MANSOOR AHMAD

On entire functions of infinite order

Compositio Mathematica, tome 13 (1956-1958), p. 159-172

<http://www.numdam.org/item?id=CM_1956-1958__13__159_0>
On Entire Functions of Infinite Order

by

Mansoor Ahmad

1. Introduction. The purpose of this paper is to extend to a class of entire functions of infinite order some theorems on entire functions of finite order.

Theorems 1 and 2 are formal analogues of two theorems [1] and [2] of Shah. Theorems 3, 4 and 5 are new; but they are closely connected with some theorems [3] of Shah. Theorem 6 is an analogue of a theorem of Lindelöf [4].

2. Definitions. We define the k-th order and the k-th lower order of an entire or meromorphic function as

\[\varrho_k = \lim_{r \to \infty} \frac{k T(r)}{\log r} \]

and

\[\lambda_k = \lim_{r \to \infty} \frac{k T(r)}{\log r} \]

Similarly, we define the k-th order and the k-th lower order of the zeros of \(f(z) \) as

\[\sigma_k = \lim_{r \to \infty} \frac{k n(r)}{\log r} \]

and

\[\delta_k = \lim_{r \to \infty} \frac{k n(r)}{\log r} \]

where \(T(r), n(r) \) have their usual meanings and \(l_1 x = \log x, l_2 x = \log \log x \), and so on.

3. Lemma (i) If \(\chi(x) \) is a positive function continuous almost everywhere in every interval \((r_0, r)\); and if

\[\lim_{r \to \infty} \frac{k \xi(r)}{\log r} = \sigma_k \]

then

\[\lim_{r \to \infty} \frac{\xi(r)l_1 \xi(r)l_2 \xi(r) \ldots l_{k-1} \xi(r)}{\chi(r)} \leq \frac{1}{\sigma_k} \]
where
\[\xi(r) = \int_{r_0}^{r} \frac{\chi(x)}{x} \, dx. \]

Lemma (ii) If \(\chi(x) \) and \(\xi(r) \) are the same functions as before; and if
\[\lim_{r \to \infty} \frac{l_k \xi(r)}{\log r} = \delta_k, \]
then
\[\lim_{r \to \infty} \frac{\chi(r)}{\xi(r) l_1 \xi(r) \cdots l_{k-1} \xi(r)} \leq \delta_k. \]

Proof. If \(f(x) \) and \(g(x) \) are two positive functions which tend to infinity with \(x \); and if each of the functions is differentiable almost everywhere in every interval \((r_0, r)\), such that their derivatives \(f'(x) \) and \(g'(x) \) have a definite finite value at every point of this interval, then
\[\lim_{r \to \infty} \frac{f(r)}{g(r)} \leq \lim_{r \to \infty} \frac{f'(r)}{g'(r)} \]
and
\[\lim_{r \to \infty} \frac{f(r)}{g(r)} \geq \lim_{r \to \infty} \frac{f'(r)}{g'(r)}. \]

Now, putting \(f(r) = l_k \xi(r) \) and \(g(r) = \log r \), we get the required results.

4. **Theorem 1.** If \(f(z) \) is an entire function of infinite order; and if the \(k \)-th lower order of its zeros is \(\delta_k \), then

(i) \[\lim_{r \to \infty} \frac{n(r)}{l_1 M(r) l_2 M(r) \cdots l_k M(r)} \leq \delta_k \]
and

(ii) \[\lim_{r \to \infty} \frac{n(r)}{l_1 M(r) l_1 n(r) l_2 n(r) \cdots l_{k-1} n(r)} \leq \delta_k, \]
provided that
\[\lim_{r \to \infty} \frac{\log n(r)}{l_2 r} = \infty. \]

These can be proved easily by putting \(\xi(r) = \int_{r_0}^{r} \frac{n(x)}{x} \, dx \) in Lemma (ii).

Theorem 2. If \(f(z) \) is an entire function of finite \(k_1 \)-th order but of infinite \((k_1-1)\)-th lower order, then
where \(\varrho_k \) is the \(k \)-th order of \(f(z) \).

