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Ascending derived series

To my parents, for their 80th birthdays

by

B. H. Neumann

Manchester

§ 1. Introduction.

The term "derived group" and the notation H’ for the com-
mutator subgroup of a group H suggests an analogy - albeit
tenuous - to the derivative of a function; and this in turn

suggests the problem of "integration" : Given a group G, to find
a group H whose derived group is isomorphic to G. There may not
be such a group H at all: the symmetric group of degree 3, of
order 6, is not the derived group of any group 1), and it is not
difficult to make other similar examples. Thus one shows easily
that no symmetric group of finite degree &#x3E; 2 and no properly
metacyclic group 2 ) can be the derived group of any group. But
beyond this, little seems to be known.
The iterated commutator groups form the derived series

and this leads naturally to the more general question: given a
group G and a positive integer n, to find a group H such that G
is isomorphic to the nth derived group H(n); or to show that no
such group exists. Next one may ask whether solutions exist for
all n; it is with this problem that the present paper is largely
concerned.

We are thus led to consider series of groups

such that G = G’+l for i = 0, 1, 2, ..., and where we shall always
assume that the first (and therefore every) inclusion is proper.
We call such a series an ascending derived series, and for clearer
distinction we call a series (1.1) a descending derived series.
A descending derived series may become stationary after a finite

1) van Aardenne-Ehrenfest [1]; Lips [6].
2) Cf. e.g. Zassenhaus [11], p. 138, Satz 9.
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number of steps, when we arrive at a group H(n) that is its own
derived group. This happens if H(n) is the trivial group, when H
is called soluble of (derived) length n. If, on the other hand,
H(n) = H(n+1) ~ {1}, or if the descending derived series has

infinite length, then H is insoluble.
An ascending derived series can not become stationary. It can

break off if we arrive at a group Gn that is not the derived group
of any group; we then call n the length of the series. An ascending
derived series can, however, also go on indefinitely, that is have
infinite length. If Go is not its own derived group, then the series
(1.2) can be continued to the left, possibly for an infinite number
of terms. By taking infinite unions or intersections one can easily
introduce derived series of various transfinite order types; but
for the present we shall be content with finite series and infinite
series of type 03C9.

A finite derived series can be considered either as descending
or as ascending, according as one thinks of one end or the other as
given. We shall here look upon the series as ascending, that is we
shall derive properties of the series (1.2) from properties of the
groups with which it begins. Our principal result is that the series
breaks off if G21GO is finitely generated. By contrast it is not

sufficient to assume G,IGO or G21G, finite to ensure that the series
breaks off. It follows that in an infinite ascending derived series no
metabelian factor Gi+21G, i can be finitely generated, whereas an

abelian factor Gi+l/Gi can even be finite.
We mention two finiteness conditions that occur in the for-

mulation of some of the results and that would perhaps merit
closer examination than they receive in the present paper: the
matcimal condition f or soluble subgroups, and the ascending derived
chain condition for subgroups. They are introduced in § 4.

An auxiliary result may perhaps claim some independent in-
terest : It is that a finitely generated strictly metabelian group
(that is one that is not abelian) has a finite strictly metabelian
homomorphic image. The same is not generally true of metabelian
groups with an infinity of generators; nor is the analogous proposi-
tion valid for finitely generated soluble groups of length 3.

§ 2. Preliminaries.

The following two lemmas are stated for later reference. The
reader will easily supply proofs.
LEMMA 2.1. Il 0 is a homeomorphism of the group G, then
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Equivalently, if N is a normal subgroup o f G, then

LEMMA 2.2. Il M is a subgroup o f G and.N a normal subgroup
of G such that MN = G, then

where [M, NI is the group generated by all commutators [a, b] with
a~M, b~N.
We denote by G* the union of the groups in an ascending

derived series:

If the series has finite length n, then G* = Gn; if the series is

infinite, then G* is its direct (or "inductive" ) limit. In this case
G* is evidently its own derived group.

