

ON A CERTAIN GENERALIZATION OF SPHERICAL TWISTS

Yukinobu Toda

Tome 135 Fascicule 1

2007

ON A CERTAIN GENERALIZATION OF SPHERICAL TWISTS

BY	Yukinobu	TODA

ABSTRACT. — This note gives a generalization of spherical twists, and describe the autoequivalences associated to certain non-spherical objects. Typically these are obtained by deforming the structure sheaves of (0,-2)-curves on threefolds, or deforming \mathbb{P} -objects introduced by D. Huybrechts and R. Thomas.

Résumé (Sur une généralisation des twists sphériques). — Cette note donne une généralisation des twists sphériques et décrit des auto-équivalences associées à certains objets qui ne sont pas sphériques. Typiquement ces objets sont obtenus par déformation du faisceau structural d'une (0,2)-courbe dans une variété de dimension trois ou d'un \mathbb{P} -objet introduit par D. Huybrechts et R. Thomas.

1. Introduction

We introduce a new class of autoequivalences of derived categories of coherent sheaves on smooth projective varieties, which generalizes the notion of spherical twists given in [12]. Such autoequivalences are associated to a certain class of objects, which are not necessary spherical but are interpreted as "fat"

Texte reçu le 4 avril 2006, révisé le 23 mai 2006

Yukinobu Toda, Yukinobu Toda, Graduate School of Mathematical Sciences, University of Tokyo, 3-1-8 Komaba, Meguro, Tokyo 153-8914 (Japan)

E-mail: toda@ms.u-tokyo.ac.jp

2000 Mathematics Subject Classification. — 18E30, 14J32.

Key words and phrases. — Derived categories, mirror symmetries.

version of them. We introduce the notion of R-spherical objects for a noetherian and artinian local \mathbb{C} -algebra R, and imitate the construction of spherical twists to give the associated autoequivalences.

Let X be a smooth complex projective variety, and D(X) be a bounded derived category of coherent sheaves on X. When X is a Calabi-Yau 3-fold, D(X) is considered to represent the category of D-branes of type B, and should be equivalent to the derived Fukaya category on a mirror manifold under Homological mirror symmetry [8]. On the mirror side, there are typical symplectic automorphisms by taking Dehn twists along Lagrangian spheres [11]. The notions of spherical objects and associated twists were introduced in [12] in order to realize Dehn twists under mirror symmetry. Recall that $E \in D(X)$ is called spherical if the following holds [12]:

•
$$\operatorname{Ext}_X^i(E, E) = \begin{cases} \mathbb{C} & \text{if } i = 0 \text{ or } i = \dim X, \\ 0 & \text{otherwise;} \end{cases}$$

• $E \otimes \omega_X \cong E$

Then one can construct the autoequivalence $T_E: D(X) \to D(X)$ which fits into the distinguished triangle [12]:

$$\mathbb{R} \operatorname{Hom}(E, F) \otimes_{\mathbb{C}} E \longrightarrow F \longrightarrow T_E(F),$$

for $F \in D(X)$. The autoequivalence T_E is called a *spherical twist*. This is a particularly important class of autoequivalences, especially when we consider A_n -configulations on surfaces as indicated in [7]. On the other hand, it has been observed that there are some autoequivalences which are not described in terms of spherical twists. This occurs even in the similar situation discussed in [7] as follows. Let $X \to Y$ be a three dimensional flopping contraction which contracts a rational curve $C \subset X$, and $X^\dagger \to Y$ be its flop. Then one can construct the autoequivalence [1, 3, 4],

$$\Phi := \Phi_{X^\dagger \to X}^{\mathcal{O}_{X \times_Y X^\dagger}} \circ \Phi_{X \to X^\dagger}^{\mathcal{O}_{X \times_Y X^\dagger}} : D(X) \longrightarrow D(X^\dagger) \longrightarrow D(X).$$

If $C \subset X$ is not a (-1,-1)-curve, Φ is not written as a spherical twist, and our motivation comes from describing such autoequivalences. Let R be a noetherian and artinian local \mathbb{C} -algebra. We introduce the notion of R-spherical objects defined on $D(X \times \operatorname{Spec} R)$. In the above example, $\operatorname{Spec} R$ is taken to be the moduli space of $\mathcal{O}_C(-1)$, and the universal family gives the R-spherical object. Our main theorem is the following:

THEOREM 1.1. — To any R-spherical object $\mathcal{E} \in D(X \times \operatorname{Spec} R)$, we can associate the autoequivalence $T_{\mathcal{E}} \colon D(X) \to D(X)$, which fits into the distinguished triangle

$$\mathbb{R}\operatorname{Hom}_X(\pi_*\mathcal{E},F)\overset{\mathbb{L}}{\otimes}_R\pi_*\mathcal{E}\longrightarrow F\longrightarrow T_{\mathcal{E}}(F),$$

for $F \in D(X)$. Here $\pi: X \times \operatorname{Spec} R \to X$ is the projection.