Proof. Since, by hypothesis, \(f(z) \) is of finite \(\dot{k}_1 \)-th order but of infinite \((k_1 - 1) \)-th lower order, we can very easily prove, by using the inequalities

\[
\frac{u(r)}{r} \leq M(r) \leq 3u(r)\nu(2r)
\]

that

\[
\lim_{r \to \infty} \frac{l_{k_1}v(r)}{\log r} < \infty
\]

and

\[
\lim_{r \to \infty} \frac{l_{k_1 - 1}v(r)}{\log r} = \infty.
\]

Now, we can very easily show that

\[
\lim_{r \to \infty} \frac{l_{k+1}v(2r)}{l_kv(ar)} = 0,
\]

where \(k \) is any positive integer or zero; and \(\alpha \) is any fixed positive number.

Also, putting \(\xi(r) = \log u(r) \) in Lemma (i); and using (1), we have

\[
\lim_{r \to \infty} \frac{l_1u(r)l_2u(r) \cdots l_ku(r)}{v(r)} \leq \frac{1}{\varrho_k}
\]

\(\varrho_k \) being the \(k \)-th order of \(f(z) \).

Lastly, by using (1), (2) and (3), we can easily prove the required result.

Theorem 3. If \(f(z) \) is an entire function of finite \(k_1 \)-th order but of infinite \((k_1 - 1) \)-th lower order, then

\[
\lim_{r \to \infty} \frac{T(r)l_1T(r) \cdots l_{k-1}T(r)}{n(r, f-f_1)} \leq \frac{2}{\varrho_k}
\]

for every entire function \(f_1(z) \) of finite \((k_1 - 1) \)-th order, with one possible exception, where \(T(r) \) refers to \(f(z) \), \(\varrho_k \) is the \(k \)-th order of \(f(z) \); and \(n(r, f-f_1) \) denotes the number of zeros of \(f(z) - f_1(z) \) in the region \(|z| \leq r \), every zero being counted according to its order.

Proof. By the second fundamental theorem of Nevanlinna

[5, § 34], we have

\[
T(r, \varphi) = T(r) < N(r, 0) + N(r, 1) + N(r, \infty) + 8 \log T(\alpha r) + O(\log r)
\]
for all sufficiently large r, where c is a fixed number greater than 1. Putting $\varphi(z) = \frac{f(z) - f_1(z)}{f(z) - f_2(z)}$ in (4), we have

$$T(r, f) = T(r) < N(r, f - f_1) + N(r, f - f_2) + 8 \log T(cr) + aT(r, f_1) + bT(r, f_2) + O(\log r) \quad (5)$$

for all $r > r_0$, where a and b are certain positive constants.

Since, by hypothesis, $f(z)$ is of finite k_1-th order but of infinite $(k_1 - 1)$-th lower order; and each of the functions $f_1(z)$ and $f_2(z)$ is of finite $(k_1 - 1)$-th order, we have

$$\lim_{r \to \infty} \frac{\log T(cr)}{T(r)} = 0$$

and

$$\lim_{r \to \infty} \frac{T(r, F)}{T(r)} = 0,$$

where F denotes each of the functions $f_1(z)$ and $f_2(z)$. Consequently, we have

$$l_k\{T(r) - 8 \log T(cr) - aT(r, f_1) - bT(r, f_2)\} < l_k\{N(r, f - f_1) + N(r, f - f_2)\} \quad (6)$$

Now, putting $\xi(r) = N(r, f - f_1) + N(r, f - f_2)$ in Lemma (i), we get

$$\xi_k \leq \lim_{r \to \infty} \frac{n(r, f - f_1) + n(r, f - f_2)}{\xi(r)l_1\xi(r) \ldots l_{k-1}\xi(r)} \quad (7)$$

Combining (6) and (7), we have

$$\xi_k \leq \lim_{r \to \infty} \frac{n(r, f - f_1) + n(r, f - f_2)}{T(r)l_1T(r) \ldots l_{k-1}T(r)}.$$

Therefore

$$\lim_{r \to \infty} \frac{T(r)l_1T(r) \ldots l_{k-1}T(r)}{n(r, f - f_1) + n(r, f - f_2)} \leq \frac{1}{\xi_k} \quad (8)$$

The required result follows easily from (8).

