G. FODOR

On a theorem in the theory of binary relations

Compositio Mathematica, tome 8 (1951), p. 250

<http://www.numdam.org/item?id=CM_1951__8__250_0>
On a theorem in the theory of binary relations

by

G. Fodor

Szeged.

This paper was inspired by a theorem of Lázár 1) which we shall state below.

Let \(M \) be a set of positive measure. To every \(x \in M \) we adjoin a set of elements \(y \neq x \) of \(M \) which may have the cardinal number of the continuum. This means that we define a function \(y = \varphi(x) \) of \(x \in M \), where \(y \in M \), which may assume continuously many values for every \(x \), whereas the equation \(x = \varphi(x) \) cannot occur. If neither of the two equations \(y = \varphi(x) \) and \(x = \varphi(y) \) holds, the two elements \(x \) and \(y \) are called independent.

Let \(\{\varphi(x)\} \) denote the set of values \(\varphi(x) \) for a given \(x \); assume moreover that \(x \) is not a point of accumulation of \(\{\varphi(x)\} \) and that \(\{\varphi(x)\} \) is of measure zero.

THEOREM. We can find a set of positive exterior measure of elements of \(M \) so that any pair of its elements are independent.

Proof. As the set \(\{\varphi(x)\} \) does not contain \(x \) and as \(x \) is no point of accumulation, its complement \(C(\varphi(x)) \) with respect to \(M \) contains \(x \) and an interval \(I_x \) surrounding \(x \). Now for every \(x \) let us choose in \(I_x \) a closed segment \(S(x) \) with rational end-points. Hence all values of \(\varphi(x) \) are situated outside \(S(x) \).

Now the segments \(S(x) \) form an enumerable system \(S_1, S_2, \ldots \). To every \(S_n \) there belongs at least one \(x \in M \), such that \(S(x) = S_n \). Let \(N_n \) denote the set of all \(x \in M \) with \(S(x) = S_n \). We assert that there is at least one segment \(S_n \) for which \(N_n \) has positive exterior measure. For suppose that to every \(S_n \) the set \(N_n \) would be of measure zero. Then, as \(M \subseteq N_1 + N_2 + \ldots \), by the well-known theorem that the sum of enumerably many sets of measure zero is a set of measure zero, we must conclude that \(M \) was a set of measure zero.

The elements \(x \in N_n \) all belong to \(S_n \); they are evidently independent as the adjoined values are all outside the segment \(S_n \).

Lázár's theorem 2) only states that under the same assumptions we can find a set with the power of the continuum.

2) Evidently Lázár uses the word "condensationpoint" where only a point of accumulation is meant.

(Received, June 12th 1950).