

UNIT FIELDS ON PUNCTURED SPHERES

Fabiano G.B. Brito & Pablo M. Chacón & David L. Johnson

Tome 136 Fascicule 1

2008

Bull. Soc. math. France **136** (1), 2008, p. 147–157

UNIT VECTOR FIELDS ON ANTIPODALLY PUNCTURED SPHERES: BIG INDEX. BIG VOLUME

BY FABIANO G.B. BRITO, PABLO M. CHACÓN & DAVID L. JOHNSON

ABSTRACT. — We establish in this paper a lower bound for the volume of a unit vector field \vec{v} defined on $\mathbf{S}^n \setminus \{\pm x\}$, n = 2, 3. This lower bound is related to the sum of the absolute values of the indices of \vec{v} at x and -x.

Résumé (Champs unitaires dans les sphères antipodalement trouées : grand indice entraîne grand volume)

Nous établissons une borne inférieure pour le volume d'un champ de vecteurs \vec{v} défini dans $\mathbf{S}^n \setminus \{\pm x\}$, n=2,3. Cette borne inférieure dépend de la somme des valeurs absolues des indices de \vec{v} en x et en -x.

Texte recu le 29 septembre 2006, révisé le 2 avril 2007

Fabiano G.B. Brito, Dpto. de Matemática, Instituto de Matemática e Estatística, Universidade de São Paulo, R. do Matão 1010, São Paulo-SP, 05508-090 (Brazil) • E-mail: fabiano@ime.usp.br

Pablo M. Chacón, Departamento de Matemáticas, Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca (Spain) • E-mail: pmchacon@usal.es

DAVID L. JOHNSON, Department of Mathematics, Lehigh University, 14 E. Packer Avenue, Bethlehem, PA, 18015 (USA)

• E-mail: david.johnson@lehigh.edu

2000 Mathematics Subject Classification. — 53C20, 57R25, 53C12.

Key words and phrases. — Unit vector fields, volume, singularities, index.

During the preparation of this paper the first author was supported by CNPq, Brazil. The second author is partially supported by MEC/FEDER project MTM2004-04934-C04-02, Spain. The third author was supported during this research by grants from the Universidade de São Paulo, FAPESP Proc. 1999/02684-5, and Lehigh University, and thanks those institutions for enabling the collaboration involved in this work.

1. Introduction

The volume of a unit vector field \vec{v} on a closed Riemannian manifold M is defined [10] as the volume of the section $\vec{v}: M \to T^1M$, where the Sasakian metric is considered in T^1M . The volume of \vec{v} can be computed from the Levi-Civita connection ∇ of M. If we denote by ν the volume form, for an orthonormal local frame $\{e_a\}_{a=1}^n$, we have

(1)
$$\operatorname{vol}(\vec{v}) = \int_{M} \left(1 + \sum_{a=1}^{n} \|\nabla_{e_{a}} \vec{v}\|^{2} + \sum_{a_{1} < a_{2}} \|\nabla_{e_{a_{1}}} \vec{v} \wedge \nabla_{e_{a_{2}}} \vec{v}\|^{2} + \dots + \sum_{a_{1} < \dots < a_{n-1}} \|\nabla_{e_{a_{1}}} \vec{v} \wedge \dots \wedge \nabla_{e_{a_{n-1}}} \vec{v}\|^{2} \right)^{\frac{1}{2}} \nu.$$

Note that $vol(\vec{v}) \ge vol(M)$ and also that only parallel fields attain the trivial minimum.

For odd-dimensional spheres, vector fields homologous to the Hopf fibration \vec{v}_H have been studied, see [10], [3], [9] and [2]. In [5], a non-trivial lower bound of the volume of unit vector fields on spaces of constant curvature was obtained. In \mathbb{S}^{2k+1} , only the vector field \vec{n} tangent to the geodesics from a fixed point (with two singularities) attains the volume of that bound. We call this field \vec{n} north-south or radial vector field. We notice that unit vector fields with singularities show up in a natural way, see also [12].

For manifolds of dimension 5, a theorem showing how the topology of a vector field influences its volume appears in [4]. More precisely, the result in [4] is an inequality relating the volume of \vec{v} and the Euler form of the orthogonal distribution to \vec{v} .

The purpose of this paper is to establish a relationship between the volume of unit vector fields and the indices of those fields around isolated singularities.

We consider these notes to be a preliminary effort to understand this phenomenon. For this reason, we have chosen a simple model where such a relationship is found. We hope this could serve as inspiration for more complex situations to be treated in a near future.