Theorem 4. If $f(z)$ is an entire function of finite k_1-th order but of infinite $(k_1 - 1)$-th lower order, for which the deficiency sum (excluding $\alpha = \infty$) $\sum \delta(\alpha) = \sigma > 0$; and if $n'(r, \alpha)$ denotes the number of simple zeros of the function $f(z) - \alpha$ in the region $|z| \leq r$, then

$$\lim_{r \to \infty} \frac{T(r)l_1T(r) \ldots l_{k-1}T(r)}{n'(r, \alpha)} \leq \frac{2}{\xi \cdot \sigma_k}.$$
for every finite value of α, with one possible exception, where ψ_k is the k-th order of $f(z)$.

Proof. If $N'(r, \alpha)$ and $N'(r, \beta)$ refer to $n'(r, \alpha)$ and $n'(r, \beta)$ respectively, we have

$$N(r, \alpha) + N(r, \beta) < N'(r, \alpha) + N'(r, \beta) + 2N_1(r) + 0 \log r.$$

Also, by the theorem of Nevanlinna (loc. cit.), we have

$$T(r, f) < N(r, \alpha) + N(r, \beta) - N_1(r) + 8 \log T(cr) + 0 \log r$$

$$< N'(r, \alpha) + N'(r, \beta) + N_1(r) + 8 \log T(cr) + 0 \log r \quad (9)$$

for all sufficiently large r, where $N_1(r)$ has the same meaning as in [6, § 33, (16)].

Further, by the same theorem, we have

$$\sum \delta(\alpha) + \lim_{r \to \infty} \frac{N_1(r)}{T(r)} \leq 1 + \lim_{r \to \infty} \frac{\log T(cr)}{T(r)}.$$

But, under the conditions of the theorem, we have

$$\lim_{r \to \infty} \frac{\log T(cr)}{T(r)} = 0.$$

Therefore

$$\lim_{r \to \infty} \frac{N_1(r)}{T(r)} \leq 1 - \sigma. \quad (10)$$

By (9), we have

$$l_k\{T(r) - N_1(r) - \log T(cr) - 0 \log r\} < l_k\{N'(r, \alpha) + N'(r, \beta)\}.$$

The rest of the proof, now, depends on (10) and follows the same lines as that of the preceding theorem.

Theorem 5. If $f(z)$ is a meromorphic function of finite k_1-th order but of infinite (k_1-1)-th lower order, then

$$\lim_{r \to \infty} \frac{T(r)l_1(Tr) \ldots l_{k-1}T(r)}{n(r, f-f_1)} \leq \frac{3}{\psi_k}$$

for every meromorphic function $f(z)$ of finite (k_1-1)-th order, with two possible exceptions, where $n(r, f-f_1)$ and ψ_k have the same meanings as before.

The proof of this is similar.

4. We define the type of an entire function $f(z)$ of finite k-th order as

$$T_k = \lim_{r \to \infty} \frac{l_k M(r)}{r^{\psi_k}}.$$

LEMMA. If \(f(z) = \sum_{n=0}^{\infty} a_n z^n \) is an entire function of finite \(k \)-th order \(q_k, k > 1 \), then

\[
T_k = \lim_{n \to \infty} l_{k-1} n \cdot |a_n|^n.
\]

PROOF. Let

\[
v_k = \lim_{n \to \infty} l_{k-1} n \cdot |a_n|^n.
\]

We have

\[
|a_n| \geq \left(\frac{v_k - \epsilon}{l_{k-1} n} \right)^{\frac{n}{q_k}}
\]

for an infinity of \(n \).

Therefore, by Cauchy's inequality, we have

\[
M(r) \geq \left(\frac{v_k - \epsilon}{l_{k-1} n} \right)^{\frac{n}{q_k}} \cdot r^n
\]

for an infinity of \(n \). Choose \(r \) such that

\[
r^{q_k} = \frac{a \cdot l_{k-1} n}{v_k - \epsilon},
\]

where \(a \) is any fixed number greater than 1.

