COMPOSITIO MATHEMATICA

H. A. NEWMAN

On the ultimate boundedness of the solutions of certain differential equations

Compositio Mathematica, tome 8 (1951), p. 142-156

http://www.numdam.org/item?id=CM_1951__8__142_0

© Foundation Compositio Mathematica, 1951, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http://http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On the ultimate boundedness of the solutions of certain differential equations

by

M. H. A. Newman

Manchester.

In this paper alternative proofs are given, under somewhat less restrictive conditions on the functions g and p (see para. 4 and 5), of some theorems recently proved by Cartwright and Littlewood 1), on differential equations of the type

(1)
$$\ddot{x} + k\dot{x}f(x) + g(x) = kp(t), \quad (k > 0)$$

(dots denoting differentiation for t)²). The general method is to compare trajectories of (1) with those of

(2)
$$\ddot{x} + h\dot{x} + g(x) = 0$$
 $(h > 0)$

and to confirm the physically plausible conjecture that if $kf(x) \ge 2h$ for large x, a trajectory T_1 of (1) that starts within a trajectory T_2 of (2) will stay there, except possibly near the origin.

1. The functions f and g are to be continuous for every x, and p(t) is to be such that (1) has a solution for any assigned initial values of x(t) and $x(t)^3$). If an arc of a trajectory of (1), i.e. of a solution of

¹⁾ M. L. Cartwright and J. E. Littlewood, Annals of Math. 48 (1947) 472—494, here called "C and L".

²⁾ In C and L, g may depend on k. The slight modifications required in the proofs in this case are referred to in para. 8.

³⁾ The form of existence theorem required is: given a block $|x-x_0| \le \alpha$, $|y-y_0| \le \beta$, $|t-t_0| \le y$, in (x, y, t)-space, an arc of a solution $x = \xi(t)$, $y = \dot{\xi}(t)$ exists, passing through x_0, y_0, t_0 and having its end points on the boundary of the block. A sufficient condition on p is that it has only a finite number of discontinuities; the functions ξ and $\dot{\xi}$ are everywhere continuous and (1) is satisfied except at the discontinuities of p. A more general condition is that p be summable in every finite interval, (see e.g. Caratheodory, Reelle Funktionen, (1918), p. 682). In this case $\xi(t)$ is a solution in an interval if it and $\dot{\xi}$ are absolutely continuous in the interval and satisfy (1) almost everywhere. The absolute continuity of ξ and $\dot{\xi}$ justifies the ordinary processes of analysis used, and no further reference will be made

(3)
$$\frac{dx}{dt} = y, \frac{dy}{dt} + kyf(x) + g(x) = kp(t),$$

regarded as a curve in the (x, y) plane with parameter t, ("time"), lies entirely in one of the half-planes $y \ge 0$ or $y \le 0$, x(t) is monotonic on it, and t and y are single valued functions, y(x), t(x). The function y(x) is a solution of

(4)
$$y' + kf(x) + g(x)/y = kp(t)/y$$
 $(y' = dy/dx, t = t(x)).$

Lemma 1. Let Γ_1 and Γ_2 be arcs in the same half-plane $(y \ge 0)$ or $y \le 0$ of trajectories of two equations of type (1), satisfying

(5a)
$$y_1' + kf_1(x) + g(x)/y_1 = kp_1(t_1)/y_1$$

(5b)
$$y_2' + k f_2(x) + g(x)/y_2 = k p_2(t_2)/y_2$$

Suppose that $|p_i(t)| \le K_i$, (i = 1, 2) on the arcs. Then if $y_0 \ne 0$, Γ_1 cannot meet Γ_2 from within at a point (x_0, y_0) where

(6)
$$f_1(x_0) > f_2(x_0) + (K_1 + K_2)/|y_0|$$
.

" Γ_1 meets Γ_2 from within at (x_0, y_0) " means that (i) $y_1(x_0) = y_2(x_0) = y_0$, and (ii) $y_2(x) - y_1(x)$ has the sign of y_0 in an open interval immediately preceding x_0 in time, (i.e. to the left of x_0 if $y_0 > 0$, to the right if $y_0 < 0$).

We have 4)

$$(7) \quad y_{2}'(x) - y_{1}'(x) \ge k(f_{1}(x) - f_{2}(x)) + \frac{g(x)}{y_{1}y_{2}}(y_{2} - y_{1}) - k\frac{K_{1}}{|y_{1}|} - k\frac{K_{2}}{|y_{2}|}$$

$$k \to \left[(f_{1}(x_{0}) - f_{2}(x_{0})) - \frac{K_{1} + K_{2}}{|y_{0}|} \right] \text{ as } x \to x_{0}.$$

If, then, (6) is satisfied, $y_2'(x) - y_1'(x) > 0$ in some open interval I containing x_0 . Integrating from x to x_0 , $y_2(x) - y_1(x) \le 0$ or ≥ 0 , as x (of I) $\le x_0$ or $\ge x_0$. This is inconsistent with Γ_1 meeting Γ_2 at r_0 from within.

Lemma 2. If, in Lemma 1, $p_1(t) = p_2(t) = 0$ for all t and if $x_0 \neq 0$, Γ_1 cannot meet Γ_2 from within, rel. 0, at $(x_0, 0)$ if $f_1(x_0) \geq f_2(x_0)$ and $g(x_0)/x_0 > 0$.

