COMPOSITIO MATHEMATICA

L. S. BOSANQUET A. C. OFFORD Note on Fourier series

Compositio Mathematica, tome 1 (1935), p. 180-187 <http://www.numdam.org/item?id=CM 1935 1 180 0>

© Foundation Compositio Mathematica, 1935, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal N$ umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Note on Fourier Series

by

L. S. Bosanquet and A. C. Offord

London

Suppose f(t) is integrable L in $(-\pi, \pi)$ and periodic outside, and suppose that its Fourier series is

$$\frac{1}{2}a_0 + \sum_{n=0}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=0}^{\infty} A_n(t) .$$
 (1)

Then the allied series is

$$\sum_{n=1}^{\infty} (b_n \cos nt - a_n \sin nt) = \sum_{n=1}^{\infty} B_n(t).$$
(2)

Let us write

$$\varphi(t) = \frac{1}{2} \{ f(x+t) + f(x-t) \}$$

$$\varphi(t) = \frac{1}{2} \{ f(x+t) - f(x-t) \}$$
(3)

and

$$s_{n} = \sum_{m=0}^{n} A_{m}(x) = \sum_{m=0}^{n} A_{m}$$

$$\bar{s}_{n} = \sum_{m=1}^{n} B_{m}(x) = \sum_{m=1}^{n} B_{m}.$$
(4)

The following theorem was recently given by Hardy ¹). Theorem A. If

$$\left| \varphi(t) \right| = o\left(\log \frac{1}{t} \right) \quad (C, 1)^{-2}$$
(5)

1) HARDY 5, 108.

²) We suppose that t>0, and say that $\chi(t) = o\{L(1/t)\}(C, \alpha), \alpha > 0$, as $t \to 0$ if $\frac{1}{t^{\alpha}} \int_{0}^{t} (t-u)^{\alpha-1}\chi(u)du = o\{L(1/t)\} \text{ as } t \to 0.$ We also say that $s_n = o\{L(n)\}(C, \alpha), \alpha > -1$, as $n \to \infty$ if

$$s_n^{\alpha} = \frac{1}{A_n^{\alpha}} \sum_{\nu=0}^n A_{n-\nu}^{\alpha-1} s_{\nu} = o\{L(n)\}$$

as $n \to \infty$, where $A_n^{\alpha} = \frac{\Gamma(\alpha + n + 1)}{\Gamma(\alpha + 1)\Gamma(n + 1)}$; s_n^{α} is the Cesàro mean of order α of s_n .

as $t \rightarrow 0$, then a necessary and sufficient condition that

$$\sum_{\nu=1}^{n} \frac{s_{\nu}}{\nu} = o(\log n) \tag{6}$$

as $n \to \infty$ is that

$$\int_{t}^{\pi} \frac{\varphi(u)}{u} du = o\left(\log\frac{1}{t}\right) \tag{7}$$

as $t \to 0$.

The problem arises of relaxing conditions (5) and (7). We do this in theorem 1, and at the same time obtain a sharper conclusion than (6).

Theorem 1. If

$$|\varphi(t)| = O\left(\log \frac{1}{t}\right)$$
 (C, 1) (8)

as $t \rightarrow 0$, then a necessary and sufficient condition that

$$\sum_{\nu=1}^{n} \frac{s_{\nu}}{\nu} = o \ (\log n) \qquad (C, \ -1 + \delta) \qquad (9)$$

as $n \to \infty$, for any $\delta > 0$, is that

$$\int_{t}^{u} \frac{\varphi(u)}{u} du = o\left(\log\frac{1}{t}\right) \qquad (C, k) \tag{10}$$

as $t \rightarrow 0$, for some k.

This theorem can be further generalised by replacing the functions $\log \frac{1}{t}$ and $\log n$ by $L\left(\frac{1}{t}\right)$ and L(n) respectively, where L(x) is a logarithmico-exponential function such that $1 < L(x) \leq x$ as $x \to \infty^{2a}$. We obtain then

Theorem 2. If

$$\left|\varphi(t)\right| = O\left\{L\left(\frac{1}{t}\right)\right\} \quad (C, \ 1) \tag{11}$$

as $t \rightarrow 0$, then a necessary and sufficient condition that

$$\sum_{\nu=1}^{n} \frac{s_{\nu}}{\nu} = o\{L(n)\} \qquad (C, -1+\delta) \qquad (12)$$

as $n \to \infty$, for any $\delta > 0$, is that

$$\int_{t}^{\pi} \frac{\varphi(u)}{u} du = o\left\{L\left(\frac{1}{t}\right)\right\} \quad (C, \ k)$$
(13)

as $t \to 0$, for some k.

