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On Tauberian oscillation theorems

by

C. T. Rajagopal.
Madras

Introduction.

It is known that certain positive (regular) transforms of a
function s(t), or of a sequence sn, possess the property that the
boundedness of the transform implies the boundedness of s(t),
or of sn, when an appropriate Tauberian condition is imposed
on s(t), or on sn. Two transforms with the property stated above,
covering many particular cases of summability processes, have
been considered by Karamata ([3], Théorème IV) and Hardy
([2], Theorem 238). Theorems A and B of this note show that,
in the case of these two transforms, the oscillation of the transform
is equal to the oscillation of s(t), or sn, provided that certain
additional conditions are assumed, one of which consists in a
refinement of the Tauberian hypothesis on s(t), or on Sn.

1. The first theorem.

The following theorem generalizes the essentials of a Tauberian
oscillation theorem of V. Ramaswami ( [6], Theorem 1.2). somewhat
like a theorem of H. Delange ([1], Théorème 11 ), but more com-
pletely, since it includes an analogue of Ramaswami’s theorem
for the Borel transform. It is a refinement of an oscillation
theorem of which one version is Lemma 3 A of this note proved
by Karamata ([4], Satz IV); and it is on the same lines as a

convergence theorem of Karamata ([4], Satz VI; [3], pp. 36-7,
§ 18). 1)
THEOREM A. Let the following assumptions be made.

(i) 03C8(x, t) &#x3E; 0 for all large x and every t &#x3E; 0;

(ii) ~(x, y) = 03C8(x, t)dt~1 as x~~, for every y~0; ~(x, 0)=1.

1) Basing ourselves on Karamata’s ideas, we can extend also a theorem of Delange
on absolute Tauberian constants ([1]), Théorème 3) so that it covers the case
of the Borel transform. Such an extension appears elsewhere [5].
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(iii) y’ = y’(x), y" - y"(x) are single-valued, steadily increasing,
unbounded functions of x, and conversely, such that, given any
small e &#x3E; 0, we have, for all large enough x, y’, y",

with the implication, on account o f (i ), that y"  y’.
(iv) A(t) is-a continuous, s’trictly increasing, unbounded function

satisfying the condition

where y = either y’ or ,y".
(v) s(t) is a function of bounded variation in every finite inter-

val o f (0, (0) subject to the conditions:

Then

2. Lemmas.

To prove Theorem A we require the following lemmas.
LEMMA lA. Hypotheses (i) and (ii) of Theorem A imply

lim s(t) ~ lim 03A8(x) ~ lim s(t), where 03A8(x) = 03C8(x, t)s(t)dt,
s(t) being a function of bounded variation in every finite interval
of (0, oo)-

This is a simple Abelian result proved by an argument of the
usual type (cf. [2], proof of Theorem 9).

LEMMA 2A. The condition

(3’) bound {s(t’)-s(t)} &#x3E; - co  0, A(T) = 03BBA(t), 03BB &#x3E; 1,

involves

This lemma is due to Karamata ( [4], Hilfsatz 1) and may be
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readily proved in the form

obtained by replacing u, t in (6) by V(u),. V(t) respectively,
V(x) being the function which is the inverse of A(x). For, as-

suming that 03BBr-1t ~ u  03BBrt (r &#x3E; 1), we have

and thus

by virtue of (3’ ) in the form

Since

it follows from (7) that

which, as already explained, is equivalent to (6).
LEMMA 3A. I f, in the hypotheses of Theorem A, (1) is

replaced by

and (3) is replaced by (3’), the conclusion o f the theorem will assume
the form

In particular, since (1) implies (1’) and (3) inaplies (3’), con-
ditions (1)-(4) together imply I s(t) 1  x for t &#x3E; 0.

This lemma again is due to Karamata ([4], Satz IV; cf. [3],
p. 35, Théorème IV).

3. Proof of Theorem A.

In the identity

suppose that x &#x3E; X and 03C8(x, t) ~ 0. First let y" assume an
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ascending, divergent sequence of values for which

. 

this limit being finite as a result of Lemma 3A. By hypothesis
(iii), the corresponding sequence of values of x = x(y’) and the
sequence of values of y = y’(x) are both ascending, divergent
and such that, for all large y’, x, y",

Also, in consequence of (3), we can choose to so that, for t ~ to,

bound {s(t’) 2013 s()} &#x3E; 2013 03B5 log Â, A(T) = 03BBA(t),

and hence, by Lemma 2A,

In (8) we can confine ourselves to values of y" ~ to for which
x ~ X, and use (10), obtaining

since s(t) &#x3E; - x by Lemma 3A. From the last step, letting
x, y’, y" ~ oo, and using (9) and (2), we get

(11) 03A8 ~ lim 03A8(x) &#x3E; i -2(s + x)03B5 - Ke.

Hence, e being arbitrary,

Next we let y’ assume, an ascending divergent sequence of
values such that

where s is finite, by Lemma 3A. Hypothesis (iii) shows that the
corresponding sequences of values of x = x(y"), y" = y"(x) are
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also ascending, divergent and conditioned by (9). If we restrict
ourselves to values of x ~ X and of y" ~ ta, (8) and (10) together
give

since s(t)  x by Lemma 3A. Letting x, y’, y" ~ oo in the last
step, appealing to (9) and (2), and remembering that a can be
chosen arbitrarily small, we conclude that

From the results proved above, we have

whence the desired conclusion follows by an appeal to Lemma lA.