Precisely, we prove here:

Theorem 1.1. — Let $W = \mathbb{S}^n \setminus \{N, S\}$, n = 2 or 3, be the standard Euclidean sphere where two antipodal points N and S are removed. Let \vec{v} be a unit smooth vector field defined on W. Then,

for
$$n = 2$$
, $\operatorname{vol}(\vec{v}) \ge \frac{1}{2} (\pi + |I_{\vec{v}}(N)| + |I_{\vec{v}}(S)| - 2) \operatorname{vol}(\mathbb{S}^2);$
for $n = 3$, $\operatorname{vol}(\vec{v}) \ge (|I_{\vec{v}}(N)| + |I_{\vec{v}}(S)|) \operatorname{vol}(\mathbb{S}^3),$

where $I_{\vec{v}}(P)$ stands the Poincaré index of \vec{v} around P.

It is easy to verify that the north-south field \vec{n} achieves the equalities in the theorem. In fact, the volume of \vec{n} in \mathbb{S}^2 is equal to $\frac{1}{2}\pi \text{vol}(\mathbb{S}^2)$, and in \mathbb{S}^3 is $2\text{vol}(\mathbb{S}^3)$. We have to point out that $\text{vol}(\vec{n}) = \text{vol}(\vec{v}_H)$ in \mathbb{S}^3 .

The lower bound in \mathbb{S}^3 when the singularities are trivial (i.e. $I_{\vec{v}}(N) = I_{\vec{v}}(S) = 0$) has no special meaning.

We will comment briefly some possible extensions for this result in Section 3 of this paper.

2. Proof of the theorem

A key ingredient in the proof of the theorem is the application of the following result of Chern [7]. The second part of this statement is a special case of the result of Section 3 of that article.

PROPOSITION 2.1 (see Chern [7]). — Let M^n be an orientable Riemannian manifold of dimension n, with Riemannian connection 1-form ω and curvature form Ω . Then, there is an (n-1)-form Π on the unit tangent bundle T^1M with $\pi: T^1M \to M$ the bundle projection, so that:

$$\mathrm{d}\Pi = \begin{cases} e(\Omega) & \textit{if n is even,} \\ 0 & \textit{if n is odd.} \end{cases}$$

In addition, $\int_{\pi^{-1}(x)} \Pi = 1$ for any $x \in M$, that is, $\Pi_{|\pi^{-1}(x)}$ is the induced volume form of the fiber $\pi^{-1}(x)$, normalized to have volume 1.

The form Π as described by Chern is somewhat complicated. First, define forms ϕ_k for $k \in \{0, \dots, [\frac{1}{2}n] - 1\}$, by choosing a frame $\{e_1, \dots, e_n\}$ of TM, so that $\{e_1, \dots, e_{n-1}\}$ frame $\pi^{-1}(x)$ at $e_n \in \pi^{-1}(x)$. Then, at $e_n \in T^1M$,

$$\phi_k = \sum_{1 < \alpha_1, \dots, \alpha_{n-1} < n-1} \epsilon_{\alpha_1, \dots, \alpha_{n-1}} \Omega_{\alpha_1 \alpha_2} \wedge \dots \wedge \Omega_{\alpha_{2k-1} \alpha_{2k}} \wedge \omega_{\alpha_{2k+1} n} \wedge \dots \wedge \omega_{\alpha_{n-1} n},$$

where $\epsilon_{\alpha_1...\alpha_{n-1}}$ is the sign of the permutation, and from this

$$\Pi = \begin{cases} \frac{1}{\pi^{\frac{1}{2}n}} \sum_{k=0}^{\frac{1}{2}n-1} \frac{(-1)^k}{1 \cdot 3 \cdots (n-2k-1) \cdot 2^{k+\frac{1}{2}n} k!} \phi_k & \text{if } n \text{ is even,} \\ \frac{1}{2^n \pi^{\frac{1}{2}(n-1)} (\frac{1}{2}(n-1))!} \sum_{k=0}^{\frac{1}{2}(n-1)} (-1)^k {\frac{1}{2}(n-1) \choose k} \phi_k & \text{if } n \text{ is odd.} \end{cases}$$

Subsequent treatments of this general theory [8], [11] use more elegant formulations of forms similar to this, but usually only for the bundle of frames, and avoid the case where M is odd-dimensional.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

The cases relevant to this research are for n = 2 and n = 3, where these formulas simplify to

$$\Pi = \begin{cases} \frac{1}{2\pi} \omega_{12} & \text{if } n = 2, \\ \frac{1}{4\pi} \left(\omega_{13} \wedge \omega_{23} - \Omega_{12} \right) & \text{if } n = 3. \end{cases}$$

Even though there is a common line of reasoning in the proof of both parts of the theorem, each dimension has its special features. For that reason, we provide separate proofs for dimensions 2 and 3.