[3]

^{2a}) See HARDY 3. We shall suppose throughout the paper that L(x) satisfies these conditions unless the contrary is explicitly stated.

The theorem becomes trivial when L(x) = x, since $A_n = o(1)$ as $n \to \infty$. When L(x)=1 it remains true if restated as follows.

Theorem 3. If

$$|\varphi(t)| = O(1)$$
 (C, 1) (14)

as $t \rightarrow 0$, then a necessary and sufficient condition that

$$\sum_{\nu=1}^{n} \frac{s_{\nu}}{\nu} \tag{15}$$

should be summable $(C, -1 + \delta)$, for any $\delta > 0$, is that

$$\int_{0}^{\pi} \frac{\varphi(u)}{u} du \tag{16}$$

should exist as a Cesàro integral of some order.

We shall only give the proof of theorem 2. Theorem 1 is included in theorem 2, and the proof of theorem 3 can readily be constructed from that of theorem 2. We employ the following lemmas.

Lemma 1³). If $x^{\beta-\delta} \leq L(x) \leq x^{\beta+\delta}$ as $x \to \infty$, for every $\delta > 0$, and if $\alpha + \beta > 1$, then, as $t \to 0$,

$$\int_{t}^{\eta} u^{-\alpha} L\left(\frac{1}{u}\right) du \sim \frac{t^{1-\alpha}}{\alpha+\beta-1} L\left(\frac{1}{t}\right).$$
 (17)

Lemma 2. If (11) holds, then $s_n = O\{L(n)\}$ (C, δ), for every $\delta > 0$.

We may suppose without loss of generality that $0 < \delta < 1$. We have to show that

$$I(n) = \int_0^{\eta} \varphi(t) \varkappa_n^{\delta}(t) dt = O\{L(n)\},$$

as $n \to \infty$, where $\varkappa_n^{\delta}(t)$ is the *n*-th Fejér kernel of order δ , and $0 < \eta \leq \pi$. M. Riesz⁴) has shown that

$$igert arkappa_{n}^{\delta}\left(t
ight)igert iggl\{ \stackrel{\leq}{\leq} An \ \stackrel{\delta}{\leq} An^{-\delta} t^{-1-\delta}$$

for n > 0, $0 < t < \pi$, $0 < \delta < 1$. Write

$$I(n) = \int_{0}^{1/n} + \int_{1/n}^{\eta} = I_{1} + I_{2}.$$

³) HARDY 3, 37.

4) RIESZ 10.

Then

$$|I_1| \leq An \int_0^{1/n} |\varphi(u)| du = O\{L(n)\}$$

by hypothesis, and, if $\Phi(t) = \int_{0}^{t} |\varphi(u)| du$,

$$egin{aligned} &I_2 ig| &\leq A n^{-\delta} \! \int_{1/n}^{\eta} &arphi(u) ig| \ u^{-1-\delta} \ du \ &\leq A n^{-\delta} ig| arPhiig(rac{1}{n}ig) ig| \ n^{1+\delta} + A n^{-\delta} \! \int_{1/n}^{\eta} \! arPhi(u) u^{-2-\delta} \ du \ &= O\{L(n)\} + n^{-\delta} \! \int_{1/n}^{\eta} \! Oig\{Lig(rac{1}{u}ig)ig\} u^{-1-\delta} \ du \ &= O\{L(n)\}, \end{aligned}$$

by lemma 1^{5}).

Lemma 3. Necessary and sufficient conditions that (12) should hold, for a given $\delta = \delta_0 > 0$, are that it should hold for some $\delta > 0$ and that $s_n = o\{L(n)\}$ (C, δ_0).

Let $d_n = \sum_{\nu=1}^n \frac{s_{\nu}}{\nu}$, and let d_n^{α} be the *n*-th Cesàro mean of order α or d_n . Then it is easily verified ⁶) that, for $\alpha > 0$, n > 0,

$$\alpha(d_n^{\alpha-1}-d_n^{\alpha})=s_n^{\alpha}-s_0. \tag{18}$$

Also if $d_n^{\alpha} = o\{L(n)\}$ then $d_n^{\beta} = o\{L(n)\}$ for $\beta > \alpha > -1$. From (18) it then follows by induction that necessary and sufficient conditions that $d_n^{\delta-1} = o\{L(n)\}$ for $\delta = \delta_0$ are that this should hold for some δ and that $s_n^{\delta_0} = o\{L(n)\}$.