⁴⁾ It is agreed once for all that inequalities and equalities involving derivatives, deduced from differential equations, are asserted only for values of x and t for which the derivatives exist and satisfy the differential equations (cf. footnote 3).

" Γ_1 meets Γ_2 from within, rel. 0, at $(x_0, 0)$ " means that $y_2(x_0) = y_1(x_0) = 0$ and $y_2(x) - y_1(x)$ has the sign of x in an open interval immediately preceding x_0 (in time).

Suppose that $g(x_0)/x_0 > 0$ and that $f_1(x_0) \ge f_2(x_0)$.

Equation (1) shows that, since p = 0, — \ddot{x} has the same sign as g(x), i.e. as x, at a point where a trajectory meets the x-axis. Thus |x| has a maximum on both curves at $x = x_0$, and, therefore, $y_1/x > 0$, $y_2/x > 0$ in an open interval I immediately preceding $(x_0, 0)$ in time. If then $(y_2(x) - y_1(x))/x > 0$ in I,

$$g(x)\left(\frac{1}{y_1}-\frac{1}{y_2}\right) > 0$$

and hence, by (7), with $p_1 = p_2 = 0$,

$$y_2'(x) - y_1'(x) > k(f_1(x_0) - f_2(x_0)) \ge 0$$
,

at all points of I. This is inconsistent with Γ_1 meeting Γ_2 from within at $(x_0, 0)$.

2. Trajectories of the equation (2). We now assume that g(x)/x > 0 when $|x| > a_0$, a certain non-negative constant 5), and that $G(x) = \int_0^x g(x)dx \to \infty$ as $|x| \to \infty$.

The integrals

$$\frac{1}{2}y^2 + G(x) = \frac{1}{2}y_0^2 + G(x_0)$$

of the equation $\ddot{x} + g(x) = 0$ have at every point the topological character of a simple arc, and owing to their symmetry about y = 0 their components are either simple closed curves or open arcs not meeting y = 0.

Lemma 3. Any trajectory T of (2) is bounded for $t \ge \text{constant}$. If T passes through (x_0, y_0) , choose $|Y_0| > |y_0|$ such that

$$\frac{1}{2}Y_0^2 + G(x_0) > \overline{bd} G(x) \text{ in } \langle -a_0, a_0 \rangle.$$

Since $G(x) \to \infty$, the integral curve of x + g(x) = 0 through (x_0, Y_0) meets the x-axis on both sides of the origin and so is closed. It contains (x_0, y_0) within it, and cuts the x-axis in points where g(x)/x > 0. Hence Lemma 3 follows from Lemmas 1 and 2.

⁵) Constants denoted by italic letters other than x, y, Y, t are fixed throughout the paper, save that C is used in the usual way as an "ambiguous" constant, independent of k. The meanings of Greek letters, and of x_0, y_0 etc., may vary.

Lemma 4. Given $\varepsilon > 0$, every trajectory T of (2) meets the set $|x| \le a_0 + \varepsilon$, $|y| \le \varepsilon$ for arbitrarily large positive values of t.

The integral

(8)
$$\frac{1}{2}y^2 + h \int_0^t y^2 dt = \frac{1}{2}y_0^2 + G(x_0) - G(x)$$

of (2) has a bounded right-hand side as $t \to \infty$ (by Lemma 3). Hence $\int y^2 dt$ is convergent as $t \to +\infty$. Since x and y = x are bounded, it follows from (2) that $\ddot{x} = y$ is bounded. The convergence of $\int y^2 dt$ therefore implies that $y \to 0$ as $t \to \infty$. Hence, by (2), $\dot{y} + g(x) \to 0$ as $t \to \infty$. Since T is bounded for $t \to +\infty$, and g(x)/x > 0 in $|x| > a_0$, the function |g| has a positive lower bound δ on the part of T in $|x| \ge a_0 + \varepsilon$. If then T remained in (say) $x > a_0 + \varepsilon$ for $t > t_1$, |y| would ultimately remain $> \frac{1}{2}\delta$; and this is not consistent with $y \to 0$.

3. Let Q(u) denote, for each positive u, the least Q such that $|g(x)| \ge u$ if $|x| \ge Q$. (If |g| < u for all x, $Q(u) = \infty$).

Lemma $\binom{5a}{5b}$ If $\eta > 0$, an arc in quadrant $\binom{2}{4}$ of a trajectory

T of (2) crosses the line $y = -\eta$ at most once in $|x| \ge Q = Q(h\eta)$.

(The quadrants are numbered $\frac{4|1}{3|2}$, in accordance with the positive sense of description of a trajectory.)

Only 5a need be proved. Between two intersections of T with $y=-\eta$ is a point where y'(x)=0, i.e. a point on the curve $C\colon hy+g(x)=0$. The part of $y=-\eta$ outside $\langle\ 0,\ Q\ \rangle$ lies above C and below y=0. But in this region (since y<0),

 $-h - \frac{g(x)}{y} > 0$, i.e. y' > 0. Hence y decreases with decreasing x, that is with increasing time. Thus T cannot get from C to $y = -\eta$ outside $|x| \leq Q$.

Lemma 6. If $\eta > 0$, any trajectory of (2) through a point (x_0, y_0) of quadrants 1 or 3, where $|x_0| \ge \max(a_0, Q(h\eta))$, $|y_0| \ge \eta$, will cross first the x-axis, and then the line $x = x_0$ at a point (x_0, y_1) where $|y_1| > \frac{1}{2}\eta$.

