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A new proof of the Existence of the minimum
for a Classical Integral*)

by
Fernando Bertolini.

Rome

The present paper treats of the establishment of the minimum
of a classical integral (studied more or less completely in any
treatise on the Calculus of the Variations !)) making use of a pro-
cedure derived from certain theorems indicated recently by M.
Picone 2).

Let us consider an almost elementary set X (of a Hausdorff
space) — that is, a set containing a sequence {X,} of closed and
compact (elementary) sets by which it is invaded (such that, in

-]
other words, X, CX,CX,C...CX = X X,); obviously, given
n=1

a function f(z) which is real valued and lower semi-continuous in
each X ,, then the greatest lower bound of f(z) in X is equal to the
limit of the non-increasing sequence {m,} of the minima of f(2) in
each X,, and in order that f(2) shall have a minimum in X it is
necessary and sufficient that for n sufficiently large, m, = m,, =
= M, 5 = ...: it is just this value which represents the minimum
of f(z) in X. From the theorems XIII and XIV of the work cited
in note 2), it results in fact that the totality of continuous and
rectifiable curves (of the plane, or of the space, etc.) makes up,
with a certain metric, an almost elementary space, and also almost
elementary are all the open or closed sets of curves, or the sets of
curves obtained from them by means of a finite number of sum and
product operations.

From this there is deduced, for the finding of a greatest lower
bound (possibly a minimum) of a lower semi-continuous line
function, a general method of the same character as those used in

*) Work done at the Istituto Nazionale per le Applicazione del Calcolo, Rome.

1) See, for example, L. Tonelli, Fondamenti del Calcolo delle Variazioni, vol. II.

%) M. Picone, Due conferenze sui fondamenti del Calcolo delle Variazioni, ,,Giornale
di Matematiche” di Battaglini, IV, vol. 80 (1950—1951). pp. 50—79.
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finding a greatest lower bound of an ordinary real valued point
function (continuous) in a set of a Euclidean space.

In the present case the work is accomplished with great simpli-
city and rapidity; the notions used can well be extended to include
integrals much more general than that here treated 2).

1. Let us consider the integral F(L) = f Yy ds (with v real
L

# 0), in the class I" of continuous and rectifiable curves of the
(2, y) plane for which the integral itself is defined, which connect
the two given points 4 = (a, ¢) and B = (b, d). For this integral
the following is to be noted: %)

a) for » > 0, the integral F(L) is defined for all the curves
(continuous and rectifiable) of the closed half-plane y = 0;

for v < — 1, the integral F(L) is defined for all the curves of
the open half-plane y > 0, and for some of the closed half-plane
Yy =0;

if 0 > » = — 1, the integral F(L) is defined only for the curves
of-the open half-plane y > 0;

in the first two cases we suppose ¢ =0, d = 0, and in the third
¢c>0,d>0;

b) the integral F(L) is positively regular in the half-plane
Yy > 0, and hence possible minimal arcs traced in this half-plane
are extremal arcs of class C” %);

c) the extremals of the integral F(L) are: the segments ¢ =
const., and the Ribaucour curves of the parameter », which can
be represented by the parametric equations
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note that dy/dz = tan 6, or that the parameter 6 to which the

curve is referred represents the direction angle of the curve at any
general point;

3) It is my intention to devote a paper soon to such extensions.

4) Everything in sec. 1 is classical or provable by elementary means; cf. for
example Goursat, Cours d’Analyse, M. Picone, Introduzione al Calcolo delle Varia-
ziont, and so on. I am working on an article on the variational properties of Ribau-
cour curves to be published soon, in which the statements of sec. 1 are again proved.

%) Let the curve L be represented with the parametric equation z = zL(t),

0 <t < 1asin sec. 2; if the derivatives dz/dt, d?z/dt?, . . ., d"z/dt" exist and are con-
tinuous, the curve L will be defined ,,of class C(»)”,
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d) if » > 0, through the points 4 and B — supposed of different
abscissa — two extremal curves at most can pass, which I will
call L, and L,: neither of them has points on the z-axis;

if » < 0, there is one and only one extremal curve in I', which I
will call L,, which connects 4 and B — supposed of different
abscissa — and has no point on the z-axis;

in any case, if the two points 4 and B have the same abscissa,
the only extremal which connects them is the segment 4 B;

e) if » > 0, supposing @ < b, ¢ > 0, d > 0, for every positive
number kb sufficiently small (let us say, smaller than a certain