2.1. Case n=2. — Denote by g the usual metric on \mathbb{S}^2 induced from \mathbb{R}^3 . Without loss of generality we take N=(0,0,1) and S=(0,0,-1). On W we consider an oriented orthonormal local frame $\{e_1,e_2=\vec{v}\}$. Its dual basis is denoted by $\{\theta_1,\theta_2\}$ and the connection 1-forms of ∇ are $\omega_{ij}(X)=g(\nabla_X e_j,e_i)$ for i,j=1,2 where X is a vector in the corresponding tangent space. In dimension 2, the volume (1) reduces to:

$$\operatorname{vol}(\vec{v}) = \int_{\mathbb{S}^2} \sqrt{1 + k^2 + \tau^2} \, \nu,$$

where $k = g(\nabla_{\vec{v}} \vec{v}, e_1)$ is the geodesic curvature of the integral curves of \vec{v} and $\tau = g(\nabla_{e_1} \vec{v}, e_1)$ is the geodesic curvature of the curves orthogonal to \vec{v} . Also,

$$\omega_{12} = \tau \theta_1 + k \theta_2.$$

The first goal is to relate the integrand of the volume with the connection form ω_{12} . If S_{φ}^1 is the parallel of \mathbb{S}^2 at latitude $\varphi \in (-\frac{1}{2}\pi, \frac{1}{2}\pi)$ consider the unit field \vec{u} on S_{φ}^1 such that $\{\vec{u}, \vec{n}\}$ is positively oriented where \vec{n} is the field pointing toward N. Let $\alpha \in [0, 2\pi]$ be the oriented angle from \vec{u} to \vec{v} . Then $\vec{u} = \sin \alpha e_1 + \cos \alpha \vec{v}$. If $i: S_{\varphi}^1 \to \mathbb{S}^2$ is the inclusion map, we have

(2)
$$i^*\omega_{12}(\vec{u}) = \tau\theta_1(\vec{u}) + k\theta_2(\vec{u}) = \tau \sin \alpha + k \cos \alpha.$$

We split the domain of the integral in northern and southern hemisphere, H^+ and H^- respectively. First we consider the northern hemisphere H^+ . From the general inequality $\sqrt{a^2+b^2} \geq |a\cos\beta+b\sin\beta| \geq a\cos\beta+b\sin\beta$, for any $a,b,\beta \in \mathbb{R}$, we have:

(3)
$$\sqrt{1 + k^2 + \tau^2} \ge \cos \varphi + \sqrt{k^2 + \tau^2} \sin \varphi$$

$$\ge \cos \varphi + |k \cos \alpha + \tau \sin \alpha| \sin \varphi = \cos \varphi + |i^* \omega_{12}(\vec{u})| \sin \varphi.$$

Denote by ν' the induced volume form to S^1_{φ} . From (2) and (3) we get

$$(4) \quad \operatorname{vol}(\vec{v})_{|H^{+}} \geq \int_{H^{+}} \left(\cos\varphi + \left|i^{*}\omega_{12}(\vec{u})\right| \sin\varphi\right) \nu$$

$$= \int_{0}^{\frac{1}{2}\pi} \int_{S_{\varphi}^{1}} \cos\varphi \nu' d\varphi + \int_{0}^{\frac{1}{2}\pi} \int_{S_{\varphi}^{1}} \left|i^{*}\omega_{12}(\vec{u})\right| \sin\varphi \nu' d\varphi$$

$$\geq \int_{0}^{\frac{1}{2}\pi} 2\pi \cos^{2}\varphi d\varphi + \int_{0}^{\frac{1}{2}\pi} \sin\varphi \left|\int_{S_{\varphi}^{1}} i^{*}\omega_{12}\right| d\varphi.$$