It is sufficient to consider the case $x_0 > 0$, and therefore $g(x_0) > 0$, $y_0 > 0$. On the upper arc, since for $x > x_0$

$$y'(x) = -h - \frac{g(x)}{y} < -h,$$

we have $y(x) < y_0$; and the arc meets y = 0 in $(\xi_0, 0)$, where $x_0 < \xi_0 < x_0 + y_0/h$. On the upper arc, for $x_0 < x \le \xi_0$,

$$\frac{1}{2}\frac{d}{dx}(y^2) = -hy - g(x) > -hy_0 - g(x),$$

giving by integration

$$-\frac{1}{2}y_0^2 > -hy_0 (\xi_0 - x_0) - G(\xi_0) + G(x_0),$$

$$(9) \qquad \frac{1}{2}y_0^2 < (\xi_0 - x_0) (hy_0 + g(\xi)),$$

where $x_0 < \xi < \xi_0$.

If the lower arc crosses $y=-\eta$, then by Lemma 5a it remains below until it crosses $x=x_0 \ge Q(h\eta)$; and so $|y_1| \ge \eta$. We may therefore assume $y>-\eta$ at all points on the lower arc, whence

$$y'(x) > -h + \frac{g(x)}{\eta} \ge 0$$

since $x \ge x_0$. Hence $|y_1|$ is the maximum value of |y| on the arc; and since y is now negative,

$$\frac{1}{2}\frac{d}{dx}(y^2) = -hy - g(x) = h|y| - g(x) \le h|y_1| - g(x);$$

giving on integration from x_0 to ξ_0 ,

$$-\frac{1}{2}y_1^2 \le (\xi_0 - x_0)(h \mid y_1 \mid -g(\xi)), \text{ (same } \xi!).$$

Since $g(\xi) - h|y_1| > 0$, we deduce from this and (9)

$$y_1^2(g(\xi) + hy_0) > y_0^2(g(\xi) - h | y_1 |),$$

$$\mid y_1 \mid > \frac{g(\xi)y_0}{g(\xi) + hy_0} \ge \frac{h\eta \cdot y_0}{h\eta + hy_0} \ge \frac{h\eta \cdot \eta}{h\eta + h\eta} = \frac{1}{2} \eta.$$

[Lemma 6 may be extended similarly to trajectories of the equation

$$\ddot{x} + \dot{x} f(x) + g(x) = 0,$$

given that $|g(x)| > \eta f(x) > 0$ for $|x| \ge |x_0|$. The inequality (9) is replaced by $\frac{1}{2}y_0^2 \le (\xi_0 - x_0)(y_0 f(\xi) + g(\xi))$ and we finally obtain $|y_1| \ge y_0 g(\xi)/(y_0 f(\xi) + g(\xi))$.

4. The following conditions, besides those of continuity stated in para. 1, are assumed in Lemmas 7, 8, 9, and Theorem 1.

- (i) g(x)/x > 0 when $|x| > a_0$;
- (ii) $f(x) \ge 2h > 0$ when $|x| \ge a_0$;
- (iii) |p(t)| and $\int_{t}^{t'} p d\tau$ are bounded in $\langle 0, \infty \rangle$ say both remain $\leq K$.

We assume also that $k \ge 1$.

The pattern equation

$$\frac{d^2x}{d\tau^2} + h\frac{dx}{d\tau} + g(x) = 0,$$

with which (1) will be compared, has parameter τ and the equations of its trajectories are written in the form

$$\frac{dx}{d\tau} = Y, \frac{dY}{d\tau} + hY + g(x) = 0.$$

The letter t always denotes the parameter of (1); x(t) is a solution of (1) and $y(t) = \dot{x}(t)$. T_y denotes a "half-trajectory" of (1), i.e. the part $t \ge \text{constant}$; and Γ_y is an arc $t_0 \le t \le t_1$. T_Y , Γ_Y have similar meanings in relation to (10). On an arc Γ_Y lying in a half-plane $y \ge 0$ or $y \le 0$, Y is a single-valued function Y(x) satisfying

(11)
$$Y'(x) = -h - g(x)/Y.$$

From this and the analogous equation (4) for an arc of T_v lying in one half-plane, we have, putting u(x) = Y(x) - y(x),

(12)
$$u'(x) = kf(x) - h + \frac{ug(x)}{yY} - k\frac{p(t)}{y}.$$

Lemma 7. An arc Γ_y cannot meet an arc Γ_Y from within 6) at (x_0, y_0) , where $x_0 \ge a_0$ and $|y_0| > d_0 = K/h$. Follows immediately from Lemma 1, since $f(x_0) - h \ge h$.

Lemma 8a ?). Let an arc Γ_y start at (x_0, y_0, t_0) , where $x_0 \ge a_0$. Let an arc Γ_Y start on $x = a_0$ above the x-axis, cut $x = x_0$ above (x_0, y_0) , and end at (α, β) , where $\beta \ge d_0 = K/h$, and $\alpha \ge x_0 + (K + 2\beta)/h$. Then if Γ_y does not meet $x = a_0$ when $t > t_0$, it meets neither Γ_Y nor $x = \alpha$.

⁶⁾ See Lemma 1.

⁷⁾ The name "8a" implies, that as in the case of Lemma 5, a corresponding "8b" is also asserted, with interchange of quadrants 1 and 3, 2 and 4. Only trivial modifications are needed in the proof. This applies to Lemmas 9a, 10a, etc. below.