Consequently, we have

\[
M(r) \geq \left(\frac{v_k - \epsilon}{l_{k-1} n} \right)^{\frac{n}{q_k}} \left(\frac{a \cdot l_{k-1} n}{v_k - \epsilon} \right)^{\frac{n}{q_k}}
\]

\[
= \frac{1}{a^{q_k}} \cdot \left(\frac{v_k - \epsilon}{l_{k-1} n} \right)^{\frac{n}{q_k}}
\]

Proving thereby that

\[
aT_k \geq v_k - \epsilon.
\]

Making \(a \) and \(\epsilon \) tend to unity and zero respectively, we have

\[
T_k \geq v_k. \quad (11)
\]

Also, we have

\[
|a_n| \leq \left(\frac{v_k + \epsilon}{l_{k-1} n} \right)^{\frac{n}{q_k}}
\]

for all sufficiently large \(n \).

Therefore

\[
|f(z)| \leq \sum_{n=0}^{\infty} |a_n| r^n
\]

\[
\leq \sum_{n=n_0}^{\infty} r^n \left(\frac{v_k + \epsilon}{l_{k-1} n} \right)^{\frac{n}{q_k}} + o(r^{n_0}).
\]
Now, \(r^x \left(\frac{v_k + \varepsilon}{l_k-1 x} \right)^{\varepsilon_k} \) is maximum for a value of \(x \), say \(x_1 \), which satisfies the equation
\[
(v_k + \varepsilon) r^{\varepsilon_k} = l_{k-1} x_1 \cdot e^{\varepsilon_k \frac{1}{1+\varepsilon}} \cdot l_{k-2} \cdot \ldots \cdot l_1 .
\]
We can take \(x_1 \) sufficiently large, by choosing \(r \) to be large. Therefore, we have
\[
e_{k-1} \left(\frac{(v_k + \varepsilon) r^{\varepsilon_k}}{1+\varepsilon} \right) \leq x_1 \leq e_{k-1} \left(\frac{(v_k + \varepsilon) r^{\varepsilon_k}}{1-\varepsilon} \right),
\]
where \(\varepsilon_1 \) is arbitrarily small.

Let \(m = e_{k-1} \{(v_k + 2\varepsilon) r^{\varepsilon_k}\} \). We have
\[
|f(z)| \leq \sum_{n \leq m} |a_n| r^n + \sum_{n > m} |a_n| r^n
\]
\[
\leq e_{k-1} \{(v_k + 2\varepsilon) r^{\varepsilon_k}\} (1 + \varepsilon_1)^{\frac{1}{v_k}} \frac{(v_k + \varepsilon) r^{\varepsilon_k}}{1-\varepsilon_1} + \sum_{n=0}^{\infty} \frac{(v_k + \varepsilon) r^{\varepsilon_k}}{v_k + 2\varepsilon}.
\]
\[
= e_{k-1} \{(v_k + 2\varepsilon) r^{\varepsilon_k}\} (1 + \varepsilon_1)^{\frac{1}{v_k}} \frac{(v_k + \varepsilon) r^{\varepsilon_k}}{1+\varepsilon_1} + o(1).
\]

Therefore, we have
\[
T_k \leq v_k . \quad (12)
\]

Hence, combining \((11) \) and \((12)\), we have
\[
T_k = v_k .
\]

Theorem 6. If \(P(z) = \prod_{n} E \left(\frac{z}{z_n}, p_n \right) \) is a product of primary factors of finite \(k \)-th order, having zeros \((z_n) \ n = 1, 2, 3, \ldots \), where \(p_n \leq \log n < p_{n+1} \); and if
\[
L_k = \lim_{r \to \infty} \frac{l_{k-1} n(r)}{r^{\varepsilon_k}},
\]
then
\[
L_k \leq T_k \leq AL_k,
\]
where \(n(r) \) has its usual meaning and \(A \) is a constant.

