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On Tauberian oscillation theorems
by
C. T. Rajagopal.
Madras

Introduction.

It is known that certain positive (regular) transforms of a
function s(2), or of a sequence s,, possess the property that the
boundedness of the transform implies the boundedness of s(t),
or of s,, when an appropriate Tauberian condition is imposed
on s(t), or on s,. Two transforms with the property stated above,
covering many particular cases of summability processes, have
been considered by Karamata ([8], Théoréme 1V) and Hardy
([2], Theorem 238). Theorems A and B of this note show that,
in the case of these two transforms, the oscillation of the transform
is equal to the oscillation of s(¢), or s,, provided that certain
additional conditions are assumed, one of which consists in a
refinement of the Tauberian hypothesis on s(¢), or on s,.

1. The first theorem.

The following theorem generalizes the essentials of a Tauberian
oscillation theorem of V. Ramaswami ([6], Theorem I.2), somewhat
like a theorem of H. Delange ([1], Théoréme 11), but more com-
pletely, since it includes an analogue of Ramaswami’s theorem
for the Borel transform. It is a refinement of an oscillation
theorem of which one version is Lemma 8 A of this note proved
by Karamata ([4], Satz IV); and it is on the same lines as a
convergence theorem of Karamata ([4], Satz VI; [3], pp. 86—7,
§ 18). 1)

THEOREM A. Let the following assumptions be made.

(i) w(x, t) =0 for all large x and every t = 0;
(i) ¢ y) =] (@, t)dt—>1 as a—>co, for cvery y=0; p(a, 0)=1.

v

1) Basing ourselves on Karamata’s ideas, we can extend also a theorem of Delange
on absolute Tauberian constants ([1]), Théoréme 8) so that it covers the case
of the Borel transform. Such an extension appears elsewhere [5].
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(iii) y' =y'(2),y" = y'(x) are single-valued, steadily increasing,
unbounded functions of x, and conversely, such that, given any
small ¢ > 0, we have, for all large enough z, y', y",

(l) <p(a:, y') <s <p(w, y”) >1—g¢
with the tmplication, on account of (i), that y' <y'.

(iv) A(t) is-a continuous, strictly increasing, unbounded function
satisfying the condition

(2) [ vie 1) 1o
0

A(t) I
dt < K (a constant),
A(y)
where y = either y' or y".
(v) s(t) is a function of bounded vartiation in every finite inter-
val of (0, oo) subject to the conditions:

(3) bound {s(t') — s(¢)} = o,(1) log A as t > oo,
TSPET
“for A(T) = AA(2), 2 > 1;
(4) P() = [y, t)s(t)dt = O(1) as @ - co.
Then ’
(5) lim s(t) = lim ¥Y(z), lim s(t) = lim ().

2. Lemmas.

To prove Theorem A we require the following lemmas.

Lemma 1A. Hypotheses (i) and (ii) of Theorem A imply

lim s(t) < lim Yf(az)-_S_ lim s(t), where ¥(z) = J-wzp(w, t)s(t)dt,

=~ > >0 s
s(t) being a function of bounded variation in every finite interval
of (0, ).

This is a simple Abelian result proved by an argument of the
usual type (cf. [2], proof of Theorem 9).

LeMMA 2A. The condition

(8") bound {s(¢') —s(t)} > —w << 0, A(T) = AA(t), A > 1,

tst'sT
tnvolves
w A(u)
6 — S | —r =t> 0.
(6) s(u)—s(t) > Tog og {AA(t)} for every u =1t > (

This lemma is due to Karamata ([4], Hilfsatz 1) and may be
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readily proved in the form

s(V () —s(V(t) > —

)
log 4

obtained by replacing u, t in (6) by V(u),. V(t) respectively,
V(z) being the function which is the inverse of A(z). For, as-
suming that l”'I‘t Su<iAt(r=1), we have

s(V(w) —s(V() = {s(V(w) —s(V(r1)}
+ {s(V(a) —s(V(A-2%)} + ... + {s(V(a)) —s(V(2))},
and thus
(7) s(V(u)) —s(V(t) > — or,
by virtue of (8’) in the form
s(V(t))—sV(t) > —ow, t=t' =M.