If 0 is a homomorphism of G*, then, by Lemma 2.1,

Thus if Gi03B8 ~ Gi+103B8 for some i, then

is again an ascending derived series. In particular if N is a normal
subgroup of G* contained in Gi, then the groups4

form an ascending derived series

with the union

and the factors

In order to ensure that N is a normal subgroup of G* it suffices
to take N as a characteristic subgroup of G,; for as G, is charac-
teristic in Gi+1, then N is also characteristic in Gi+1, and in-
ductively in all Gi+j. Then N is a fortiori normal in all Gi+j, and
thus normal 3) in G*. We shall often find it useful to take N = Go;
the resulting series starts with the trivial group and consists of
soluble groups.

3) It is not permissible to conclude that N is characteristic in G*; cf. infra.
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To make an example 4 ) we take Go as a free group of countably
infinite rank. This is isomorphic to, but distinct from, its derived
group; we may therefore consider it as the derived group of

another free group Gl of countably infinite rank; and so we con-
tinue, to obtain an infinite ascending derived series. The inductive
limit G* is a locally free group which coincides with its own

derived group. The factor groups Gi+1/Gi are free abelian groups
of countably infinité rank. If we reduce modulo 6) Go, that is

if we consider the groups Hi = GIG,, then we obtain an ascending
derived series

consisting of soluble groups. The limit group H* is locally soluble
but coincides with its own derived group.

§ 8. Automorphisms induced in a series

We take i fixed for the present and consider the effect on G,
of the inner automorphisms of G*. As a normal subgroup G,
admits the inner automorphisms of G*, and they therefore induce
a certain group 0393*i of automorphisms of G,. We obtain F*i from
G* by a homomorphism 03B8i with the centralizer Ci of G, in G*
as kernel. Transformation by the elements of Gk induces a sub-
group of rt on G,, namely

It follows that

becomes an ascending derived series after the omission of possibly
equal terms at the beginning - provided, of course, that not all
the terms of (3.2) are equal.
We note in passing that if i  j, then C*i  C*j, and thus

0; k 03B8j. This means that 0393ki is a homomorphic image of 0393kj. We
also remark that 0393ki consists of inner automorphisms of G, when
k ~ i. An incidental consequence of the following lemma is that
when k &#x3E; 1 h 2, rik can never consist of inner automorphisms
only. The lemma describes what happens when not all the in-
clusions in (3.2) are proper.

4) The construction is well known.
6) There is an obvious automorphism of G* mapping each G, onto Gi+1. Hence

Go, though of course normal, is not characteristic in G*; cf. footnote 3).
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LEMMA 3.3. Let 0393k+1i = r: f or some values i, k. Then either

i = 0, or k = 0, or i = 1 and GO, = Go and G,IGO is contained in
the centre o f Gk+1/G0.

PROOF. We suppose both i &#x3E; 0 and k &#x3E; 0, as otherwise there
is nothing to prove. As in (3.2) every term is the derived group
of its successor, it follows that

Using (3.1), we obtain

and modulo Go

Here the left-hand side is contained in the centralizer of G ¡/Go
in G*/Go. We see that Gk+1/G0 is contained in the centralizer of
G,IG, in G*/Go. If i 2 k+1, this would imply that Gk+1/G0 is

abelian, hence that Gk/Go is trivial: but this is incompatible with
our supposition that k &#x3E; 0. Thus i  k+1, and Gi/G0 is contained
in the centre of Gk+1/G0· This in turn implies that G,IG,, is abelian,
and thus i = 1. Finally, intersecting both sides of (3.4) with
G1, we obtain

where Z = Ci ~ G, is the centre of Gl. We form the derived group,
using Lemma 2.2:

This completes the proof of the lemma.

§ 4. Some corollaries

The lemma gives rise to sufficient conditions for an ascending
derived series to break off. To formulate one of them we remind
ourselves of the definition of the automorphisms class group of a
group G: this is the factor group of the group of inner automor-

phisms of G in the group of all automorphisms of G. We denote
it by 039B(G).
COROLLARY 4.1. If 1 h 2 and if the automorphism class group