Proof. When \(p_n > 0 \) and \(|z| \geq \frac{1}{2} \), we have
\[
\log |E(z, p_n)| \leq \log (1 + |z|) + |z| + \frac{|z|^2}{2} + \ldots + \frac{|z|^{p_n}}{p_n}
\]
\[
\leq 2|z| + \frac{|z|^2}{2} + \ldots \frac{|z|^{p_n}}{p_n}
\]
\[
\leq 2(2|z|)^{p_n}.
\]
Similarly, we have
\[
\log |E(z, p_n)| \geq \log |1 - z| - |z| - \frac{|z|^2}{2} - \ldots - \frac{|z|^{p_n}}{p_n}
\geq \log |1 - z| - 2|z|^{p_n}.
\]

Let \(N \) be a positive integer such that \(|z_N| \leq 2|z| < |z_{N+1}|\). The product of primary factors is
\[
P(z) = \prod_{1}^{N} E \left(\frac{z}{z_n}, p_n \right) \cdot \prod_{N+1}^{\infty} E \left(\frac{z}{z_n}, p_n \right) = \Pi_1 \cdot \Pi_2 ,
\]
say. We denote \(|z|, |z_n|, \left| \frac{z}{z_n} \right|\) by \(r, r_n, u_n \) respectively.

If \(p_n > 0 \), when \(n > n_0 \), we have
\[
\sum_{n_0+1}^{N} \log \left| 1 - \frac{z}{z_n} \right| - 2 \sum_{n_0+1}^{\infty} (2u_n)^{p_n} \leq \log \left| \prod_{n_0+1}^{N} E \left(\frac{z}{z_n}, p_n \right) \right|
\leq 2 \sum_{n_0+1}^{\infty} (2u_n)^{p_n}
\]
since \(u_n \geq \frac{1}{2} \) in \(\Pi_1 \).

In \(\Pi_2 \), we have \(u_n < \frac{1}{2} \) and so
\[
|\log |\Pi_2|| \leq |\log \Pi_2| \leq \sum_{N+1}^{\infty} \left| \log E \left(\frac{z}{z_n}, p_n \right) \right| \leq 2 \sum_{N+1}^{\infty} u_n^{p_n+1}.
\]

Combining the two inequalities, we have
\[
\sum_{1}^{N} \log \left| 1 - \frac{z}{z_n} \right| - 2 \sum_{n_0+1}^{N} (2u_n)^{p_n} - 2 \sum_{N+1}^{\infty} u_n^{p_n+1} \leq \log |P(z)|
\leq 2 \sum_{n_0+1}^{N} (2u_n)^{p_n} + 2 \sum_{N+1}^{\infty} u_n^{p_n+1} + 0(\log r). \tag{14}
\]

Let us suppose that the second order of \(P(z) \) is \(\varrho_2 \), where \(\varrho_2 \) is finite; and let \(L_2 = \lim_{r \to \infty} \frac{\log n(r)}{r^{\varrho_2}} < \infty \). We have
\[
r_n > \left(\frac{\log n}{H} \right)^a,
\]
when \(n > n_1 \), where \(a = 1/\varrho_2 \); and \(H \) is any fixed positive number greater than \(L_2 \).

If \(m \) denotes the greater of the two numbers \(n_0 \) and \(n_1 \), we have
We can easily see that the function \(\frac{p^x}{x^{\alpha x}} \) is steadily increasing or steadily decreasing, according as \(x < \frac{1}{Hr_a} \) or \(x > \frac{1}{Hr_a} \). Putting \(R = e^{1/e} \), \(R_1 = e^{s_1/e} \), we have

\[
I < 2 \sum_{n=1}^{n<R} \frac{(2rH_a)^n}{n^{a_1}} + 2 \frac{(2rH_a)^{\log R}}{(\log R)^{a_1}} + 2 \sum_{n>R} \frac{(2rH_a)^p_n}{p_n^{a_1}}
\]

\[
+ 2 \sum_{n=1}^{n<R_1} \frac{(rH_a)^n}{n^{a_1}} + 2 \frac{(rH_a)^{\log R_1}}{(\log R_1)^{a_1}} + 2 \sum_{n>R_1} \frac{(rH_a)^p_n}{p_n^{a_1}}.
\]