The ordinate of Γ_Y is a single-valued function Y(x) of x; that of Γ_y is not, in general. Suppose that Γ_y remains in $\langle a_0, \alpha \rangle$ at least for $t_0 \leq t < t_1$. Then U(t) = Y(x(t)) - y(t) is a well-defined function of t in $\langle t_0, t_1 \rangle$. By hypothesis $U(t_0) > 0$, and by Lemma 7, applied to (4) and (10), U(t) must remain positive in $\langle t_0, t_1 \rangle$, for at its first zero, Γ_y would meet Γ_Y from within.

By (12), since y(t) = dx/dt, we have (cf. footnote 4)),

$$\frac{dU}{dt} = y(t)(kf(x) - h) + g(x)\frac{U(t)}{Y(x)} - kp(t), \quad (x = x(t))$$

$$> \frac{dx}{dt} (kf(x) - h) - kp(t),$$

giving, on integration from t_0 to t_1 ,

$$U(t_1) > U(t_1) - U(t_0) > k \int_{x(t_0)}^{x(t_1)} (f(x) - h) dx - k \int_{t_0}^{t_1} p(t) dt,$$

$$\geq kh(x(t_1) - x_0) - kK.$$

If then $x(t_1) = \alpha$,

(13)
$$U(\alpha) - y(t_1) = U(t_1) > kh(\alpha - x_0) - kK$$
$$> 2k\beta \ge 2\beta.$$

But $Y(\alpha) = \beta$ and therefore $y(t_1) \le -\beta < 0$. This is impossible: the first intersection of Γ_v with x = constant > 0 must be above y = 0. Thus Γ_v does not meet $x = \alpha$, and the relation U(t) > 0, proved in $< t_0$, t_1), holds throughout Γ_v .

Lemma 9a. Under the conditions of 8a, $Y(x(t)) \ge 2\beta$, whenever y(t) = 0 and $x(t) \ge x_0 + (K + 2\beta)/h$.

From the inequality for x(t) it follows, as in (13), that $Y(x(t)) - y(t) \ge 2\beta$.

Theorem 1. If f, g, p satisfy (i), (ii), (iii) and if $\varepsilon > 0$, no T_{ε} can remain ultimately in the set $|x| \ge a_0 + \varepsilon$.

Suppose e.g. that T_y starts at (x_0, y_0, t_0) where $x_0 \ge a_0 + \varepsilon$, and remains in $x \ge a_0 + \varepsilon$. If Y_1 is large enough, a trajectory T_Y starting at (a_0, Y_1) cuts first the line $x = x_0$, above (x_0, y_0) , and then $y = K/h = d_0$ at $x = \alpha(x_0, y_0) > x_0 + (d_0 + K)/h$. 8) Hence, by Lemma 8a, $\alpha = \alpha(x_0, y_0)$ is an upper bound of x(t) on T_y . If $|f| \le C$, $|g| \le C$ in $\langle a_0, \alpha \rangle$, it follows from (4) that on any arc of T_y in $|y| \ge \varepsilon$,

$$|y'| \le kC + \varepsilon^{-1}(C + kK) = J_k \text{ say.}$$

¹⁾ If $|g| \le C$ in $\langle a_0, x_0 + (d_0 + K)/h \rangle$, then $|Y'| \le h + C/d_0$ in the same interval and we can put $Y_1 = (h + C/d_0)(x_0 + (d_0 + K/h) + y_0 + d_0)$.

Therefore T_y cannot cross $y = \pm (y_0 + J_k(\alpha - a_0))$, i.e. y(t) is also bounded.

Consider equation (3). Integrating from t_1 to t_2

$$y(t) - y(t_1) + k \int_{x(t_1)}^{x(t)} f(x)dx + \int_{t_1}^{t} g(x(t))dt = k \int_{t_1}^{t} p(t)dt.$$

All the terms of this equation have been shown to be bounded except the g-integral. Therefore this also is bounded. But this is impossible, for since g(x) > 0 in $\langle a_0 + \varepsilon, \alpha \rangle$ it has a positive lower bound there.

Corollary. Given $\varepsilon > 0$, every $T_{\mathbf{v}}$ meets either x = 0 or the rectangle $|x| \leq a_0 + \varepsilon$, $|y| \leq d_0$, after any assigned time t_0 .

Suppose T_y starts at (x_0, y_0, t_0) , where, say, $x_0 > 0$, and does not meet the rectangle. If $|x_0| \le a_0$, then $|y| = |x| \ge d_0$ so long as $|x| \le a_0$, and therefore T_y meets $x = \pm a_0$ at a finite time. If it meets $x = -a_0$ there is nothing more to prove. Suppose it meets $x = a_0$. Since x(t) remains $\ge \frac{1}{2}d_0$ in a further positive t-interval, T_y crosses $x = a_0 + \delta$, $\delta > 0$, when $t = t_1 > t_0$. By Theorem 1 it later crosses $x = a_0 + \min(\varepsilon, \delta)$. The first such crossing after t_1 is from the right, and therefore is in $t_0 < 0$. Thus $t_0 = x$ remains $t_0 < x$ as long as $t_0 = x$ is in $t_0 < x$.

5. The further condition

$$(iv)_0$$
 $Q(2K)$ is finite

is now imposed on g. (For Q see para. 3).