h' > 0, which in turn is chosen

smaller than the smallest ordi-

nate of possible extremals L, and

L,) there is one and only one

curve L™ of the class C’, belong-

ing to I, having the smallest or-

dinate & (tangent to the straight

line y = k) and whose arcs of or-

dinate greater than h are extre-
- mals; this curve is composed of
two extremal arcs from 4 and B,
which are joined by a segment
y = h, and is concave in the
positive y- direction;

if » < 0, supposing a < b, for every h sufficiently large (greater,
let us say, than a certain 2’ > 0, which in turn is chosen greater
than the greatest ordinate of the extremal L,) there exists no curve
of the class C’, belonging to I, with the greatest ordinate A
(tangent to the straight line y = k) whose arcs of ordinate less
than A are extremals;

f) under the hypothesis of the first clause of ¢), if 4" and B’are
the respective projections of the points 4 and B on the z-axis, the
broken line L; = AA’B’B (belonging to I') has a length greater
than all the curves L™, as well as possible extremals L, and L,.

‘-io ,-—-E-
' .
! H

2. On any curve L of I directed from 4 to B, let us put 4 as
origin of the curvilinear abscissas s, which increase from zero to
A(L), the length of the curve; with L referred to the parameter

s . . . .
t = ——, its parametric equations can be written as

A(L)

3=2z.(t), 0=t=1,
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where 2 is the vector with the components (z, y). It is well known
that the vector valued function z,(t) satisfies the Lipschitz con-
dition, having a Lipschitz number A(L).

Now let us consider the totality I™* of the vector valued func-
tions z(t) = [z(t), y(t)] which are continuous and of bounded va-
riation within the interval (0, 1); I'* can be considered a metric
space, with the distance between two of its elements 2'(t) and 2"(¢)
defined as max [|2'(t) — 2"(¢)|]. The class I" of curves (where
each curve L is identified with its corresponding function z; () or
with the right hand side of any other of its parametric equations
of base on the interval (0,1)) is thus a set of elements of the
metric space I'™*, in which, as classical results have shown, the
integral F(L) is lower semi-continuous.$)

3. Let us now study the case when » > 0. If the points 4 and B
have the-same abscissa, the inequalities

[iraz &z e

show that the integral F (L) allows for a minimum in I, and that
the segment A B is the only minimal curve. If both the points 4
and B have ordinate zero, every curve traced on the z-axis, and
only those curves, make the integral zero giving it a minimum
value: among these we will admit only the segment AB.

If one of the two points, for example B, has a zero ordinate, and
the other point has a positive one, the preceding considerations
show that the integral has a minimum and that the unique 7)
minimizing curve is the broken line 44'B’B.

Apart from these trivial cases, let us consider the case of sec.
1. e): here, the possible minimizing curve can only be the broken
line L, and (if they exist) the extremals L,, L,. Let us consider the
following classes of curves in I

a) the class I'™ of all the curves of I' traced in the half-plane
y=h (with 0 <h <h');

b) the class I', of all the curves of I’ having a length not greater
than n (where n = A(L;) + 1, A(L3) + 2, A(Ly) + 8, ...);

c¢) the class I',™, the intersection of the two classes I", and I".

In the class I'™ is found the curve L® and (if they exist) the

%) Cf. op. cit. in note 2), theorem XYV.

7) Here as elsewhere I exclude from consideration curves with arcs analytically
distinct (or corresponding to different intervals of the t-axis), but geometrically co-
incident in the same segment of the z-axis.
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extremals L, Ly; in the class L, is found the broken line L,;, and
hence (by sec. 1. e) the infinite curves L™ as well as (if they exist)
the extremals L, and L,.

Obviously, for every fixed h, the sequences {I\"} and {I,}
invade respectively I"® and I'; and it is well known that the sets
I'™ and I, are closed and compact in I'*8), and hence the inte-
gral F(L) has a minimum in them, equal respectively to m{® and
m,. :
We can now apply the procedure indicated in the first paragraph.

3.1. Consider the integral F(L) in the class I'™; it is well known
that it has a minimum m‘®, which can also be seen from the follow-
ing. The curves of I'™™, which give a value not greater than F(L™)
to the integral, make up a subclass of I"® which is contained in I',,
for every n greater than F(L™). k='/7: in fact in such a subclass
we have

F(L™) = f Yt ds = K'Y, A(L).
L

Hence, for a certain n, we have m{® =m{®), = ...