log (z%) u=1>0,

Since

r—1< log (u/t)
log 4

it follows from (7) that

s(V(u)) —s(V(t) >— w{ 1+

log (u/t)}
log 4

which, as already explained, is equivalent to (6).
LemMA 8A. If, in the hypotheses of Theorem A, (1) is
replaced by

(1) pla,y) <c <c” <gy"”)

and (8) is replaced by (8'), the conclusion of the theorem will assume
the form

Y(z) = O(1) as & — oo involves s(t) = O(1) as t - co.

In particular, since (1) tmplies (1') and (8) implies (8'), con-
ditions (1)—(4) together imply |s(t) | <% for t = 0.

This lemma again is due to Karamata ([4], Satz IV; cf. [3],
p. 85, Théoréme 1IV).

3. Proof of Theorem A.
In the identity

(8) ¥a) = [Tv@ st + [T+ [,
0 v’ v

suppose that 2 =X and y(z,t) =0. First let y”’ assume an
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ascending, divergent sequence of values for which
s(y"’) -5 = lim s(¢),
t—>o
* this limit being finite as a result of Lemma 3A. By hypothesis
(iii), the corresponding sequence of values of = x(y’) and the
sequence of values of y = y'(z) are both ascending, divergent
and such that, for all large y', @, y'/,

®) [Tvte it=["..—p@ ") <, [l tit=9(e, y) <
0 0 v

Also, in consequence of (3), we can choose ¢, so that, for ¢ = ¢,

bound {s(t') — s(t)} > — ¢ log 4, /I(T) = AA(t),

t<t'sT

and hence, by Lemma 2A,

(10) (u)—s(t)>——elog{l—%}, u=t=t,

In (8) we can confine ourselves to values of y’ = ¢, for which
£ = X, and use (10), obtaining

sv(w)>j (@, ¢ s(t)dt—i—s(y")j w(z, t)dt

—f’ w(w,t)log{l/l/i())}dt—l—.’. w(z, t)s(t) dt

— [ (e, vyt + s(y")[j pa yd— [ =" ]
0 0 ’

v

’

—_ gJW y(a, t)log| ’ dt — x w(w, t)dt
o

II)
since s(t) > —x by Lemma 8A. From the last step, letting
z, ¥, y' — oo, and using (9) and (2), we get
(11) Y =Iim PY(x) =5 — 2(5 + »)e —Ke.
x—> o
Hence, ¢ being arbitrary,
P =5
Next we let y’ assume, an ascending divergent sequence of
values such that
s(y') > s = lim s(¢)
t—>o
where s is finite, by Lemma 3A. Hypothesis (iii) shows that the
corresponding sequences of values of @ = z(y’), ¥y’ = y"'(x) are
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also ascending, divergent and conditioned by (9). If we restrict
ourselves to values of # = X and of ¥’ = ¢,, (8) and (10) together
give

P(z) <f "w(z, ) s(t)dt + s(y’ )f (z, t)dt

+ej.¢(m ) log{/'l 7((”7)}& +f (z, 1) s(2) dt

< nf" w(z, t)dt +s(y')[f (@, t)dt—j"". =[]
0

0 v’

+ eJ. y(z, t) log| dt + x (w, t)dt

)

since s(t) < » by Lemma 8A. Letting 2, y’, ¥’ — o0 in the last
step, appealing to (9) and (2), and remembering that ¢ can be
chosen arbitrarily small, we conclude that

P =Ilim ¥(z) <s.

x>

From the results proved above, we have
P=s=V,

whence the desired conclusion follows by an appeal to Lemma 1A.