Lemma 10a. Suppose (i) to (iii) and (iv)₀ satisfied, and that $\alpha_0 \ge a_0$. Let Γ_Y start at (α_0, Y_0) , where $Y_0 > d_0 = K/h$, cross $y = d_0$ to the right of $x = \alpha_1 = \alpha_0 + (2d_0 + K)/h$, and end on $x = a_0$, y < 0. Let Γ_y start at (α_0, y_0) where $0 < y_0 < Y_0$ and remain in $|x| \ge a_0$.

Then if Γ_y does not meet the rectangle $|x| \leq Q$ (2K), $|y| \leq d_0$, it does not meet Γ_Y .

Suppose that Γ_y does not meet the rectangle. By Lemma 8a no sub-arc of Γ_y in $y \ge 0$ can meet Γ_Y . It follows that Γ_Y meets $y = d_0$ first in x > Q(2K). Let Γ_y^1 be a sub-arc of Γ_y in $y \le 0$, starting at $(x_1, 0)$, and let Y(x) and $Y^*(x)$ be the ordinates of the upper and lower arcs of Γ_Y . Since $x > \alpha_1$, Lemma 9a gives $Y(x_1) \ge 2d_0$. Since also $x_1 > Q(2K) = Q(2hd_0)$, Lemma 6 is applicable, with $\eta = 2d_0$, and gives $Y^*(x_1) < -d_0$. By Lemma 5a, $Y^*(x) < -d_0$ at least until Γ_Y meets x = Q(2K) and in $|x| \le Q(2K)$ we have $y < -d_0$ on Γ_y^1 . Thus any intersection

of Γ_V and Γ_u^1 must be in $y < -d_0$, which is impossible (Lemma 7).

6. The special case $a_0 = 0$ of Theorem 2 now follows.

Theorem 2a (case $a_0 = 0$). Suppose (i) to (iii) and (iv)₀ satisfied, with $a_0 = 0$, A T_v starting at $(0, y_0)$ remains enclosed by a T_Y starting at $(0, Y_0)$, where $Y_0 > y_0 > 0$, until (possibly) T_v meets the rectangle R_0 , = $[|x| \le a_1^0, |y| \le d_0]$, where $a_1^0 = \max(Q(2K), 2(d_0 + K)/h)$.

The meaning of " T_y remains enclosed by T_Y " is as follows. Let T_y and T_Y cut the y-axis successively (alternately above and below the x-axis) at $y = y_0$, Y_0 ; y_1 , Y_1 ; y_2 , Y_2 ; ... respectively until T_y enters R_0 (or ad infinitum if this does not occur). Then the arc T_y^n of T_y from $(0, y_n)$ to $(0, y_{n+1})$ lies in the domain D_n bounded by the straight segment and the arc of T_Y^n with the common end points $(0, Y_n)$ and $(0, Y_{n+1})$. The point Y_{n+1} is outside R_0 if T_y^n does not meet R_0 .

The theorem follows from repeated applications of Lemmas 10a and 10b with $d_0 = 0$. By Lemma 7, T_y^n and T_Y^n cannot meet in $|y| > d_0$. Therefore if T_y^n does not meet R_0 , T_Y^n cuts $y = d_0$ outside $|x| \le (2d_0 + K)/h$, as required in Lemma 10.

Corollary. Given (i) to (iii) with $a_0 = 0$, and (iv)₀, every T_{ψ} ultimately meets R_0 . By Theorem 1, Corollary, we may suppose T_{ψ} to start on x = 0, say with $y_0 > 0$. If then T_Y starts at $(0, Y_0)$, where $Y_0 > y_0$, and if T_{ψ} never enters R_0 , T_Y also never enters R_0 , contrary to Lemma 4.

7. In the general case, $a_0 > 0$, a stronger condition than $(iv)_0$ is needed. Let A_0 be a bound for both |f| and |g| in $\langle -a_0, a_0 \rangle$ and let

$$a_1 = \frac{a_0}{h} (12A_0 + 4K + 5h),$$
 $B_1 = bd \mid g \mid \text{in } \langle -a_1, a_1 \rangle,$

$$d_1 = \max (1, 2K/h, \sqrt{a_1}B_1), \quad d_2 = d_1 + (h + B_1/d_1)a_1$$

 $c_0 = \max (Q(2ha_1), a_1 + h^{-1}(K + 2d_1)).$

Let R_1 denote the rectangle $|x| \leq c_0$, $|y| \leq d_1$.

The new condition on g is

(iv) $Q(2hd_1)$ is finite.

This may evidently be replaced by the simpler but stronger $(iv') \mid g(x) \mid \to \infty$ as $\mid x \mid \to \infty$.

Lemma 11a. An arc Γ_Y starting at $(0, Y_0)$, where $Y_0 > d_2$, and lying in $y \ge 0$, $|x| \le a_1$, cannot meet $y = d_1$.

So long as $Y \ge d_1$ we have, by (11), $Y'(x) \ge -h - B_1/d_1$. If ξ were the first point of Γ_Y on $y = d_1$, with $0 \le \xi \le a_1$, we should have

 $d_1 - Y_0 = Y(\xi) - Y(0) \ge -(h + B_1/d_1)\xi \ge -(h + B_1/d_1)a_1$, i.e. $Y_0 \le d_2$, contrary to hypothesis.