Lemma 4. If $s_n = O\{L(n)\}(C, \delta)$, for a given $\delta > 0$, and $s_n = o\{L(n)\}(C, k)$, for some k, then $s_n = o\{L(n)\}(C, \delta')$, for every $\delta' > \delta$.

This is a particular case of a theorem of Dixon and Ferrar 7).

Lemma 5. A necessary and sufficient condition that

$$s_n = o\{L(n)\} \quad (C) \tag{19}$$

⁵) Here A denotes some constant, not necessarily the same at each occurrence.

⁶⁾ Cf. Kogbetliantz 8, 30.

⁷⁾ DIXON and FERRAR 2, theorem II. See also Riesz 11.

as $n \to \infty$ is that

$$\varphi(t) = o\left\{ L\left(\frac{1}{t}\right) \right\} \quad (C)$$
(20)

as $t \rightarrow 0$.

The corresponding result with L(x) = 1 is due to Hardy and Littlewood⁸). The proof of lemma 5 is on the same lines. The properties of L(x) required have been given by Hardy⁹).

Lemma 6¹⁰). A necessary and sufficient condition that

$$\sum_{\nu=1}^{n} \frac{s_{\nu}}{\nu} = o\{L(n)\}$$
 (C) (21)

as $n \to \infty$ is that

$$\int_{t}^{\pi} \frac{\varphi(u)}{u} du = o\left\{ L\left(\frac{1}{t}\right) \right\} \qquad (C)$$

as $t \to 0$.

Let

$$\chi(t) = \int_{t}^{\pi} \frac{\varphi(u)}{u} du, \qquad \chi^*(t) = \int_{t}^{\pi} \varphi(u) \frac{1}{2} \cot \frac{1}{2}u \, du.$$

Then, since $\frac{1}{2}\cot \frac{1}{2}u - \frac{1}{u}$ is bounded in $(0, \pi)$, it is easy to see that $\chi(t) - \chi^*(t)$ tends to a limit as $t \to 0$. Also ¹¹)

$$\chi^*(t) = \frac{1}{2}c_0 + \sum_{n=1}^{\infty} c_n \cos nt$$
,

where, for n > 0,

$$c_n = \frac{2}{\pi} \int_0^{\pi} \chi^*(t) \cos nt \, dt = \frac{s_n}{n} - \frac{1}{2} \frac{A_n}{n} \cdot$$

Hence

$$\sum_{\nu=1}^{n} \frac{s_{\nu}}{\nu} - \sum_{\nu=1}^{n} c_{\nu} = \frac{1}{2} \sum_{\nu=1}^{n} \frac{A_{\nu}}{\nu},$$

and the lemma will follow by applying lemma 5 to $\chi^*(t)$, if we show that (21) and (22) each imply

$$\sum_{\nu=1}^{n} \frac{A_{\nu}}{\nu} = o\{L(n)\} \quad (C)$$

as $n \to \infty$.

8) HARDY and LITTLEWOOD 6, 70. See also BOSANQUET 1.

⁹) HARDY 3, 37.

¹⁰) The case corresponding to L(x) = 1, in the modified form of theorem 3, was conjectured by HARDY and LITTLEWOOD 7, 242.

¹¹) HARDY 4.

184

Now, by (18), (21) implies (19), and the first result follows easily by partial summation. Again, (22) implies (20), for, writing $\Phi(t) = \int^t \varphi(u) du$, we have

$$\chi(t) = \int_t^\pi \frac{\varphi(u)}{u} du = C - \frac{\Phi(t)}{t} + \int_t^\pi \frac{\Phi(u)}{u^2} du = o\left(\frac{1}{t}\right)$$

as $t \to 0$. Hence

$$\Phi(t) = \int_{0}^{t} u \frac{\varphi(u)}{u} du = \left[-u \chi(u) \right]_{0}^{t} + \int_{0}^{t} \chi(u) du = -t \chi(t) + \int_{0}^{t} \chi(u) du .$$

Hence (22) implies

$$\frac{\Phi(t)}{t} = o\left\{L\left(\frac{1}{t}\right)\right\} \qquad (C) ,$$

which is equivalent to (20). Lemma 5 now gives the second result.

Theorem 2 is an immediate consequence of lemmas 2, 3, 4 and 6.

ALLIED SERIES.

The following analogue of theorem 2 is also true.

