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Note on Fourier Series

by

L. S. Bosanquet and A. C. Offord
London

Suppose f(t) is integrable L in ( - n , n) and periodic outside,
and suppose that its Fourier series is

Then the allied series is

Let us write

and

The following theorem was recently given by Hardy 1).
Theorem A. I f

1) HARDY 5, 108.

2) We suppose that t &#x3E; 0 , and say that

We also say that

as n-&#x3E;oo, where the Cesàro mean of order ce of Sn.



181

as t -&#x3E; 0, then a necessary and sufficient condition that

as n --&#x3E; oo is that

as t --&#x3E; o.

The probleni arises of relaxing conditions (5) and (7). We do
this in theorem 1, and at the same time obtain a sharper con-
clusion than (6).
Theorem 1. I f

as t -&#x3E; 0, then a necessary and sufficient condition that

as n -&#x3E; 00, f or any c5 &#x3E; 0, is that

as t --&#x3E; 0, for some k.

This theorem can be further generalised by replacing the
functions log 1 and log n by L - and L(n) respectively, where9 t

L (x) is a logarithmico-exponential function such that 1 - L (x)  x
as x -&#x3E; 00 2a). We obtain then

Theorem 2..I f

as t - 0, then a necessary and sufficient condition that

as n - 00, for any ô &#x3E; 0: is that

as t --&#x3E; 0, for some k.

2a) See HARDY 3. We shall suppose throughout the paper that L(x) satisfies
these conditions unless the contrary is explicitly stated.
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The theorem becomes trivial when L(x) = x, since An=o(1)
as n -&#x3E; 00. When L(x) =1 it remains true if restated as follows.

Theorem 3. I f

as t --&#x3E; 0, then a necessary and sufficient condition that

should be summable (C, - 1 + à), for any ô &#x3E; 0, is that

should exist as a Cesàro integral of some order.
We shall only give the proof of theorem 2. Theorem 1 is in-

cluded in theorem 2, and the proof of theorem 3 can readily be
constructed from that of theorem 2. We employ the following
lemmas.

Lemma 2. Il (11) holds, then s. =O{L(n)} (C, à), for every
ô &#x3E; 0.
We may suppose without loss of generality that 0  Ô  1.

We have to show that

as n --&#x3E; oo, where xn(t) is the n-th Fejér kernel of ordcr t5,
and 0  q x. M. Riesz 4) has shown that

3) HARDY 3, 37.

4) RIESZ 10.



183

Then

by hypothesis, and,

by lemma 1 5).

Lemma 3. Necessary and sufficient conditions that (12) should
hold, for a given à = ô0 &#x3E; 0, are that it should hold for some ô &#x3E; 0

and that s,, = 0{L(n)} (C, bo).

, and let d"- be the n-th Cesàro mean of

order oc or dn. Then it is easily verified 6) that, for d &#x3E; 0, n. &#x3E; 0,

Also if d==o{L(n)} then d=o{L(n)} for fl &#x3E; ce &#x3E; - i .
From (18) it then follows by induction that necessary and suff i -
cient conditions that d-l == o{L(n)} for à=ôo are that this

should hold for some à and that sn° = o{L(n)}.

v 
-

This is a particular case of a theorem of Dixon and Ferrar 7).

Lemma 5. A necessarll and sufficient conditioii that

5) Here A denotes some constant, not necessarily the same at each occurrence.
6) Cf. KOGBETLIANTZ 8, 30.

’ ) DIXON and FERRAR 2, theorem II. See also RIESZ 11.
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as 1 - 0.

The corresponding rcsult with L(x) = 1 is due to Hardy and
Littlewood 8). The proof of lemma 5 is on the sanie lines. The
properties of L(x) required have been given by Hardy 9).

Lemma 6 10). A necessary and su f ficient condition that

as n -&#x3E; oo is that

Then, since cot l.u - is bounded in (0, n), it is easy to
u

see that x(t) - x*(t) tends to a limit as t -&#x3E; 0. Also 11)

where, for n &#x3E; 0 ,

Hence

and the lemma will follow by a.pplying lemma 5 to y*(t), if we
show that (21) and (22) each imply

8) HARDY and LITTLEWOOD 6, 70. See also BOSANQUET 1.

11) HARDY 3, 37.

1°) The case corresponding to L(x) = 1, in the modified form of theorem 3,

was conjectured by HARDY and LITTLEWOOD 7, 242.
11) HARDY 4.
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Now, by (18), (21) implies (19), and the first result follows
easily by partial summation. Again, (22) implies (20), for, writing

we have

as t --&#x3E; 0. Hence

Hence (22) implies

which is equivalent to (20). Lemma 5 now gives the second result.
Theorem 2 is an immediate consequence of lemmas 2, 3, 4 and 6.

ALLIED SERIES.

The following analogue of theorem 2 is also true.
Theorem 4. I f

as t -&#x3E; 0, then a necessary and s1tfficient condition that

as , f or any is that

as t --&#x3E; 0.

We require the following additional lemmas, the proofs of

which are analogous to those already given.
Lemma 7. Il (23) holds, then nBn=O{L(n)} ( C, l+Õ), for

every ô &#x3E; 0.

Lemma 8. Nec,essary and sufficient conditions that

for a given à, are that this be true for some à and
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Both these lemmas depend on the identity

where zn is the n-th Cesàro mean of order ;x of nBn.

Lemma 9. A necessary and s1.tfficient condition that

as i  o.

The lemma remains true when L(x)=1, this case being due
to Hardy and Littlewood 12).
Lemma 10. A necessary and sufficieni condition that

as n - oo is that

as t - 0.

Theorem 4 follows from lemmas 7, 8 and 10, and lemmas 3
and 4 with sn in place of Sn-
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