4. Deductions from Theorem A.

(i) Following Karamata ([4], p. 6), we shall define the Borel
transform of a sequence Sn as

where

and 03C8(x, t) ~- ~~(x, t)/ôt satisfies the initial conditions in hypo-
theses (i), (ii), of Theorem A.
Now, in the case of the Borel transform, it is known ([4], p. 7)

that

Consequently we can choose a" &#x3E; 0 and a’  0 so that
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where the sign before each square root is positive. Therefore

i.e. (1) is satisfied.
In the case of the Borel transform, it is also known ([4], pp.

7-8) that, with A(t) = et and any given real a,

where

Hence, taking successively a = a’, y = y’ and a = a", y = y"
in (12), we see that (2) holds. The fact that K depends on a’
in the first case and on a" in the second case does not vitiate
the conclusion drawn from a step like (11) since a’, a" are kept
fixed when x, y’ y" ~ oo.

Lastly, with our choice of A(t) = eV’, we find that T in (3)
is given by

or

Combining the results of the last three paragraphs, we see that
Theorem A contains the following as a particular case.
COROLLARY lA. The conditions

together imply

Condition (Tl) can be replaced by (T*1) below, by an argument
as in § 5.
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(ii) A version of Ramaswami’s oscillation theorem referred to
at the outset is as follows.
COROLLARY 2A. Then condition

where

in conjunetion with the condition

implies

We can replace condition (T2) by (T*2) below, arguing as in § 5.

To prove Corollary 2A, we take

s o that

and we choose a’, a" so as to satisfy condition (1):

Also, with 03C8(x, t ) 1 ( t) Ail y" = a"x, we
find that condition (2) reduces to

and is ensured by the restrictions on 1jJ* in Corollary 2A. The
proof of Corollary 2A is thus complete.
The well-known particular cases of Corallary 2A, as of Ramas-
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ivami’s théorem, are given by:

5. Remark on hypothesis (3) of Theorem A.
This hypothesis may be replaced by the apparently milder one

that there exists a sequence {03BBp} such that 1  03BBp - 1 as p - 00
and

To justify the replacement of (3) by (3*) we take (3), (3*) in
the forms

respectively, and argue, as in the proof of Lemma 2A, that (13*)
implies (13). The actual argument is as follows.

(13*) shows that, corresponding to any Â &#x3E; 1, we can find

03BBp  A and such that, for all large t,

There is evidently a positive integer r ~ 2 such that 03BBr-1p  03BB ~ 03BBrp.
Hence (14) gives, for all large t and t ~ t’ ~ At,

The conclusion reached above leads at once to (13) and shows
that (3*) implies (3) and so may replace (3) in the enunciation,
of Theorem A.

6. A supplementary theorem.
THEOREM B. Let the following assumptions be made.
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(ii) cn(x) - 0 as x ~ co, 03A3 cn(x) = 1.
(iii) f(u) is positive and dif ferentiable for u ~ 1;

(iv) x and positive integers M, N are defined by the relations

with the condition that, given any small e &#x3E; 0, we have, for all

sufficiently large x, M, N, Il, v,

while, f or large enough fixed Il, v and all su f f iciently large x, M, N,
we have, in addition to (15),

and satisfies the conditions:

Then

7. Further Lemmas.

In the proof of Theorem B we require the following lemmas
which are similar to Lemmas IA, 2A, 3A.
LEMMA 1B. Hypotheses (i), (ii) of Theorem B make

This lemma is established like Lemma IA.
LEMMA 2B. The condition

where s(t) is defined as in hypothesis (v) of Theorem B and f(u)
is as in hypothesis (iii) of Theorem B, implies
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This is a known result ([2), Theorem 239).
LEMMA 3B. If, in the hypotheses of Theorem B, (17) is replaced

by condition (17’) o f Lemma 2B, and (16) is dropped, then the
conclusion o f Theorem B will assume the form

Since (17) implies (17’), conditions (15), (17), (18) together
imply ISn  x for n &#x3E; 0.
This is a theorem of Vijayaraghavan and Hardy ([2], Theorem

238).

8. Proof of Theorem B.

The proof may be modelled on that of Theorem A and divided
into two parts which separately lead us to infer that

To justify the first inference of (21), we begin by fixing 03BC,
v, xo, Mo, No so that, for x &#x3E; xo, M &#x3E; Mo, N &#x3E; No, (15) and (16)
hold. We then find Ml &#x3E; Mo (and correspondingly x1 ~ xo,
N1 ~ No ) so that

This is possible by hypothesis (17) of Theorem B, and it ensures,
as a result of Lemma 2B,

Next we write

and choose M to be one of an ascending, divergent sequence of
integers such that

where s is finite since sn 1  x by Lemma 3B. Then, using
(15) in ri(x) and 03C43(x), and using (22) in 03C42(x), we obtain from
(23):
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if we suppose (as we may) that sM &#x3E; - x + 03B503B4 and use (16).
Letting M ~ co in (24), and remembering that E is arbitrary
and K fixed (on account of y, v being fixed), we obtain

The second inference of (21) is justified in the same way as 
the first, and the two inferences taken along with Lemma 1B
yield conclusion (19).

9. Déductions from Theorem B.

We can deduce Corollary lA from Theorem B, taking

and using well-known properties of the Borel transform ([2],
p. 313, § 12.15; [4], pp. 7-8).
We may also take

and deduce

COROLLARY 1B. The condition

along with either (T2) or (T*2) of Corollary 2A, ensures

The deduction of Corollary 1B from Theorem B requires us
to verify that conditions (15) and (16) of the theorem are fulfilled
for the particular choices of c. and f in the corollary. That (15)
is fulfilled is known ([2], proof of Theorem 240). That (16) is

fulfilled follows from the facts: 
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when x, M, N ~ oo, log N log x = v (fixed), log N - log M =
Il + v (fixed).
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