A(G¡) satis f ies the maximal condition f or -soluble subgroups, then
the ascending derived series

breaks o f f .
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The groups

form an ascending sequence of soluble subgroups of 039B(Gi); no
two successive terms can become equal, by Lemma 3.2, as we
have assumed i ~ 2. The maximal condition for soluble sub-

groups of A(G;) then implies that the series breaks off.
The maximal condition for soluble subgroups of a group has

apparently not yet received much attention. For soluble groups
it coincides with the maximal condition for subgroups, and thus
singles out the polycyclic groups6). But for groups in general it
is much less restrictive; it is e.g. satisfied in all free groups and
locally free groups, and in a free product provided it is satisfied
in the free factors.
COROLLARY 4.3. I f G21GO is finite, then the ascending derived series

breaks off.
This is an immediate consequence of the preceding corollary,

coupled with the remark (cf. § 2) that Go can be factored out.
We shall say that a group G satisfies the ascending derived chain

condition f or subgroups if every ascending derived series

breaks off. This condition neither includes, nor is included by,
the maximal condition for soluble subgroups: The example of the
locally free group G* of § 2 shows that a group can satisfy the
latter without satisfying the former; a free abelian group of

infinite rank, on the other hand, satisfies the former and not
the latter.

COROLLARY 4.4. If i ~ 2 and i f the automorphism class group
039B(Gi) satisfies the ascending derived chain condition for subgroups,
then the given ascending derived series breaks off.
For the sequence (4.2), like (3.2), is an ascending derived series,

and by the assumption on 039B(Gi) it breaks off.

§ 5. Finitely generated metabelian groups.
We interrupt the discussion of ascending derived series to supply

ourselves, for subsequent use, with some facts on finitely generated
metabelian groups. Some known facts have been re-derived here.
The techniques employed are, of course, well-known; cf. e.g.
Jacobson [4], chapter VI.

6) Thèse groups were first studied by K. A. Hirsch in a series of papers [3].
The name "polycyclic" is due to P. Hall [2].
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If G is a metabelian 7) group, we may consider G’ as an Q-
module, where 03A9 is the ring generated by the operators induced
by G/G’ in G’. To facilitate the distinction between G’ qua derived
group of G (written multiplicatively) and the 03A9-module (in which
the same operation appears as addition), we write YR for the
latter. Thus to every element g E G we have an operator oc E 03A9

such that if x, y E G’ and g-lxg = y, and if u, v are the elements
of 9R corresponding to x, y respectively, under an isomorphism
2013 fixed once and for all - between G’ and 3R, thefi uoe = v;

moreover, if g and h induce the same automorphism of G’, the
same oc E 03A9 corresponds to both. Thus one and the same operator
corresponds to the elements of a coset of G’. The operator ring Q
may be thought of as obtained from the group ring over the
integers of G/G’ by reducing it 8) modulo the annihilator ideal
of 9x.
To every submodule of M there corresponds a subgroup of G’

which admits G, in other words a normal subgroup of G contained
in G’; this correspondence is one-to-one; if a subgroup of G’ is

normal in G, then the isomorphism maps it onto a subgroup of
M that admits 03A9, that is a submodule of 3R.

If G is finitely generated, let us say by g1, g2 ,..., gd, then
G’ is generated by the finitely many commutators [gi, gj] and
their conjugates; thus 9 is then finitely generated qua .S2-module.
It follows 9) that 9 contains maximal proper submodules; in fact
every proper submodule is contained in a maximal one.
A maximal proper submodule of 9R corresponds to a maximal

proper subgroup N of G’ normal in G. The factor group

whose derived group is

has the property that every normal subgroup either contains H’
or meets H’ in the trivial subgroup only. Denote by Z a maximal
normal subgroup of H meeting H’ trivially:

7) For the sake of brevity we use "metabelian" in the strict sense, that is excluding
"abelian"; thus we here call G metabelian only if G’ is a non-trivial abelian group.

8) This reduction is not essential, and we could use the whole group ring, at any
rate for the present.