4. Deductions from Theorem A.

(i) Following Karamata ([4], p. 6), we shall define the Borel
transform of a sequence s, as

B(z) = [ p(a t)dfs(t)),

0

where
s(t) = s, for' n §t<n+1, n=012...
1
p(@ y) = “ettvLdt,
T(y);
and y(z, t) = — 0p(x, t)/ot satisfies the initial conditions in hypo-

theses (i), (ii), of Theorem A.
Now, in the case of the Borel transform, it is known ([4], p. 7)
that
@ _tz/s

1 —
2, Y) >——1| e dt when 2 =y —1 Vy—1, 0.
(@, y) \/27!1@ when z =y +aVy y—>

Consequently we can choose a’’ > 0 and a’ < 0 so that
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o2 y")—->—1 J‘a'”e“'/’dt>1—e/2 w=y"—1+a"\/&7———l y''—>o0
m_w ’ ’ Hd

1 a’
CP(‘Z', y’)—)"‘:‘[ e—t’/’dt<8/2’ w=y'-l +a'\/y'—~]_, y,__)w,
Von o

" where the sign before each square root is positive. Therefore
p(@,y") >1—¢ @@, y) <e for 2>z, ¥ >y, ¥' > y''s

i.e. (1) is satisfied.
In the case of the Borel transform, it is also known ([4], pp.
7—8) that, with A(t) = ¢V* and any given real a,

A(t) z*y/n  |z—n|
A(y) di<2 en! + Vn

(12) [“y(@ 1) |log +0(1) <K(a)

0

where
n=[y], z=y—1+4+avVy—1—> 0.

4

Hence, taking successively a =a', y =y’ and a =a", y =y’
in (12), we see that (2) holds. The fact that K depends on a’
in the first case and on a’’ in the second case does not vitiate
the conclusion drawn from a step like (11) since a’, a”’ are kept
fixed when 2, y’ y'' - oo.

Lastly, with our choice of A(t) = ¢V, we find that T in (3)
is given by

T =V{A(t)} = (vt + log )2,

or T/t =1+ O(log 4/4/t), t - co.

Combining the results of the last three paragraphs, we see that

Theorem A contains the following as a particular case.
CoroLLARY 1A. The conditions

@ n
B(z) = e‘”ani = 0(1), as z - o,
a=0 0!
(Ty) min {s,,—s,} = 0,(1)d, as n - o,
nsSn'Sn+éy/n

together imply
osc s, = osc B(z).
Condition (T,) can be replaced by (TT) below, by an argument
as in § 5.

(TY) lim min  {s,, —s,} = 0,(d), as § - 0.
n>® nsSn’Sn+dy/n
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(ii) A version of Ramaswami’s oscillation theorem referred to
at the outset is as follows.
CoroLLARY 2A. The condition

P*(z) = —J. ( ) (t)dt = O(1), as x — oo,

where

v ()20, [Tyr@ydt=1, [“y*()|logt|dt ewists,
0 0

in conjunction with the condition

(T,) bound {s(t') — s(t)} = o,(1) log 4, as t— oo,
BEGET
implies osc s(t) = osc ¥*(z).
t—>w z—>®

We can replace condition (T,) by (Ty) below, arguing as in § 5.

(T3)  lim bound {s(t') — s(¢)} = o.(log 4), as 21— 1.

IS0 t=t< A

To prove Corollary 2A, we take

1 t
y(z, ) ol
so that

#(e ) = f Sy (L)a=[vom a= L,

and we choose a’, a’’ so as to satisfy condition (1):
¢ y') = ¢(, a'z) f p*(t)dt <e,

o2, y") = gz, a''z) = J. (t)dt > 1 —e.