The connection form ω_{12} satisfies $d\omega_{12} = \theta_1 \wedge \theta_2$. Therefore, the area of the annulus region

$$A(\varphi, \frac{1}{2}\pi - \epsilon) = \left\{ (x_1, x_2, x_3) \in \mathbb{S}^2 \mid \sin \varphi \le x_3 \le \sin(\frac{1}{2}\pi - \epsilon) \right\}$$

provides the equality

(5)
$$\int_{A(\varphi,\frac{1}{2}\pi-\epsilon)} d\omega_{12} = \text{area of } A = \int_{\varphi}^{\frac{1}{2}\pi-\epsilon} 2\pi \cos t \, dt = 2\pi \left(\sin(\frac{1}{2}\pi-\epsilon) - \sin\varphi\right).$$

The boundary of $A(\varphi, \frac{1}{2}\pi - \epsilon)$ is $\partial A = S^1_{\varphi} \cup S^1_{\frac{1}{2}\pi - \epsilon}$ (with the appropriate orientation), so by (5) and Stokes' Theorem

(6)
$$\int_{S_{\varphi}^{1}} i^{*}\omega_{12} = \int_{A(\varphi, \frac{1}{2}\pi - \epsilon)} d\omega_{12} + \int_{S_{\frac{1}{2}\pi - \epsilon}^{1}} i^{*}\omega_{12}$$
$$= 2\pi \left(\sin\left(\frac{1}{2}\pi - \epsilon\right) - \sin\varphi\right) + \int_{S_{\frac{1}{2}\pi - \epsilon}^{1}} i^{*}\omega_{12}.$$

If ω is the Riemannian connection form of the standard metric on \mathbb{S}^2 , since the limit as ϵ goes to 0 of $\vec{v}_{|S^1_{\frac{1}{2}\pi-\epsilon}}$ maps $S^1_{\frac{1}{2}\pi-\epsilon}$ onto the fiber $I_{\vec{v}}(N)$ times, from Proposition 2.1 we have

$$\lim_{\epsilon \to 0} \int_{S^{1}_{\frac{1}{2}\pi - \epsilon}} i^{*}\omega_{12} = 2\pi \lim_{\epsilon \to 0} \int_{S^{1}_{\frac{1}{2}\pi - \epsilon}} i^{*}\vec{v}^{*}\Pi = 2\pi I_{\vec{v}}(N) \int_{\pi^{-1}(N)} \Pi = 2\pi I_{\vec{v}}(N).$$

Thus, from (6)

(7)
$$\int_{S_{\varphi}^{1}} i^{*} \omega_{12} = 2\pi (1 - \sin \varphi) + 2\pi I_{\vec{v}}(N).$$

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Following from (4) with (7) we have:

$$(8) \quad \operatorname{vol}(\vec{v})|_{H^{+}} \geq \frac{\pi^{2}}{2} + \int_{0}^{\frac{1}{2}\pi} \sin \varphi \cdot \left| 2\pi (1 - \sin \varphi) + 2\pi I_{\vec{v}}(N) \right| d\varphi$$

$$= \frac{\pi^{2}}{2} + \int_{0}^{\frac{1}{2}\pi} \left| 2\pi \sin \varphi I_{\vec{v}}(N) - 2\pi \sin \varphi (\sin \varphi - 1) \right| d\varphi$$

$$\geq \frac{\pi^{2}}{2} + \int_{0}^{\frac{1}{2}\pi} \left| \left| 2\pi \sin \varphi I_{\vec{v}}(N) \right| - \left| 2\pi \sin \varphi (\sin \varphi - 1) \right| \right| d\varphi$$

$$\geq \frac{\pi^{2}}{2} + \left| \int_{0}^{\frac{1}{2}\pi} \left(\left| 2\pi \sin \varphi I_{\vec{v}}(N) \right| - \left| 2\pi \sin \varphi (\sin \varphi - 1) \right| \right) d\varphi \right|$$

$$= \frac{\pi^{2}}{2} + \left| 2\pi |I_{\vec{v}}(N)| \int_{0}^{\frac{1}{2}\pi} \sin \varphi d\varphi - 2\pi \int_{0}^{\frac{1}{2}\pi} (\sin \varphi - \sin^{2} \varphi) d\varphi \right|$$

$$= \frac{\pi^{2}}{2} + \left| 2\pi |I_{\vec{v}}(N)| - 2\pi + \frac{\pi^{2}}{2} \right|.$$

For the southern hemisphere, the index of \vec{v} at S is obtained by

$$\lim_{\epsilon \to 0} \int_{S^1_{-\frac{1}{2}\pi + \epsilon}} i^* \omega_{12} = \operatorname{vol}(\mathbb{S}^1) I_{\vec{v}}(S).$$