9) by a familiar argument which we do not present; cf. [7]. We could instead
use the maximal condition for submodules of 9 which follows from Jacobson [4],
p. 171; or the maximal condition for normal subgroups of G proved by Hall [2].
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The existence of such a subgroup again follows by familiar ar-
guments 1°). A normal subgroup that has trivial intersection with
the derived group must lie in the centre; thus Z lies in the centre
of H. The factor group K = HIZ has the property that every
non-trivial normal subgroup contains the derived group K’;
differently put, K is a metabelian group but all its proper homo-
morphic images are abelian. Such a group may be called only
just strictly metabelian; it will here be called, somewhat am-
biguously but more briefly, just metabelian. We have thus proved
the following result.
LEMMA 5.1. Every finitely generated metabelian group has a just

metabelian factor group. 
It may be remarked that this is not true of metabelian groups

in general. If an abelian group of type poo is extended by an
abelian automorphism group, say by the automorphism of order
2 which maps each element on its inverse, then the resulting group
is metabelian but has no just metabelian homomorphic image:
every metabelian factor group is isomorphic to it and has another,
still metabelian, proper factor group. This example shows in-
cidentally that it does not suffice to assume G/G’ finitely generated,
or even finite.

§ 6. Just metabelian groups.
We now consider a just metabelian group, which we again

denote by G; the ring 03A9 and the S2-module mare defined as before.
Then flk has no proper non-zero submodule, in othér words 9R
is a simple 03A9-module.
LEMMA 6.1.11 ) Il mis a simple il-module whereilis a commutative

ring and the annihilator o f 9N is (0), then il is a field or consists
of 0 only.
PROOF. We may suppose that .S2 contains a non-zero element;

any such element does not annihilate 3K, and thus also 3K contains
non-zero elements. The elements of 3R annihilated by 03A9 form a

submodule, and this then consists of 0 only. Now if U E IDl, u =1=- 0,
then u03A9 is a non-zero submodule, and thus

If 03C9 ~ 03A9 and uw = 0, then

1°) Cf. the preceding footnote.
’l) This is an almost immediate consequence of Schur’s Lemma; cf. e.g. Jacobson

[5],p.271.
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whence (J) = 0. Next let oc, p E Q and oc --74- 0. Then uoc =1= 0 and
thus

There exists then an element e a 03A9 such that in turn

This shows that division by non-zero elements can be carried out
in Q, and the lemma follows.
LEMMA 6.2. Il a f initely generated ring is a field, then it is f inite.
PROOF. Let 03A9 be a ring generated by al, a2, ..., 03B1d, and assume

03A9 is a field. Then every element of 03A9 is a polynomial in al, a2, ..., ad
with coefficients in the prime field if 03A9 has prime characteristic,
and with rational integer coefficients if S2 has zero characteristic.
We first show that 03A9 is algebraic over its prime field P; suppose
not, and let 03C41, -C2, ..., Te be a basis of transcendental elements
of S2. Then there are polynomials 03C01(03C41, ...,03C4e), ..., 03C0d(03C41, ... Te)
such that

are integral over P (Tl’ ...,03C4e). Then to every polynomial oc in

al, ..., ad there is an integer m (e.g. its degree) such that
a. (03C0103C02 ... 03C0d)m is integral over P(03C41, ..., 03C4e). But if 11:0 is an
irreducible polynomial in 03C41, ..., ie which does not divide any

of 03C01, ..., :1I;/l, then 1 03C00(03C0103C02...03C0d)m is not integral over

P(03C41, ..., Te) for any m, and thus - is not generated by

CXl’ ..., oc,. This contradicts the field property of 03A9, and we
conclude that al, ..., ocd are absolutely algebraic, and that Q is
a finite algebraic extension of its prime field P. It only remains
to prove that P is finite, that is that Sz can not have characteristic 0.
Assume the contrary. Let sl, ..., sd be positive rational integers
such that 8l CXl’ s203B12,..., sd03B1d are algebraic integers. Then every
polynomial in 03B11, ...,03B1d with integral coefficients, that is every

element of S2 is of the form 03B2 (s1s2...sd)m, where is an al-
gebraic integer and m a suitable rational integer (e.g. the degree
of the polynomial). But if p is a prime that divides none of

s1, s2, ..., 1 Sd then 1 /p is not of this form, hence not in 03A9. This
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again contradicts the assumption that 03A9 is a field, and the lemma
follows.
More briefly one can argue as follows: If Tl is a non-trivial non-