Now, if \([x]\) denotes the integral part of the positive number \(x\); and if \(s_1 = \left[\frac{s}{e}\right]\), where \(s\) is a positive integer, not less than \(e\), we have

\[
p_{3s} = [\log 3s] \geq [\log s] + 1
\]

\[
p_{s_1} = [\log s_1] = [\log s] - 1.
\]

Therefore, the number of times an integer \(p_s\) can be repeated is less than \(\frac{s(3e-1)}{e}\); and this is less than \((3e-1)e^{p_s}\). Consequently, we have

\[
I < \sum_{1}^{\infty} \frac{(2rH_a)^n}{n^{a_1}} + 2 \frac{(2rH_a)^{\log R}}{(\log R)^{a_1}} + 2(3e-1) \sum_{1}^{\infty} \frac{(2eH_a r)^n}{n^{a_1}}
\]

\[
+ 2 \sum_{1}^{\infty} \frac{(rH_a)^n}{n^{a_1}} + 2 \frac{(rH_a)^{\log R_1}}{(\log R_1)^{a_1}} + 2(3e-1) \sum_{1}^{\infty} \frac{(rH_a)^p_n}{p_n^{a_1}}.
\]

where \(A\) is a constant.
Since the type [7, § 2.2.9] of the entire function \(\sum_{n=1}^{\infty} \frac{(2eH^a r)^n}{n^m} \) is \((2e)^a \cdot H\), we have proved that
\[
I \leq e^{A_2 H r^2}
\]
(15)
for all sufficiently large \(r \), where \(A \) is an absolute constant.

By (14) and (15), we can easily show that
\[
T_2 \leq A_2 L_2.
\]
But, by Jensen’s theorem, we have
\[
L_2 \leq T_2.
\]
Combining the two, we have
\[
L_2 \leq T_2 \leq A_2 L_2.
\]

Next, let us suppose that the 3rd. order of \(f(z) \) is \(\varrho_3 \), where \(\varrho_3 \) is finite; and let
\[
L_3 = \lim_{r \to \infty} \frac{l_n(r)}{r^{\varrho_3}} < \infty.
\]
We have
\[
r_n > \left(\frac{l_n}{H} \right)^a,
\]
when \(n > n_2 \), where \(H \) is any fixed positive number greater than \(L_3 \) and \(a = 1/\varrho_3 \).

If \(m_1 \) be a positive integer greater than \(n_0 \) and \(n_2 \), such that \(\log \log m_1 > 1 \), we have
\[
I = 2 \sum_{m_1+1}^{N} (2u_n)^{n+1} + 2 \sum_{N+1}^{\infty} u_n^{n+1}
\]
\[
< 2 \sum_{m_1+1}^{N} (2u_n)^{n+1} + 2 \sum_{N+1}^{\infty} u_n^{n+1}
\]
\[
< 2 \sum_{m_1+1}^{N} \frac{(2H^a r)^{\log n}}{(\log \log n)^{a\log n}} + 2 \sum_{N+1}^{\infty} \frac{(H^a r)^{\log n}}{\log \log n)^{a\log n}}.
\]

Now, the function \(\frac{r^a}{(\log x)^{ax}} \) is steadily increasing or steadily decreasing, according as
\[
\log r \begin{cases} > & a \log \log x + \frac{a}{\log x} \\ < & \end{cases}
\]
Let \(r > 1 \). If \(n = R \) be a root of the equation
\[
\log (r^a) = al_3 n + \frac{a}{l_2 n},
\]
when \(n > m_1 \); and \(n = R_3 \) be a root of the same equation with \(r \) replaced by \(2r \), then \(\log n < e^{Hr^a} \), when \(n = R_2 \) and \(\log n < e^{H(2r)^a} \), when \(n = R_3 \).