Therefore, if $-\frac{1}{2}\pi < \varphi \leq 0$ we have

(9)
$$\int_{S_{\varphi}^{1}} i^{*} \omega_{12} = 2\pi I_{\vec{v}}(S) - 2\pi (\sin \varphi + 1).$$

In order to obtain a similar equation to (3) we take $\beta = -\varphi$, and together with (2) we have

(10)
$$\operatorname{vol}(\vec{v})_{|H^{-}} \geq \int_{H^{-}} \left(\cos\varphi - \left|i^{*}\omega_{12}(\vec{u})\right| \sin\varphi\right) \nu$$
$$\geq \int_{-\frac{1}{2}\pi}^{0} 2\pi \cos^{2}\varphi \,\mathrm{d}\varphi - \int_{-\frac{1}{2}\pi}^{0} \left|\int_{S_{0}^{1}} i^{*}\omega_{12}\right| \sin\varphi \,\mathrm{d}\varphi.$$

From (9) and (10):

$$(11) \operatorname{vol}(\vec{v})\big|_{H^{-}} \ge \frac{\pi^{2}}{2} - \int_{-\frac{1}{2}\pi}^{0} \left| 2\pi I_{\vec{v}}(S) - 2\pi (\sin \varphi + 1) \right| \sin \varphi \, \mathrm{d}\varphi$$

$$\ge \frac{\pi^{2}}{2} + \left| 2\pi \left| I_{\vec{v}}(S) \right| \int_{-\frac{1}{2}\pi}^{0} \left| \sin \varphi \right| \, \mathrm{d}\varphi - 2\pi \int_{-\frac{1}{2}\pi}^{0} \left| \sin^{2} \varphi + \sin \varphi \right| \, \mathrm{d}\varphi \right|$$

$$= \frac{\pi^{2}}{2} + \left| 2\pi \left| I_{\vec{v}}(S) \right| - 2\pi + \frac{\pi^{2}}{2} \right|.$$

Finally, recall that the sum of the indices of a field in \mathbb{S}^2 must be 2, therefore the sum of the absolute values of the indices must be greater or equal than 2. So, from (8) and (11), the volume of \vec{v} is bounded by

$$\operatorname{vol}(\vec{v}) \ge \pi^{2} + \left| 2\pi |I_{\vec{v}}(N)| - 2\pi + \frac{\pi^{2}}{2} \right| + \left| 2\pi |I_{\vec{v}}(S)| - 2\pi + \frac{\pi^{2}}{2} \right|$$

$$\ge \pi^{2} + \left| 2\pi |I_{\vec{v}}(N)| + 2\pi |I_{\vec{v}}(S)| - 4\pi + \pi^{2} \right|$$

$$= \pi^{2} + \left| 2\pi \left(|I_{\vec{v}}(N)| + |I_{\vec{v}}(S)| - 2 \right) + \pi^{2} \right|$$

$$= 2\pi^{2} + 2\pi \left(|I_{\vec{v}}(N)| + |I_{\vec{v}}(S)| - 2 \right) = \left(\pi + |I_{\vec{v}}(N)| + |I_{\vec{v}}(S)| - 2 \right) \frac{\operatorname{vol}(\mathbb{S}^{2})}{2}.$$

2.2. Case n=3. — As before, denote by g the metric in \mathbb{S}^3 and consider a general situation where $N=(0,0,0,1),\ S=(0,0,0,-1)$ and $I_{\vec{v}}(N)\geq 0$ (and therefore $I_{\vec{v}}(S)\leq 0$).

If \vec{v} is a unit vector field on W, consider on W an oriented orthonormal local frame such that $\{e_1, e_2, e_3 = \vec{v}\}$. The dual basis will be denoted by $\{\theta_1, \theta_2, \theta_3\}$. The coefficients of the second fundamental form of the orthogonal distribution to \vec{v} , possibly non-integrable, are $h_{ij} = \omega_{i3}(e_j) = g(\nabla_{e_j}\vec{v}, e_i)$. The coefficients of the acceleration of \vec{v} are given by $\nabla_{\vec{v}}\vec{v} = a_1e_1 + a_2e_2$. Finishing the notation, we will use J for the integrand of the volume (1) and

$$\sigma_2 = egin{array}{c} h_{11} \ h_{12} \ h_{21} \ h_{22} \ \end{array}, \quad \sigma_{2,1} = egin{array}{c} h_{11} \ a_1 \ h_{21} \ a_2 \ \end{bmatrix}, \quad \sigma_{2,2} = egin{array}{c} a_1 \ h_{12} \ a_2 \ h_{22} \ \end{bmatrix}.$$