Archimedean valuation on 03A9, then not all of 03B11, ..., ad can be

integers with respect to V. Unless Sz is modular and absolutely
algebraic, it has an infinity of non-trivial non-Archimedean

valuations, and no element can be a non-integer for more than a
finite number of them. If follows that 03A9 is modular and algebraic,
and being finitely generated, it must be finite.
THEOREM 6.3. A finitely generated just metabelian group is finite.
PROOF. By Lemma 6.1 the operator ring 03A9 is either trivial or a

field. Assume first that 03A9 = (0). Then SK, being a simple S2-

module, is cyclic of prime order. Hence in this case G’ is a cyclic
group of prime order p, say. Let Z be the centre of G. Then Z
has no non-trivial subgroup with trivial intersection with G’. It
follows that Z is cyclic of order a power of p. Now in a finitely
generated group with finite derived group the centre has finite
index 12 ), and it follows that G is finite. Next assume that S2 is a
field; then 12 is finitely generated qua ring, as it is a homomorphic
image of the - evidently finitely generated - group ring of
G/G’. Hence by Lemma 6.2 03A9 is finite, and ID1, being of the form
uS2 for some u ~ 0, has the same finite order as 03A9. In this case
the centre Z is in fact trivial; for if it were not, then there would
be an element y E G’ ~ Z, y ~ 1, and thus an element v =1=- 0 of
3K annihilated by the whole of Q. This is impossible (cf. the proof
of Lemma 6.1.) Using again the fact that in a finitely generated
group with finite derived group the centre has finite index, we see
that also in this case G is finite, and the theorem follows.

Before we apply the theorem, we briefly indicate that it is in
two ways a "best possible" result.

It would be unreasonable to expect the assumption that the
group is finitely generated to be superfluous. In fact the group
of linear inhomogeneous substitutions

with fi ranging over an infinite field S2 and a over its non-zero
elements, is an example of a just metabelian group that is infinite
and thus can not be finitely generated.

It is, on the other hand, conceivable that "metabelian" can be
replaced by "soluble of length 3". However this is not the case.

12) By [9], Corollary 5.41.
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Let G be the group with generators a, b, c and defining relations

where p(i) is the ith prime when i is positive, and p(i) = 1 when
i is zero or negative 13). This group is "just soluble of length 3",
that is it is soluble of length 3 but all its proper homomorphic
images are metabelian or abelian. It is infinite, though it is

finitely generated. We omit the proof, which is not difficult.

Using deeper results due to Hall [2], one can also show the
existence of infinite two-generator groups that are "just centre-
extended-by-metabelian".

§ 7. Application to ascending derived series.
An immediate consequence of Lemma 5.1 and Theorem 6.3 is

the following fact.
COROLLARY 7.1. Every finitely generated metabelian group has a

finite metabelian factor group.
This can be slightly strengthened by remarking that in a finitely

generated group G every normal subgroup N of finite index
contains a subgroup N* which is characteristic in G and also of
finite index; for there are only finitely many normal subgroups
of G whose factor groups are isomorphic to G/N: their intersection
will serve as N*. Thus we deduce from Corollary 7.1:
LEMMA 7.2. Every finitely generated metabelian group contains a

characteristic subgroup whose factor group is f inite and metabelian.
We apply this to extend Corollary 4.3.
THEOREM 7.3. Il

is an ascending derived series and i f G21GO is finitely generated, then
the series breaks off.
PROOF. We may assume the series reduced modulo Go, or

equivalently Go = {1}. Then G2 is a finitely generated metabelian
group, hence by the preceding lemma it contains a characteristic
subgroup N of finite index whose factor group is still metabelian.
Then N is normal in G*, and reducing modulo N we obtain a new
series

13) This group is adapted from an example constructed elsewhere [8].
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with H2 = G21N finite. By Corollary 4.3 the series breaks off, and
so then does our original series, and the theorem follows.
COROLLARY 7.4. Il G is a finitely generated group and G" =1= G’,

then every ascending derived series through G breaks off.
This corollary deals e.g. with free groups of finite rank and

more generally with free products of finitely many finitely
generated groups.
COROLLARY 7.5. In an infinite ascending derived series no

metabelian factor G¡+2/G¡ can be finitely generated.