1
Also, with y(z, t)——w( ) At)=t, y'=ad'z, y' =a''z, we

find that condition (2) reduces to

® t
J- p*(t) log —‘dt < K(a), a = either a’ or a”,
0 a
and is ensured by the restrictions on p* in Corollary 2A. The
proof of Corollary 2A is thus complete.
The well-known particular cases of Corallary 2A, as of Ramas-
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wami’s theorem, are given by:

' d d
@) yHuw)=— e () v =——=(1+u)? ¢>0,

0 -,

5. Remark on hypothesis (3) of Theorem A.

This hypothesis may be replaced by the apparently milder one
that there exists a sequence {A,} such that 1 < 1, -1 as p — oo
and

(8%) lim bound {s(t') — s(t)} = o,(log 4,) as p - o,
t—>o tsSUYST
for A(T) = 4,4(2).
To justify the replacement of (8) by (8*) we take (8), (8*)in
the forms
(18) bound {s(V(t')) — s(V(¢))} = o.(1)log 4, as t - oo,

tStV S A
(18*) lim bound {s(V(¢')) — s(V(t))} = o.(log 4,), as p - oo,
t—>ow tStSApt
respectively, and argue, as in the proof of Lemma 2A, that (18%)
implies (13). The actual argument is as follows.
(18*) shows that, corresponding to any A > 1, we can find
A, < 4 and such that, for all large ¢,

(14)  s(V(t) —s(V(t)) > —%log A, t<t <At

There is evidently a positive integer » = 2 such that A7 <A < 47,
Hence (14) gives, for all large t and ¢ < ¢’ S A,
(V) —s(V() = {s(V(¥) — s(V(3;70))}
+ {s(V(a,1) — (VA7) + - o+ ((V(R,0) — s(V (1))

r

logA = —elog A

> ¢ log 4, > ©
2 €% 2 r—1

The conclusion reached above leads at once to (13) and shows

that (8*) implies (8) and so may replace (3) in the enunciation
of Theorem A.

6. A supplementary theorem.
THEOREM B. Let the following assumptions be made.

(i) () =0 for n=0,1,2,...and 2 > 0;
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(ii) ¢, (z) >0 as x > o0, Xc,(z)=1.
(iii) f(u) is positive and differentiable for u = 1;

f—> o, 0 <f <k= a constant,
dt
F(u) = r— (so that F — oo with u).
J 10)
(iv) @ and positive integers M, N are defined by the relations

F(@)— F(M) = u, F(N)— F(z) =»

with the condition that, given any small ¢ > 0, we have, for all
sufficiently large x, M, N, u, »,

(15) g] c.(z) <e, § c.(x) <e, § e (z) {F(n)— F(N)} <e,
n=0 n=N n=N

while, for large enough fized u, v and all sufficiently large x, M, N,
we have, in addition to (15),

(16) % c.(x) | F(n)— F(p) l < K(u, v), where p = either M or N.

(v) s(t)=s, for n =t <n -+ 1 and satisfies the conditions:

(17) bound {s(¢')—s(t)} = 0.(1)d, as t—o0, for T=t-+5f(t), 6 > 0;
TZPET

(18) t(x) =2 c,(2)s, = O(1) as x - o0.
Then
(19) lim s, = lim 7(z), lim s, = lim 7().
n—>o & —>0 n—>w r—>®

7. Further Lemmas.

In the proof of Theorem B we require the following lemmas
which are similar to Lemmas 1A, 2A, 3A.
Lemma 1B. Hypotheses (i), (ii) of Theorem B make

lim s, < lim 7(z) < lim s,, where ©(z) = Zc,(®)s,.
Se | iSe o

This lemma is established like Lemma 1A.
LEMMA 2B. The condition

(17') bound {s(t') —s(t)} > —w <0, T =1t 4 6f(t), 6 > 0,
tsSV<sT

where s(t) is defined as in hypothesis (v) of Theorem B and f(u)
is as in hypothesis (iii) of Theorem B, implies

(20) s(u)—s(t) > — w(—(ls— + k) {F(u)—F(t)}—ow for u=t=1.
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This is a known result ([2], Theorem 239).