The minimum m™ of the integral in I"™® can be assumed only
corresponding to one of the curves L‘» and (if they exist) L, and
L,: these last are the only possible extremals of the class I'™™; the
first is the only boundary curve which could satisfy the Weierstrass
boundary conditions (necessary for the minimum ?)) and in which
the arcs internal to I'™ are extremals.

Since the curves L,, L,, L™ belong to all the sets I'\* only
in correspondence to one of these curves F(L) can assume its
minimum value in I'*; we would have then m{® = m™ in any
case.

3.2. Now consider the integral F(L) in the class I',. We will
show that in this class the only admissible minimal ares are the
broken line L; and (if they exist) the extremals L, and L,. Let L'
be a minimal curve in the class I,.

If L’ has points on the z-axis, it must coincide with L, otherwise
we would have F(L’) > F(L,), for the reasons stated in sec. 8. 1°)

If L' has a smallest positive ordinate y’, then it must belong to

8) Cf. for example, op. cit. in ), no. 7, or also M. Picone, Lezioni di Analisi fun-
zionale, Rome 1946, nos. 79—S80.
?) Cf. for example, op. cit. in?), p. 127.
10) See note 7).
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the class I'\"), with A > 0, less than y’ and &', and must also be a
minimal curve of the integral in I{". But it cannot coincide with
the curve L, which has a smallest ordinate k; it must hence coin-
cide with L, or else L,. The proposition is then proved.

In conclusion, the minimum of F(L) in I, does not depend on
n, and hence the integral F(L) allows a minimum in I', where the
only minimal curves can be L,, L,, and L,.

4. Consider now the case » < 0, always excluding the case that
A and B have the same abscissa, because then there exist a trivial
minimum and the only minimal curve is the segment 4AB. We
also suppose here that cd > 0. In this case, too, the only admissible
regular minimal curve is the extremal L, (cfr. sec. 1. d). Consider
the following classes of curves in I':

a) the class I'™ of all the curves of I" traced in the strip
1/h < y < h (h greater than the three numbers &', 1/c, 1/d);

b) the class I'\™ of all the curves of "™ having a length not
greater than n (n greater than A(L;)).

Evidently the sequence {I'\"} invades I'™: the sequence {I"™}
invades I' only if —1 = » > 0, while if » < —1 it invades the
set of curves of I" which have no points on the z-axis, a set which
I will call I". That the integral F(L) has a minimum in I"® and
that this minimum is given only by the extremal L;, can be shown
in a way similar to that used in sec. 8. Since there are no boundary
curves in I'™ satisfying the necessary Weierstrass conditions —
it follows that the integral (L) has a minimum also in I"” and that
the only minimal curve is the extremal [, 1).

In the case that I does not coincide with I, it easy to see from
simple limit considerations that F(L,) represents the greatest
lower bound of the integral in I', and hence the minimum. Other
minimals distinct from L, are not possible.

5. Finally, suppose that one (at least) of the two points 4 and B
lies on the a-axis (still with v << — 1): for example, let ¢ = 0 < d,
a <b.

Compare the extremal L, with an arbitrary curve L of I'. It is
well known that if L is not concave in the negative y-direction,
there is a curve L’ in I" concave in the negative y-direction, such
that F(L') < F(L)!2).We can suppose that L has such a property.

1)  See note 7).
12) This elementary property is proved in the article cited in note *).
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Consider the straight line y = h, with 0 < h < d: it intersects
the extremal L, in a point P; with abscissa ;, and the curve L in
a point P on it with the abscissa 2. We can evidently write

B B B B
(L)Afy/ds—wl)Afy/ ds=<L>!y” ds—(Ll)Pfl y' ds +

P Py
+ 8 gy —a | o — o]+ ()| g ds— (L) [ s
A A

the last two integrals written tend to zero when & is infinitesimal;
because of the concavity of the two curves L; and L we have

h.(b—a)

— <
|w1 w'— d

and hence also ' | , — x| is infinitesimal; on the other hand,
from the preceding results,

B B
(L)J yll"ds—(l,l)f yds + B |z —a| =0,
P P

and hence F(L,) < F(L). In this last relationship the equal sign
can be suppressed if the two curves L, and L do not coincide, for
the reason that L, is the only possible minimal curve in I

In a similar way this result can be extended to include the case
when ¢ =d = 0.

(Oblatum 26-5-52).