It is easy to see that

$$J = \left(1 + \sum_{i,j=1}^{2} h_{ij}^{2} + a_{1}^{2} + a_{2}^{2} + \sigma_{2}^{2} + (\sigma_{2,1})^{2} + (\sigma_{2,2})^{2}\right)^{\frac{1}{2}}.$$

Note that
$$(1+|\sigma_2|)^2 = 1+2|\sigma_2| + \sigma_2^2 \le 1 + \sum_{i,j=1}^2 h_{ij}^2 + \sigma_2^2$$
. Therefore

(12)
$$J \ge \sqrt{(1+|\sigma_2|)^2 + |\sigma_{2,1}|^2},$$

where equality holds if and only if $a_1 = a_2 = 0$ and we have either $h_{11} = h_{22}$ and $h_{12} = -h_{21}$, or $h_{11} = -h_{22}$ and $h_{12} = h_{21}$.

Now we want to identify the last term in (12) with the evaluation of certain forms.

In the frame $\{e_1, e_2, \vec{v}\}$ we can demand that e_1 will be tangent to S_{φ}^2 , the parallel of \mathbb{S}^3 with latitude $\varphi \in (-\frac{1}{2}\pi, \frac{1}{2}\pi)$. We complete a frame in S_{φ}^2 with \vec{u} in such a way $\{e_1, \vec{u}\}$ is an oriented local frame compatible with the normal field \vec{n} that points toward the North Pole. That is, in such a way that $\{e_1, \vec{u}, \vec{n}\}$

is a positively oriented local frame of \mathbb{S}^3 . Let $\alpha \in [0, 2\pi]$ be the oriented angle from TS_{φ}^2 to \vec{v} and $i: S_{\varphi}^2 \to \mathbb{S}^3$ the inclusion map. In this way, $\vec{u} = \cos \alpha \vec{v} + \sin \alpha e_2$ and

$$i^*(\theta_1 \wedge \theta_2)(e_1, \vec{u}) = \sin \alpha,$$

$$i^*(\theta_1 \wedge \theta_3)(e_1, \vec{u}) = \cos \alpha,$$

$$i^*(\theta_2 \wedge \theta_3)(e_1, \vec{u}) = 0.$$

In order to evaluate $i^*(\omega_{13} \wedge \omega_{23})$, first we note that

$$\omega_{13} \wedge \omega_{23} = \sigma_2 \theta_1 \wedge \theta_2 + \sigma_{2,1} \theta_1 \wedge \theta_3 - \sigma_{2,2} \theta_2 \wedge \theta_3.$$

So, $i^*(\omega_{13} \wedge \omega_{23})(e_1, \vec{u}) = \sin \alpha \sigma_2 + \cos \alpha \sigma_{2,1}$.

As in (3) with $\beta \in [0, \frac{1}{2}\pi]$ such that $\sin \beta = |\sin \alpha|$ and $\cos \beta = |\cos \alpha|$, from (12) we get

(13)
$$J \geq \sin \beta (1 + |\sigma_{2}|) + \cos \beta |\sigma_{2,1}|$$

$$= |\sin \alpha| + |\sin \alpha| \cdot |\sigma_{2}| + |\cos \alpha| \cdot |\sigma_{2,1}|$$

$$\geq |\sin \alpha| + |\sin \alpha \sigma_{2} + \cos \alpha \sigma_{2,1}|$$

$$= |i^{*}(\theta_{1} \wedge \theta_{2})(e_{1}, \vec{u})| + |i^{*}(\omega_{13} \wedge \omega_{23})(e_{1}, \vec{u})|$$

$$\geq |(i^{*}(\theta_{1} \wedge \theta_{2}) + i^{*}(\omega_{13} \wedge \omega_{23}))(e_{1}, \vec{u})|.$$

We split W in northern and southern hemisphere, H^+ and H^- respectively. Then, from (13)

(14)
$$\operatorname{vol}(\vec{v})|_{H^{+}} \geq \int_{H^{+}} \left| \left(i^{*}(\theta_{1} \wedge \theta_{2}) + i^{*}(\omega_{13} \wedge \omega_{23}) \right) (e_{1}, \vec{u}) \right| \nu$$
$$\geq \int_{0}^{\frac{1}{2}\pi} \left| \int_{S_{\varphi}^{2}} \left(i^{*}(\theta_{1} \wedge \theta_{2}) + i^{*}(\omega_{13} \wedge \omega_{23}) \right) \right| d\varphi.$$

