, then for fixed \(k \) the number of \(\alpha \in \text{GF}(q) \) for which (4.1) holds satisfies

\[
M_r \sim 2^{-r} q \quad (q \to \infty).
\]

It is clear how the theorem can be extended to \(d \)-th powers. It should be remarked that some hypothesis on the size of \(k \) is necessary. For example when \(r = 1 \) one can construct a non-constant polynomial \(f(x) \) such that \(\psi(f(x)) = 1 \) for \(q-1 \) values of \(\alpha \) and therefore (4.3) does not hold.
In the next place it is not difficult to prove a theorem that includes both Theorem 1 and 3. Let \(f_1(x), \ldots, f_r(x), g_1(x), \ldots, g_s(x) \) denote polynomials that satisfy the previous hypothesis. Let \(e_1, \ldots, e_r \) be divisors of \(q - 1 \) and \(e_j = \pm 1 \), \(j = 1, \ldots, s \). We consider the number of \(\alpha \in GF(q) \) such that \(f_i(\alpha) \) belongs to the exponent \(e_i \) for \(i = 1, \ldots, r \) and \(\psi(g_j(\alpha)) = e_j \) for \(j = 1, \ldots, s \). If we call this number \(N_{r,s} \) then it is clear that the sum

\[
(4.4) \quad \sum_{\alpha} \prod_{i=1}^{r} \omega_i(f_i(\alpha)) \prod_{j=1}^{s} \left(1 + e_j \psi(g_j(\alpha))\right)
\]

differs from \(2^r N_{r,s} \) by at most \(h \), where \(I = \deg g_0 + \cdots + \deg g_s \).

Hence expanding the second product in the right member of (4.4) proceeding exactly as in the proof of Theorem 1 we get

\[
(4.5) \quad 2^r N_{r,s} = \frac{\varphi(e_1) \cdots \varphi(e_r)}{(q-1)^r} q + O(kq^\theta),
\]

where \(\theta < 1 \). We may state

Theorem 4. Let \(f_1(x), \ldots, f_r(x), g_1(x), \ldots, g_s(x) \) denote quadratfrei polynomials that are relatively prime in pairs. Let \(e_i | q - 1 \) for \(i = 1, \ldots, r \); \(e_j = \pm 1 \) for \(j = 1, \ldots, s \). Then \(N_{r,s} \), the number of \(\alpha \) such that \(f_i(\alpha) \) belongs to the exponent \(e_i \) and \(\psi(g_j(\alpha)) = e_j \), satisfies (4.5), where \(\theta < 1 \), \(k = \deg f_1 + \cdots + \deg f_r \), \(h = \deg g_1 + \cdots + \deg g_s \).

In particular if all \(e_i = q - 1 \) and \(k \) and \(h \) are fixed we get

Theorem 5. Let \(f_1(x), \ldots, f_r(x), g_1(x), \ldots, g_s(x) \) satisfy the hypotheses of Theorem 4 and let \(N_{r,s} \) denote the number of \(\alpha \) such that \(f_i(\alpha) \) is a primitive root of \(GF(q) \) for \(i = 1, \ldots, r \) and \(\psi(g_j(\alpha)) = e_j \) for \(j = 1, \ldots, s \). Then for fixed \(k, h \) we have

\[
(4.6) \quad 2^r N_{r,s} \sim \frac{\varphi^r(q-1)}{q^{r-1}} \quad (q \to \infty).
\]

REFERENCES

L. Carlitz

H. Davenport

André Weil

Duke University.

(Oblatum 6-10-53).