§ 8. Crown products.
One might expect that it is sufficient to assume G1/GO finitely

generated in order to ensure that the ascending derived series
breaks off; this is, however, not the case, as an example will show.
The construction uses the iterated "wreath product" of two

groups, with a slight modification. Given an abstract group G
and a transitive permutation group r defined on a set 03A3, we first
form the restricted direct product K of isomorphic copies G,, = G03B803C3
of G, indexed by the elements o of JC; then K has an obvious auto-
morphism group permuting the direct factors according to 0393;
specifically if

and if y E l’, then we put

The splitting extension of K by this automorphism group (iso-
morphic to and again denoted by) r is then known as the wreath
product of G and 0393. We denote it by G Wr h. Now assume we
are also given a subgroup Z of the centre of G. The isomorphism
03B803C3 maps Z onto the subgroup Za in the centre of Ga, and the
product of all the Za is a subgroup of the centre of K. Denote
by N the set of those elements

for which 14)

Then N is easily seen to be a normal subgroup of the wreath

14) The product has only a finite number of factors ~ 1, because we are using
restricted direct products.
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product. It is generated by all quotients (z03B803C3)(z03B803C4)-1; hence
modulo N all the different copies Za of Z coalesce to a single
group, which we again denote by Z. Let the factor group thus
obtained be

we might call it a "wreath product with amalgamation", or a
"centrally extended wreath product": It could have been obtained
by forming the (restricted) direct product of the G,, with amal-
gamated subgroups 15) Z03C3, and letting F operate on that; alter-
natively it can be thought of as an extension of the centre Z by
the wreath product of GIZ and h. Let us call it the crown product,
and denote it by

Like G, it contains Z in its centre; we can therefore form the crown

product again, with another permutation group L1. The wreath

product can be considered as the special case of the crown product
in which the central subgroup Z is trivial.

LEMMA 8.1. Il 0393 is an abelian group of order greater than 2,
then the second derived group P" o f the crown product

contains a subgroup isomorphic to G’ and is a homomorphic image
of a direct power of G’.
PROOF. We first notice that P’ is contained in the direct product

of the Ga with amalgamated Z; this is the group K/N of our
construction, which we shall now denote by L. Clearly L is normal
in P, and

and as 0393 is assumed to be abelian, P’ Ç L. It follows that

We also note that L’ is the direct product of the derived groups
G’ with their intersections with Z amalgamated, and thus a

homomorphic image of a direct power of G’.
Our assumption on the order of 0393 implies that the cardinal of

the set 03A3 which 0393 permutes is at least 3. Let e, (1, T be three
distinct elements of E, and let 03B3, 03B4 E T be so chosen that

16) For this notion, cf. [10].
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This is possible because r acts transitively on 1. Next let g, h
be two arbitrary elements of G, and denote again by g03C3, h03C3, ...
their copies in G03C3, .... Consider the second commutator

(Note that g,, commutes with ga , ha , h03C4, and h., with gp, g03C3, ha . )
This belongs to P"; but as g, h were quite arbitrary elements of
G, then the whole of G" is contained in P", that is P" contains
a subgroup isomorphic to G’. Again, as a was arbitrary,

and combining this with (8.2) we have

The lemma then follows.
COROLLARY 8.4. Il F is abelian and of order greater than 2, and

if G is soluble of length n, then the crown product G CrZ r is soluble
of length n + 1.

§ 9. Construction of an example.
We are now in a position to construct the example announced

at the beginning of § 8; the reader can easily satisfy himself that
we have sufficient freedom in each step of the procedure to make
continuously many different examples: but we shall in fact

describe only one.
Let H2 be the quaternion group, and

the cyclic group of order 2, which is its centre. We take Fi
(i = 2, 3, ...) all as the cyclic permutation group of order 4,
which is transitive on the sert 1 = {0, 1, 2, 3}. Then we form
inductively the successive crown products

Thus Hi+1 is obtained by forming the direct product of groups
Hio, Hi1, H12e H,3 with amalgamated Z, and extending by the
cyclic group of order 4 as described in § 8. The four groups H,,,,,
(03C3 = 0, 1, 2, 3) are isomorphic to Hi, and we can identify Hi
with one of them, say Hio. Then
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becomes an ascending sequence of groups, and we put