Theorem 4. If

$$|\psi(t)| = O\left\{L\left(\frac{1}{t}\right)\right\}$$
 (C, 1) (23)

as $t \rightarrow 0$, then a necessary and sufficient condition that

$$\sum_{\nu=1}^{n} \frac{\bar{s}_{\nu}}{\nu} = o\{L(n)\} \qquad (C, -1+\delta) \qquad (24)$$

as $n \to \infty$, for any $\delta > 0$, is that

$$\int_{t}^{\pi} \cot \frac{1}{2}u \, du \, \int_{u}^{\pi} \cot \frac{1}{2}v \, \psi(v) \, dv = o\left\{L\left(\frac{1}{t}\right)\right\} \tag{C}$$

as $t \to 0$.

We require the following additional lemmas, the proofs of which are analogous to those already given.

Lemma 7. If (23) holds, then $nB_n = O\{L(n)\}$ (C, $1+\delta$), for every $\delta > 0$.

Lemma 8. Necessary and sufficient conditions that

$$\overline{s}_n = O\{L(n)\}$$
 (C, δ)

for a given δ , are that this be true for some δ and

$$nB_n = O\{L(n)\}$$
 (C, 1+ δ).

[6]

Both these lemmas depend on the identity

$$\tau_n^{\alpha} = \alpha(\bar{s}_n^{\alpha-1} - \bar{s}_n^{\alpha}), \qquad (26)$$

where τ_n^{α} is the *n*-th Cesàro mean of order α of nB_n .

The Fejér kernel for the Allied series is $\overline{\varkappa}_n^{\delta}(t)$, where $|\overline{\varkappa}_n^{\delta}(t)| \leq An$ and $|\overline{\varkappa}_n^{\delta} - \frac{1}{2} \cot \frac{1}{2}t| \leq A n^{-\delta} t^{-1-\delta}$, for n > 0, $0 < t < \pi$.

Lemma 9. A necessary and sufficient condition that

$$\overline{s}_n = o\{L(n)\} \tag{C} (27)$$

as $n \to \infty$ is that

$$\int_{t}^{\pi} \cot \frac{1}{2} u \psi(u) \, du = o \left\{ L\left(\frac{1}{t}\right) \right\} \qquad (C) \qquad (28)$$

as $i \rightarrow 0$.

The lemma remains true when L(x)=1, this case being due to Hardy and Littlewood ¹²).

Lemma 10. A necessary and sufficient condition that

$$\sum_{\nu=1}^{n} \frac{\bar{s}_{\nu}}{\nu} = o\{L(n)\}$$
 (C) (29)

as $n \to \infty$ is that

$$\int_{t}^{\pi} \cot \frac{1}{2} u \, du \int_{u}^{\pi} \cot \frac{1}{2} v \, \psi(v) \, dv = o\left\{L\left(\frac{1}{t}\right)\right\} \quad (C) \quad (30)$$

as $t \rightarrow 0$.

Theorem 4 follows from lemmas 7, 8 and 10, and lemmas 3 and 4 with \bar{s}_n in place of s_n .

REFERENCES.

- L. S. BOSANQUET, On the summability of Fourier Series [Proc. London Math. Soc. (2) 31 (1930), 144-164].
- A. L. DIXON and W. L. FERRAR, On Cesàro sums [Journ. London Math. Soc. 7 (1932), 87-93].
- 3. G. H. HARDY, Orders of Infinity [Cambridge Tracts in Math. No. 12 (1924)].
- 4. G. H. HARDY, Notes on some points in the integral Calculus (LXVI): The arithmetic mean of a Fourier constant [Messenger of Math. 58 (1928), 50-52].
- 5. G. H. HARDY, The summability of a Fourier series by logarithmic means [Quarterly Journal (Oxford series) 2 (1931), 107-112].

¹²) HARDY and LITTLEWOOD, 7. See also PALEY, 9.

- 6. G. H. HARDY and J. E. LITTLEWOOD, Solution of the Cesàro summability problem for power series and Fourier series [Math. Zeit. 19 (1924), 67-96].
- 7. G. H. HARDY and J. E. LITTLEWOOD, The Allied series of a Fourier series [Proc. London Math. Soc. (2) 24 (1926), 211-246].
- 8. E. KOGBELTIANTZ, Sommation des séries et integrales divergentes par les moyennes arithmétiques et typiques [Memorial des sciences math. 51 (1931)].
- 9. R. E. A. C. PALEY, On the Cesàro summability of Fourier series and Allied series [Proc. Cambridge Phil. Soc. 26 (1930), 173-203].
- M. RIESZ, Sur le sommation des séries de Fourier [Acta Univ. Hungaricae Szeged 1 (1923), 104—114].
- 11. M. RIESZ, Sur un theorème de la moyenne et ses applications [ibid. 114-126].

(Received August 16, 1933. Received with emendations October 30, 1933.)