Lemma 12a. If the arcs Γ_{ν} , Γ_{ν} lie in $|y| > d_1$ and run from x = 0 to $x = a_0$, then $|u(a_0) - u(0)| \le \frac{1}{4}kh(a_1 - a_0)$. (For u(x) see before equation (12)). By (4) we have in $\langle 0, a_0 \rangle$:

$$|y'| \le kA_0 + A_0/d_1 + kK/d_1 \le k(2A_0 + K),$$

giving

$$|y(a_0) - y(0)| \le ka_0(2A_0 + K).$$

Similarly, by (11),

$$|Y(a_0)-Y(0)| \leq ka_0(h+A_0).$$

Therefore

$$|u(a_0)-u(0)| \leq ka_0(3A_0+h+K) = \frac{1}{4}kh(a_1-a_0).$$

Lemma 13. If Γ_{ν} , Γ_{Y} lie either both in $y > d_{1}$ or both in $y < -d_{1}$, and run from $x = x_{0}$ to $x = x_{1}$, where $a_{0} \leq x_{0} < x_{1} \leq a_{1}$, and if $u(x) \leq 0$ in $< x_{0}$, $x_{1} >$, then $u(x_{0}) < -\frac{1}{4}kh(x_{1} - x_{0})$.

By (12), since $u(x) \leq 0$ in $\langle x_0, x_1 \rangle$, we have there

$$\frac{du}{dx} \ge (2k - 1)h + B_1 \frac{u(x)}{d_1^2} - k \frac{K}{d_1}$$

$$\geq \frac{1}{2}kh + ju(x)$$
, putting $j = B_1/d_1^2 \leq 1/a_1$.

Thus

$$\frac{d}{dx}(ue^{-jx}) \ge \frac{1}{2}khe^{-jx}$$

in $\langle x_0, x_1 \rangle$, giving

$$u(x_1)e^{-ix_1} - u(x_0)e^{-ix_0} \ge - \frac{1}{2}k\frac{h}{i}\left(e^{-ix_1} - e^{-ix_0}\right)$$

$$u(x_0) \leq u(x_1)e^{-j(x_1-x_0)} - \frac{1}{2} \frac{kh}{j} (1 - e^{-j(x_1-x_0)}).$$

Now if $0 < s \le 1$, $1 - e^{-s} > \frac{1}{2}s$. Since $j \le 1/a_1$, $j(x_1 - x_0) \le 1$, and $u(x_1) \le 0$ by hypothesis. Therefore $u(x_0) < -\frac{1}{4}kh(x_1 - x_0)$.

Theorem 2a. (Case $a_0 > 0$). If (i) to (iii) and (iv) or (iv)' hold, and if $Y_0 > y_0 > 0$, a T_y starting at $(0, y_0)$ remains enclosed by by T_Y starting at $(0, Y_0)$, until (possibly) T_y enters the rectangle $R_2 = [\mid x \mid \leq c_0, \mid y \mid \leq d_2]$; save that T_y may lie outside T_Y in the ranges $0 < x < a_1, y > 0$ and $0 > x > -a_1, y < 0$.

The meaning is that (with the notation of the case $a_0 = 0$) T_y^n lies in D_n , save possibly for part of the initial arc in $|x| < a_1$. By Lemma 11a, Γ_Y does not meet $y = d_1$ before crossing

 $x=a_1$. Since u(0)>0, Lemma 12a gives $u(a_0)>-\frac{1}{4}kh(a_1-a_0)$. Hence, by Lemma 13, u(x)>0 at some point of $\langle a_0, a_1\rangle$. Let ξ be the first point at which $u(\xi)=0$, so that $\xi< a_1$. By (12)

(14)
$$u'(\xi) \ge (2k-1)h - kK/d_2 > \frac{1}{2}kh > 0.$$

If there were another zero of u in (ξ, a_1) , u' would be ≤ 0 at the first zero after ξ , contrary to (14). Thus u remains positive in $\langle \xi, a_1 \rangle$, and in particular $u(a_1) > 0$.

By Lemma 7, T_y and T_Y do not meet in $x \ge a_1$, $y > d_2$, so that $Y(x) \ge d_2$ in $< a_1$, $c_0 >$. Hence, putting $a_0 = a_1$ in Lemma 10a (and therefore $a_1 \le c_0$), T_y up to its first meeting with $x = a_1$ in y < 0 is enclosed by T_Y . In particular, $Y^*(a_1) < y^*(a_1)$, the star denoting the arc below the x-axis; i.e. $u^x(a_1) < 0$. Suppose u^* remains negative in an open interval (ξ, a_1) . By Lemma 13,

(15)
$$u^*(\xi) < -\frac{1}{4}|kh(a_1-\xi)| < 0.$$

To suppose ξ a zero of u^* would therefore lead to a contradiction. There is therefore no zero, and (15) holds throughout $\langle a_0, a_1 \rangle$. Hence $u^*(a_0) < -\frac{1}{4}kh(a_1 - a_0)$, and so finally, by Lemma 12a, $u^*(0) < 0$, i.e. $Y^*(0) < y^*(0)$.

Corollary. Every T_n ultimately meets R_2 (cf. case $a_0 = 0$).

Theorem 3. If (i) to (iii), and (iv) or (iv)', hold, every $T_{\mathbf{v}}$ remains ultimately in $|x| \leq C$, $|y| \leq kC$:

By Theorem 2, Corollary, T_y can be assumed to start at (x_0, y_0, t_0) on yR_2 , — say on $y = d_2$ or $x = c_0$.