The centre Z has been preserved in each step and thus Z is also a
subgroup of the centre of G* (it is in fact the whole centre of G*).
We put Go = {1} and G1 = Z, and define G2 as the group generated
by all the isomorphic copies that arise from H2 by forming the
successive direct products with amalgamated Z. There are in-
finitely many such copies. More generally we define, for even
i = 2j only, G, to be the group generated by the infinitely many
copies of Hi that are created in the process of construction: thus
Gi , for i = 2, 4, 6, ..., is generated by all y*-1 H ¡ y*, where y*
ranges over the permutations generated by 0393i+1, Fi+2, ... in G*.
Differently put, G2j is the normal closure of H2j in G*. We also
define the odd-numbered G, simply as the derived groups of their
even-numbered successors:

It is evident that

G* = ~ Gi.

Now we observe that if i is even, then

for it follows from Lemma 8.1, or rather from its proof (cf.
especially (8.3)), that H,’ is the direct product of several (namely
16) copies of Hi-2, with Z = Hl amalgamated. Combining (9.4)
with the definition (9.2), we see that

that is (9.3) is an ascending derived series. Thus we have shown
that the cyclic group of order 2 can be made the first non-trivial
group o f an infinite ascending derived series. It is not difficult to
make similar examples with other abelian groups. The inductive
limit group G* of our example is, incidentally, locally finite-of-
order-a-power-of-2, and thus also locally nilpotent; it is its own
derived group, and hence its upper central series must terminate
with the centre Gl, as is indeed easily verified directly.
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§ 10. A further example.
It is now natural to ask whether it suffices to suppose G21G,

finite, or even finitely generated only, to ensure that the ascending
derived series breaks off. This is, however, not the case, as we
now show by further elaborating the example of § 9. In order to
have the notation

available for the ascending derived series that is to be constructed,
we now denote by Fo, Fl, F2, ... and F* respectively the groups
Go, G1, G2, ... and G* of § 9.
Let A denote the abelian group of type 200 , and form the wreath

product

where F* is taken in its regular permutation representation. We
denote by P the (restricted) direct product of the isomorphic
copies of A, indexed by the elements of F*, that go into the
construction of B. The direct factors can be bracketed together
in pairs

where c is the element of order 2 in the centre of F*, and franges
over F*. We now amalgamate the partners in every pair as
follows.

Consider the elements

where a ranges over A and f over F*. (Every element (10.1)
arises twice, namely again as ale ale" = afcaf). The group N

generated by all these elements is normal in B; for all conjugates
of an element (10.1) are obtained by transforming by elements
f* ~ F*, and

is again of the form (10.1). Reducing modulo N we amalgamate
paired groups AI, Ale in such a way that elements corresponding
to the same a E A become inverse to each other in the amalgamated
copy.
We thus define the groups

and generally



63

Then clearly

and the inductive limit of this sequence is

It remains to show that (10.2) is an ascending derived series. It
is indeed clear that Go = Gi, for Ci is abelian; also Gi = G’i+1
for i = 2, 3, ..., because the factor groups Gi/G1 are isomorphic
to Fi-l’ for i = 1, 2, ..., and because, as we shall show presently,
G, C G’i for i ~ 2. Thus we need only examine the relation

between Gi and G2.
Clearly

as G2/G1 ~ Fl is abelian. On the other hand every element

a. E AI is a square of another element in At, by our choice of A
as a group of type 2~, say

Now

Thus the elements of P are generated modulo N by commutators
of c and elements of P, that is

Combining this with (10.3), we see that also G, = G’2, and thus
(10.2) is indeed an ascending derived series. It is an infinite

series, though G2/Gl is finite, namely cyclic of order 2. It may be
added that G* is again locally finite-of-order-a-power-of-2, and
in particular locally nilpotent; its centre is trivial and its derived
group coincides with the whole of it.

It is clear that the example can be modified in a great number
of ways. We only mention that one can similarly construct in-
finite ascending derived series in which some other factor Gi+1/Gi
is an arbitrarily prescribed finite abelian group, but Gi+2/Gi+l
and Gi/Gi-1 then can not, by what we have shown, be finitely
generated.
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