Consequently, if \(E_r \) be the set of values of \(r \), at which the inequality

\[
\log (rH^a) > al_n + \frac{a}{l_n}
\]

holds; and \(S_r \) the set at which the reverse inequality holds, then we have

\[
I < 2 \sum_{E_r} \frac{(2rH^a)^n}{(\log n)^a} + 2e_2 \left\{ H(2r)^a \right\} \cdot (2rH^a)^e + \n \]

\[
+ 2 \sum_{S_r} \frac{(2rH^a)^n}{(\log p_n)^a} + 2 \sum_{E_r} \frac{(rH^a)^n}{(\log n)^a} + 2e_2(Hr^a) \cdot (rH^a)^e + 2 \sum_{S_r} \frac{(rH^a)^n}{(\log p_n)^a} \n \]

\[
< 2 \sum_{m_{k+1}} \frac{(2rH^a)^n}{(\log p_n)^a} + 2e_2 \left\{ H(2r)^a \right\} \cdot (2rH^a)^e + \n \]

\[
+ 2 \sum_{m_{k+1}} \frac{(2rH^a)^n}{(\log p_n)^a} + 2(3e-1) \sum \frac{(2erH^a)^n}{(\log n)^a} + \n \]

\[
+ 2e_2 \left\{ H(2r)^a \right\} \cdot (2rH^a)^e + 2e_2(Hr^a) \cdot (rH^a)^e \n \]

\[
< A \sum \frac{(2erH^a)^n}{(\log n)^a} + 4e_2 \left\{ H(2r)^a \right\} \cdot (2rH^a)^e, \quad (16)
\]

where \(A \) is a constant.

It is easily seen, by putting \(k = 2 \) in the lemma, that the type of the series on the right-hand side is \(H(2e)^a \).

Therefore, by (14) and (16), we have

\[T_3 \leq A_3 L_3. \]

Now, let us suppose that the \(k \)-th order of \(P(z) \) is \(\ell_k \), where \(\ell_k \) is finite; and let

\[L_k = \lim_{r \to \infty} \frac{l_{k-1}n(r)}{r^{\ell_k}} < \infty. \]
We have
\[r_n > \left(\frac{l_{k-1} n}{H} \right)^a, \]
when \(n > n_3 \), where \(H \) is any fixed positive number greater than \(L_k \) and \(a = 1/\ell_k \).

Let \(m_2 \) be a positive integer greater than \(n_0 \) and \(n_3 \), such that \(l_{k-2} m_2 > 1 \).

Proceeding in the same way as before, we can prove that
\[I < A \sum_{m_2}^{\infty} \frac{(2erH^a)^n}{(l_{k-2} n)^a} + e_{k-1}(B r^a H), \]
where \(A \) and \(B \) are absolute constants.

The rest of the proof follows easily, if we put \((k-1)\) for \(k \) in the lemma.

Corollary 1. If \(f(z) = P(z)e^{Q(z)} \) is an entire function of finite \(k \)-th order, where \(P(z) \) is the product of primary factors of Theorem 6 formed with the zeros of \(f(z) \); and \(Q(z) \) is an entire function, then \(Q(z) \) is of finite or zero type, finite \((k-1)\)-th order, if \(f(z) \) is of finite or zero type.

Proof. By a slight modification of the proof of Theorem 6, it can be easily shown that the \(k \)-th order of the product of primary factors \(P(z) \) is equal to the \(k \)-th order of its zeros.

By (14), we have
\[\log |P(z)| \geq \sum_{n=1}^{N} \log \left| 1 - \frac{z}{z_n} \right| - I, \]
where
\[I = 2 \sum_{n_0+1}^{N} (2u_n)^{p_n} + 2 \sum_{N+1}^{\infty} u_n^{p_n+1}. \]

If \(f(z) \) is of finite type, \(L_k \) is finite.

Consequently, by Theorem (6), we have
\[I < e_{k-1}(A r^{q_k}) \]
for all sufficiently large values of \(r \), where \(A \) is a constant.