If $y_0=d_2$ then $-c_0 \le x_0 \le a_0$, since y'<0 when $x>a_0$ and $y>d_2$. By (4), $\mid y'\mid < kC$ when $y\ge d_2$ and $-c_0 \le x \le a_0$; therefore $y(a_0)< d_2+kC(a_0+c_0)=kH_0$ say. If $x\ge a_0$ and $y>d_1$, then

(16)
$$y' < -2kh + K/d_2 < -kh,$$

by (4). Thus T_y meets $y=d_2$ at a point $x<2H_0/h$, and having once entered $y\leq d_2$ it cannot leave it again in $x\geq a_0$, by (16). Thus, whether T_y starts on $x=c_0$ or on $y=d_2$, it meets $x=2H_0/h$, if at all, in $0\leq y\leq d_2$.

Let a fixed T_Y^1 be chosen, starting at $(0, Y_0)$ where $Y_0 > 0$, having an initial arc Γ_Y which does not meet R_2 , cuts $y = d_2$ first to the right of $x = 2H_0/h + (K + 2d_0)/h$ and ends on x = 0. By Lemma 10a, T_y is enclosed by Γ_Y^1 up to its first meeting with $x = a_1$ below the x-axis. Hence, as in Theorem 2a, T_y meets the

negative y-axis first within Γ_Y^1 . It now follows from Theorem 2b that T_y remains enclosed by T_Y^1 , save in $|x| \le a_1$, until it reenters R_2 . It follows that the minimal strip $|x| \le C$ containing T_Y^1 also contains T_y . Similarly T_y 's starting on $y = -d_2$ or $x = -c_0$ remain in a fixed set $|x| \le C$.

Since |y'| < kC when $|x| \le C$ and $|y| \ge d_1$, all T_y 's starting on yR_2 remain in $|y| \le kC$.

Note. It may be proved, as in C and L, § 22, that if $a_0 = 0$, T_y remains ultimately in $|x| \le C$, $|y| \le C$.

- 8. Theorems 1, 2, 3 can be extended and modified in a number of ways.
- (A) If the bounds of x in Theorem 3 are not required to be independent of k, f can be a function f(x, y, t), provided that Q(kK) is finite, and that in addition to satisfying (ii) f is uniformly bounded in every closed x-interval, relative to y and t.

Direct use is made above of "f = function of x alone", only in putting

$$\int_{t_0}^{t_1} f(x(t)) \frac{dx}{dt} dt = \int_{x(t_0)}^{x(t_1)} f(x) dx$$

in the proofs of Lemmas 8a and 8b, and Theorem 1. If in Lemma 8a it is assumed that $x_0 \ge Q(kK)$, then at points of T_v on y=0, $-\ddot{x}=g(x)-kp(t)$ has the sign of g(x), i.e. of x. Therefore T_v cannot cross y=0 twice before recrossing $x=x_0$: it lies in y>0 up to its furthest point from 0, and on this arc we may put y=y(x), t=t(x). The calculations of Lemma 8a can then be performed in terms of y(x) and y(x); and similarly at other relevant points of the argument, — the details are easily supplied.

- (B) The function g can depend on k^{10}), g = g(x, k), in Theorems 1, 2, 3 if (iv) is sharpened to
 - (iv*) $Q(2hd_1)$, independent of k in $k \ge k_0$, exists; and if further (v) g is uniformly bounded in every finite x-interval.

Only trivial changes are needed in the proofs.

9. The convergence theorem, Theorem 2(iv) of C and L, can now be proved as in their text, § 12. Since $a_0 = 0$ is assumed, only the 'basic' conditions (i) to (iii) and $(iv)_0$ of the present paper are needed (but Q(2K) must be independent of k if g = g(x, k)). It may be noted that the new conditions on g' and g'' imposed in C and L, need only hold in $|x| \leq B =$ the

⁹⁾ C and L, Theorem 1. The function f is to be continuous in x and y for each t, summable in t for each x and y.

¹⁰⁾ As throughout C and L.

constant of our Theorem 3. If g is independent of k it is therefore sufficient to assume that

(vi) g'(x) > 0 in $|x| \le B$, (vii) g''(x) exists in $|x| \le B$, where B is the "C" of theorem 3. It then follows that g'(x) has a positive lower bound, which is all that is needed in the proof.

The methods of C and L can be used to prove the following theorem on desturbances in the force-function. Let the functions f and g satisfy the conditions (i) to (iii) with $a_0 = 0$, $(iv)_0$, (vi) and $(vii)_0$, and let $p_1(t)$ and $p_2(t)$ be bounded summable functions

of bounded integral. Let
$$E(t) = \int_0^t (p_1 - p_2) dt$$
.

Theorem 4. Let
$$x_i(t)$$
 be, for $i = 1, 2$, any solution of (17)
$$\ddot{x} + k\dot{x}f(x) + g(x) = kp_i(t).$$

Then if k exceeds a certain k_0 , the quantities

$$X = \left(\int_0^t (x_1 - x_2)^2 dt\right)^{\frac{1}{2}}$$
 and $\Theta = \left(\int_0^t (E(t) - E(\tau))^2 d\tau\right)^{\frac{1}{2}}$

satisfy the inequality $X^2 \leq C_1 \Theta X + C_2$ for all positive t, where C_1 and C_2 are positive constants; and

$$\int_{0}^{t} (\dot{x}_{1} - \dot{x}_{2})^{2} dt \leq C_{3} t^{\frac{1}{2}} X + C_{4}.$$

If l and L are (positive) lower and upper bounds of g' in $|x| \leq B$, C_1 can be taken to be L/hl.