We know that $d\omega_{12} = \omega_{13} \wedge \omega_{23} + \theta_1 \wedge \theta_2$. If $A(\varphi, \frac{1}{2}\pi - \epsilon)$ is the annulus region between the parallels S_{φ}^2 and $S_{\frac{1}{2}\pi - \epsilon}^2$, $0 \le \varphi < \frac{1}{2}\pi - \epsilon < \frac{1}{2}\pi$, we have by Stokes' Theorem

$$(15) \int_{S_{\varphi}^{2}} i^{*}(\omega_{13} \wedge \omega_{23}) + i^{*}(\theta_{1} \wedge \theta_{2}) = \int_{S_{\frac{1}{2}\pi - \epsilon}^{2}} i^{*}(\omega_{13} \wedge \omega_{23}) + \int_{S_{\frac{1}{2}\pi - \epsilon}^{2}} i^{*}(\theta_{1} \wedge \theta_{2}).$$

We bound $i^*(\theta_1 \wedge \theta_2)(e_1, \vec{u}) = \sin \alpha \ge -1$ on $S^2_{\frac{1}{2}\pi - \epsilon}$ and consequently

$$\int_{S_{\varphi}^{2}} i^{*}(\omega_{13} \wedge \omega_{23}) + i^{*}(\theta_{1} \wedge \theta_{2}) \ge \int_{S_{\frac{1}{2}\pi - \epsilon}^{2}} i^{*}(\omega_{13} \wedge \omega_{23}) - 4\pi \cos^{2}\left(\frac{1}{2}\pi - \epsilon\right).$$

томе 136 - 2008 - по 1

Applying Proposition 2.1, since as before, the limit as ϵ goes to 0 of $\vec{v}_{|S_{\frac{1}{2}\pi-\epsilon}}$ maps $S_{\frac{1}{2}\pi-\epsilon}^2$ onto the fiber $I_{\vec{v}}(N)$ times and noting that the curvature term is horizontal so goes to 0 in the limit,

$$\lim_{\epsilon \to 0} \int_{S_{\frac{1}{2}\pi - \epsilon}^2} i^*(\omega_{13} \wedge \omega_{23}) = \lim_{\epsilon \to 0} \int_{S_{\frac{1}{2}\pi - \epsilon}^2} i^*(\omega_{13} \wedge \omega_{23} - \Omega_{12})$$

$$= 4\pi \lim_{\epsilon \to 0} \int_{S_{\frac{1}{2}\pi - \epsilon}^2} i^* \vec{v}^* \Pi = 4\pi I_{\vec{v}}(N) \int_{\pi^{-1}(N)} \Pi = 4\pi I_{\vec{v}}(N).$$

So,

(16)
$$\int_{S_{\varphi}^{2}} i^{*}(\omega_{13} \wedge \omega_{23}) + i^{*}(\theta_{1} \wedge \theta_{2}) \geq 4\pi I_{\vec{v}}(N) \geq 0.$$

From (14) and (16) we get

(17)
$$\operatorname{vol}(\vec{v})_{|H^{+}} \geq \int_{0}^{\frac{1}{2}\pi} 4\pi |I_{\vec{v}}(N)| d\varphi = 2\pi^{2} |I_{\vec{v}}(N)|.$$

In a similar way for the southern hemisphere, the integral of $d\omega_{12}$ over the annulus region $A(-\frac{1}{2}\pi + \epsilon, \varphi)$, $-\frac{1}{2}\pi < -\frac{1}{2}\pi + \epsilon < \varphi \leq 0$ provides exactly (15) but now we bound $\sin \alpha \leq 1$ to obtain

$$\int_{S_{\varphi}^{2}} i^{*}(\omega_{13} \wedge \omega_{23}) + i^{*}(\theta_{1} \wedge \theta_{2}) \leq \int_{S_{-\frac{1}{2}\pi+\epsilon}^{2}} i^{*}(\omega_{13} \wedge \omega_{23}) + 4\pi \cos^{2}\left(-\frac{1}{2}\pi + \epsilon\right).$$

The index of \vec{v} at S can be calculated as

$$\lim_{\epsilon \to 0} \int_{S^2_{-\frac{1}{2}\pi + \epsilon}} i^*(\omega_{13} \wedge \omega_{23}) = \operatorname{vol}(\mathbb{S}^2) I_{\vec{v}}(S).$$