LEmMA 8B. If, in the hypotheses of Theorem B, (17) is replaced
by condition (17') of Lemma 2B, and (16) ts dropped, then the
conclusion of Theorem B will assume the form

7(z) = O(1) as * — oo involves s, = O(1) as n — oo.

Since (17) tmplies (17'), conditions (15), (17), (18) together
imply ]s,, } < #x for n = 0.

This is a theorem of Vijayaraghavan and Hardy ([2], Theorem
238).

8. Proof of Theorem B.

The proof may be modelled on that of Theorem A and divided
into two parts which separately lead us to infer that

(21) z=Ilimt(z) =lims, =3, 7= lim 7(2) < lims, =s.
z—>m n—>w® £ n—>w

To justify the first inference of (21), we begin by fixing u,
v, &y, My, N, so that, for 2 = 2y, M = My, N = N,, (15) and (16)
hold. We then find M, = M, (and correspondingly z, = z,,
N; = N,) so that

min (s, —$y) > —ed for M = M,.
M SnSM+dp(M)

This is possible by hypothesis (17) of Theorem B, and it ensures,
as a result of Lemma 2B,

(22) s,—sy >—e(1+ké){F(n)— F(M)}—e&b for n=M = M,.

Next we write

M-1 N ®
(28) @)=Zc,(@)s, +2...+ 2 ...=1(2)+ 15() + 74()
n=0 n=M n=N+1

and choose M to be one of an ascending, divergent sequence of
integers such that
Sy >
where s is finite since |sn l < % by Lemma 38B. Then, using
(15) in 7y(2) and 74(x), and using (22) in 7,(x), we obtain from
(23):
M-1 N
(@) > —nXc, + 2c,(sy— &d)
n=M

n=0

—%cne(l + k8){F(n) — F(M)} — x S e,

n=N+1
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M-1 @®

=—(sy—eb+x)(Ze,+ X c,) + sy —eb

n=0  n=N+1
—&(1 + ko) %Mc,,{F(n) — F(M)}
(24) > — 2(spyy — &0 + x)e + sy —ed — (1 + kd)K,
if we suppose (as we may) that s, > — % 4 &6 and use (16).

Letting M — oo in (24), and remembering that e is arbitrary
and K fixed (on account of u, v being fixed), we obtain

%

T=5.

The second inference of (21) is justified in the same way as

the first, and the two inferences taken along with Lemma 1B
yield conclusion (19).

9. Deductions from Theorem B.

We can deduce Corollary 1A from Theorem B, taking
c.(x) = e*a/nl, f(u) = 2+/u,
and using well-known properties of the Borel transform ([2],
p. 818, § 12.15; [4], pp. 7—8).
We may also take
1 n sin ¢\ %
e =—g(2), e =() fwr =
x X t
and deduce
CoroLLARY 1B. The condition
2z o, sin? (n/x)

() =—2 .

14

s, =0(1) as ¢ -0,

along with either (T,) or (T3) of Corollary 2A, ensures

osc s, = osc T(z).

The deduction of Corollary 1B from Theorem B requires us
to verify that conditions (15) and (16) of the theorem are fulfilled
for the particular choices of ¢, and f in the corollary. That (15)
is fulfilled is known ([2], proof of Theorem 240). That (16) is
fulfilled follows from the facts:
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@ mn2 Wl
o3 Sz, o(if Ogudu) <K

M n2 M M : u?
when z, M — oo, logz —log M = u (fixed); and
®, sin? (n/z) n N sin? (nfz), N ® sin2 (n/z) n
o —| = s T og — 2 A og —
wE i log wbzll i log - + wN{Jl gy
¥ log (N
< o(wf fg—(z/—ﬁ)du) + K
u
M-1
x (NI(M-1)
=O(ﬁf logudu)+K’<K"—|—K’
1

when @, M, N - oo, log N — log # = » (fixed), log N —log M =
u 4+ v (fixed).
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