Corollary 1. If $\int_0^t (E(t) - E(\tau))^2 d\tau$ is bounded, then $x_1 - x_2 \rightarrow 0$

and $\dot{x}_1 - \dot{x}_2 \to 0$. For the integral $\int (x_1 - x_2)^2 dt$ being then convergent, the assertions follow from the boundedness of x(t) and $\dot{x}(t)$ (cf. C and L, § 12).

Corollary 2. If, for all t, $|E(t)| < \varepsilon$, then

$$\left((t^{-1}\!\!\int\limits_0^t (x_1-x_2)^2 dt\right)^{\!\frac{1}{2}} \leq C\varepsilon + O(t^{-1}), \; \left((t^{-1}\!\!\int\limits_0^t (\dot{x}_1-\dot{x}_2)^2 dt\right)^{\!\frac{1}{2}} \leq C\sqrt{\varepsilon} + O(t^{-1}).$$

Proof of Theorem 4. Let $\xi(t) = x_1(t) - x_2(t)$, $F(x) = \int_0^t f(x)dx$,

 $\Delta F = F(x_1) - F(x_2)$, $\Delta g = g(x_1) - g(x_2)$. From equations (17) we have

$$\ddot{\xi} + k \frac{d}{dt} (\Delta F) + \Delta g = k(p_1(t) - p_2(t)).$$

Therefore

$$\int_0^t (\Delta g)dt = - \left[\dot{\xi} \right]_0^t - k[\Delta F]_0^t + kE(t),$$

and

$$\begin{split} \int_{0}^{t_{0}} \left(p_{1} - p_{2}\right) \int_{0}^{t} \varDelta g d\tau &= - \int_{0}^{t_{0}} \left(p_{1} - p_{2}\right) (\dot{\xi} + k \varDelta F) dt + \frac{1}{2} k E^{2}(t_{0}) \, + \, CE(t_{0}), \\ &= - k^{-1} \int_{0}^{t_{0}} \left(\dot{\xi} \, + \, k \varDelta F\right) \left(\frac{d}{dt} \left(\dot{\xi} \, + \, k \varDelta F\right) \, + \, \varDelta g\right) dt + O(1), \end{split}$$

by (17) and the hypothesis on E,

$$= -\frac{1}{2}k^{-1}[(\dot{\xi} + k\Delta F)^{2}]_{0}^{t_{0}} - k^{-1}\int_{0}^{t_{0}} (\dot{\xi} + k\Delta F)\Delta g dt + O(1).$$

The first term is bounded by theorems already proved. Further,

$$\int_{0}^{t} \dot{\xi} \Delta g dt = \frac{1}{2} \left[\xi^{2} \frac{\Delta g}{\xi} \right]_{0}^{t} - \frac{1}{2} \int_{0}^{t} \xi^{2} \frac{d}{dt} \left(\frac{\Delta g}{\xi} \right) dt,$$

giving

(18)
$$\int_0^t (\dot{\xi} + k\Delta F) \Delta g dt - = \frac{1}{2} [\xi \Delta g]_0^t + \int_0^t \xi^2 \left(k \frac{\Delta F}{\xi} \frac{\Delta g}{\xi} - \frac{1}{2} \frac{d}{dt} \frac{\Delta g}{\xi} \right) dt.$$

From the conditions imposed on g it follows, as in C and L, § 12, that

$$\left| \frac{d}{dt} \left(\frac{\Delta g}{\xi} \right) \right| \le C_0$$
, where C_0 is independent of k , and
$$\frac{\Delta F}{\xi} \ge 2h, \quad \frac{\Delta g}{\xi} \ge l = \underline{bd} \ g' \ \text{in} \ |x| \le B.$$

Therefore the integral on the right of (18) is not less than

$$(19) (2hkl - C_0) \int_0^t \xi^2 dt \ge hkl \int_0^t \xi^2 dt$$

if $k \ge C_0/hl$.

We have also

$$\begin{split} \left(\int_0^{t_0} (p_1 - p_2) \int_0^t \Delta g d\tau\right)^2 &= \left(\int_0^{t_0} \left(E(t_0) - E(t)\right) \Delta g dt\right)^2 \\ &\leq \int_0^{t_0} \left(E(t_0) - E(t)\right)^2 dt \int_0^{t_0} \left(\frac{\Delta g}{\xi}\right) \xi^2 dt \\ &\leq L^2 \int_0^{t_0} \left(E(t_0) - E(t)\right)^2 dt \int_0^{t_0} \xi^2 dt. \end{split}$$

Combining this with our other inequalities we have

$$L\left(\int_{0}^{t_{0}}\left(E(t_{0})-E(t)\right)^{2}dt\right)^{\frac{1}{2}}\left(\int_{0}^{t_{0}}\xi^{2}dt\right)^{\frac{1}{2}}\geq hl\int_{0}^{t_{0}}\xi^{2}dt-\text{const.,}$$

that is, $L\Theta X \ge hlX^2$ —const.

Finally

$$\int_{0}^{t} \dot{\xi}^{2} dt = [\xi \dot{\xi}]_{0}^{t} - \int_{0}^{t} \xi \ddot{\xi} dt \leq C_{4} + C_{3} \int_{0}^{t} |\xi| dt,$$

since ξ , $\dot{\xi}$ and $\ddot{\xi}$ are bounded,

$$\leq C_4 + C_3 \left(t \int_0^t \xi^2 dt\right)^{\frac{1}{2}}.$$

This completes the proof of Theorem 4. (Received August 1948).