Now, when \(r_n \leq 1 \), we have \(\left| 1 - \frac{z}{z_n} \right| > 1 \), provided that \(r > 2 \), and so
\[\log \prod_{r_n \leq 1} \left| 1 - \frac{z}{z_n} \right| > 0. \]

But, when \(1 < r_n \leq 2r \) and \(z \) lies outside all the small circles \(|z-z_n| = e^{-h e_z z_n (r_n^{q_k} + e)} \) for which \(r_n = |z_n| > 1 \), \(h \) being any
fixed number greater than 1, we have
\[\left| 1 - \frac{z}{z_n} \right| = \frac{|z - z_n|}{r_n} \geq \frac{1}{r_n} \cdot e^{-he_{k-2}(r_n)_{\theta_k^+\epsilon}} \]
\[\geq \frac{1}{2r} \cdot e^{-he_{k-2}(2r)_{\theta_k^+\epsilon}} \]

Therefore
\[\log \prod_{1 > r_n \leq 2r} \left| 1 - \frac{z}{z_n} \right| \geq -N [he_{k-2}(2r)_{\theta_k^+\epsilon} + \log 2r] \]

Since \(L_k \) is finite, we have
\[N < e_{k-1}(B_{\theta_k}) \]
for all sufficiently large \(r \), where \(B \) is a constant.

Combining these results, we have
\[\log \prod_{1}^{N} \left| 1 - \frac{z}{z_n} \right| > -e_{k-1}(B_{\theta_k}) \cdot [he_{k-2}(2r)_{\theta_k^+\epsilon} + \log 2r]. \]

Consequently, we have
\[\log |P(z)| > -e_{k-1}(B_{\theta_k}) [he_{k-2}(2r)_{\theta_k^+\epsilon} + \log 2r] - e_{k-1}(A_{r_{\theta_k}}) \]
\[> -2e_{k-1}(c_{\theta_k}) \cdot e_{k-2}(2r)_{\theta_k^+\epsilon} \]
for all sufficiently large \(r \) such that the circle \(|z| = r\) intersects none of the small circles containing the zeros of \(f(z) \), \(c \) being any fixed number greater than each of \(A \) and \(B \).

Also, since \(f(z) \) is of finite type, we have
\[|f(z)| < e_k(M_{r_{\theta_k}}) \]
for all sufficiently large \(r \), \(M \) being a constant.

Combining the two inequalities, we have
\[|e^{Q(z)}| = \left| \frac{f(z)}{P(z)} \right| < e_k(M_{r_{\theta_k}}) \cdot e^{2e_{k-2}(c_{\theta_k}) \cdot e_{k-2}(2r)_{\theta_k^+\epsilon}} \]
\[< e^{e_{k-1}(c_1 r_{\theta_k}) \cdot e_{k-2}(2r)_{\theta_k^+\epsilon}} \]
for a certain set of arbitrarily large values of \(r \), \(c_1 \) being an absolute constant.

Consequently, by the principle of the maximum modulus, it can be easily proved that
\[|e^{Q(z)}| < e^{e_{k-1}(c_1 r_{\theta_k}) \cdot e_{k-2}(2r)_{\theta_k^+\epsilon}} \]
for all sufficiently large values of \(r \). Hence it follows that \(Q(z) \) is of finite type.

The proof for zero type follows the same lines.
COROLLARY 2(i). If \(f(z) = P(z)e^{Q(z)} \) is an entire function of finite 2nd. order, then a necessary and sufficient condition that \(f(z) \) be of finite or zero type is that \(L_2 \) be finite or zero and \(Q(z) \) satisfy the conditions of a theorem of Lindelöf (loc-cit.).

(ii) If \(f(z) = P(z)e^{Q(z)} \) is an entire function of finite 3rd. order, then a necessary and sufficient condition that \(f(z) \) be of finite or zero type is that \(L_3 \) be finite or zero and \(Q(z) \) satisfy the conditions of (i).

(iii) If \(f(z) = P(z)e^{Q(z)} \) is an entire function of finite \(k \)-th order, then a necessary and sufficient condition that \(f(z) \) be of finite or zero type is that \(L_k \) be finite or zero; and \(Q(z) \) satisfy the conditions for an entire function of finite \((k - 1)\)-th order to be of finite or zero type, where \(P(z) \) is a product of primary factors of Theorem 6, formed with the zeros of \(f(z) \).

REFERENCES

S. M. Shah

S. M. Shah

S. M. Shah

R. P. Boas

R. Nevanlinna

Muslim University, Aligarh (India)

(Oblatum 17-10-55).