So,

$$\int_{S_{-}^{2}} i^{*}(\omega_{13} \wedge \omega_{23}) + i^{*}(\theta_{1} \wedge \theta_{2}) \leq 4\pi I_{\vec{v}}(S) \leq 0.$$

Therefore,

(18)
$$\operatorname{vol}(\vec{v})|_{H^{-}} \geq \int_{-\frac{1}{2}\pi}^{0} \left| \int_{S_{\varphi}^{2}} i^{*}(\theta_{1} \wedge \theta_{2}) + i^{*}(\omega_{13} \wedge \omega_{23}) \right| d\varphi$$
$$\geq \int_{-\frac{1}{3}\pi}^{0} 4\pi \left| I_{\vec{v}}(S) \right| d\varphi = 2\pi^{2} \left| I_{\vec{v}}(S) \right|.$$

Thus, from (17) and (18) we have

$$vol(\vec{v}) \ge 2\pi^2 (|I_{\vec{v}}(N)| + |I_{\vec{v}}(S)|) = (|I_{\vec{v}}(N)| + |I_{\vec{v}}(S)|) vol(\mathbb{S}^3).$$

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

3. Concluding remarks

These results should extend to higher dimensions if one makes use of some rather complicated inequalities involving the volume integrand in (1) of a unit vector field and some symmetric functions coming from the second fundamental form of the orthogonal distribution (which is generally non integrable). Some of these inequalities can be found in [6] or [5].

Index results should exist also for the case when the spheres are punctured differently. In other words, if we have two singularities which are not antipodal points of \mathbb{S}^2 or \mathbb{S}^3 or if we have more than two singularities, what could be said? We believe that some results relating indices and positions of the singularities to the volume of a unit vector field may be found.

For singular vector fields on \mathbb{S}^2 another natural situation is the one of unit vector fields defined on $\mathbb{S}^2 \setminus \{x\}$. In a recent paper [1], see also [12], a unit vector field \vec{p} is defined on $\mathbb{S}^2 \setminus \{x\}$ by parallel translation of a given tangent vector at -x along the minimizing geodesics to x. It has been proved in [1] that \vec{p} minimizes the volume of unit vector fields defined on $\mathbb{S}^2 \setminus \{x\}$. By a direct calculation, we obtain the inequality $\operatorname{vol}(\vec{p}) > \operatorname{vol}(\vec{n})$, where \vec{n} is the north-south vector field tangent to the longitudes of W.

Now, new questions arise about minimality on specific topological-geometrical configurations on the punctured spheres.

BIBLIOGRAPHY

- [1] V. Borrelli & O. Gil-Medrano "Area minimizing vector fields on round 2-spheres", 2006, preprint.
- [2] ______, "A critical radius for unit Hopf vector fields on spheres", *Math. Ann.* **334** (2006), p. 731–751.
- [3] F. G. B. Brito "Total bending of flows with mean curvature correction", *Differential Geom. Appl.* **12** (2000), p. 157–163.
- [4] F. G. B. Brito & P. M. Chacón "A topological minorization for the volume of vector fields on 5-manifolds", *Arch. Math. (Basel)* **85** (2005), p. 283–292.
- [5] F. G. B. Brito, P. M. Chacón & A. M. Naveira "On the volume of unit vector fields on spaces of constant sectional curvature", *Comment. Math. Helv.* 79 (2004), p. 300–316.
- [6] P. M. Chacón "Sobre a energia e energia corrigida de campos unitários e distribuições. Volume de campos unitários", Ph.D. Thesis, Universidade de São Paulo, Brazil, 2000, and Universidad de Valencia, Spain, 2001.

- [7] S. S. CHERN "On the curvatura integra in a Riemannian manifold", Ann. of Math. (2) 46 (1945), p. 674–684.
- [8] S. S. CHERN & J. SIMONS "Characteristic forms and geometric invariants", Ann. of Math. (2) 99 (1974), p. 48–69.
- [9] O. GIL-MEDRANO & E. LLINARES-FUSTER "Second variation of volume and energy of vector fields. Stability of Hopf vector fields", *Math. Ann.* **320** (2001), p. 531–545.
- [10] H. GLUCK & W. ZILLER "On the volume of a unit vector field on the three-sphere", Comment. Math. Helv. 61 (1986), p. 177–192.
- [11] D. L. Johnson "Chern-Simons forms on associated bundles, and boundary terms", *Geometria Dedicata* **120** (2007), p. 23–24.
- [12] S. L. PEDERSEN "Volumes of vector fields on spheres", Trans. Amer. Math. Soc. 336 (1993), p. 69–78.