Using the notion of R-spherical objects and associated twists, we can also give the deformations of \mathbb{P} -twists in the case which is not treated in [5].

Acknowledgement. — The author thanks Tom Bridgeland for useful discussions and comments. He is supported by Japan Society for the Promotion of Sciences Research Fellowships for Young Scientists, No 1611452.

Notations and conventions

- For a variety X, we denote by D(X) its bounded derived category of coherent sheaves.
- Δ means the diagonal $\Delta \subset X \times X$ or the diagonal embedding $\Delta \colon X \to X \times X$.
- For another variety Y and an object $\mathcal{P} \in D(X \times Y)$, denote by $\Phi_{X \to Y}^{\mathcal{P}}$ the integral transform with kernel \mathcal{P} , *i.e.*,

$$\Phi_{X \to Y}^{\mathcal{P}}(*) := \mathbb{R}p_{Y*}(p_X^*(*) \overset{\mathbb{L}}{\otimes} \mathcal{P}) \colon D(X) \longrightarrow D(Y).$$

Here p_X, p_Y are projections from $X \times Y$ onto corresponding factors.

2. Generalized spherical twists

Let X be a smooth projective variety over \mathbb{C} and R be a noetherian and artinian local \mathbb{C} -algebra. We introduce the notion of R-spherical objects defined on $D(X \times \operatorname{Spec} R)$. Let $\pi \colon X \times \operatorname{Spec} R \to X$ and $\pi' \colon X \times \operatorname{Spec} R \to \operatorname{Spec} R$ be projections and $0 \in \operatorname{Spec} R$ be the closed point.

DEFINITION 2.1. — An object $\mathcal{E} \in D(X \times \operatorname{Spec} R)$ is called *R-spherical* if the following conditions hold:

- \mathcal{E} is represented by a bounded complex \mathcal{E}^{\bullet} with each \mathcal{E}^{i} a coherent $\mathcal{O}_{X \times \operatorname{Spec} R}$ -module flat over R. In particular we have the bounded derived restriction $E := \mathcal{E}^{\bullet}|_{X \times \{0\}} \in D(X)$.
- $\operatorname{Ext}_X^i(E, E) = \begin{cases} \mathbb{C} & \text{if } i = 0 \text{ or } i = \dim X, \\ 0 & \text{otherwise;} \end{cases}$
- $E \otimes \omega_X \cong E$

Remark 2.2. — If $R = \mathbb{C}$, then R-spherical objects coincide with usual spherical objects.

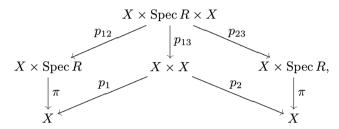
We imitate the construction of the spherical twists in the following theorem.

THEOREM 2.3. — To any R-spherical object $\mathcal{E} \in D(X \times \operatorname{Spec} R)$, we can associate the autoequivalence $T_{\mathcal{E}} \colon D(X) \to D(X)$, which fits into the distinguished triangle:

$$\mathbb{R}\operatorname{Hom}_X(\pi_*\mathcal{E},F)\overset{\mathbb{L}}{\otimes}_R\pi_*\mathcal{E}\longrightarrow F\longrightarrow T_{\mathcal{E}}(F),$$

for $F \in D(X)$. Here R-module structures on $\mathbb{R} \operatorname{Hom}_X(\pi_* \mathcal{E}, F)$ and $\pi_* \mathcal{E}$ are inherited from R-module structure on \mathcal{E} .

Proof. — First we construct the kernel of $T_{\mathcal{E}}$. Let p_{ij} and p_i be projections as in the following diagram



and consider the object

$$\mathcal{Q} := \mathbb{R} p_{13*} \left(p_{12}^* (\pi^! \mathcal{O}_X \overset{\mathbb{L}}{\otimes} \check{\mathcal{E}}) \overset{\mathbb{L}}{\otimes} p_{23}^* \mathcal{E} \right) \in D(X \times X).$$

Here $\check{\mathcal{E}}$ means its derived dual. Then for $F \in D(X)$, we can calculate $\Phi_{X \to X}^{\mathcal{Q}}(F)$ as follows:

$$\Phi_{X \to X}^{\mathcal{Q}}(F) \cong \mathbb{R}p_{2*}(\mathbb{R}p_{13*}(p_{12}^*(\pi^!\mathcal{O}_X \overset{\mathbb{L}}{\otimes} \check{\mathcal{E}}) \overset{\mathbb{L}}{\otimes} p_{23}^*\mathcal{E}) \overset{\mathbb{L}}{\otimes} p_1^*F) \\
\cong \mathbb{R}p_{2*}\mathbb{R}p_{13*}(p_{12}^*(\pi^!\mathcal{O}_X \overset{\mathbb{L}}{\otimes} \check{\mathcal{E}}) \overset{\mathbb{L}}{\otimes} p_{23}^*\mathcal{E} \overset{\mathbb{L}}{\otimes} p_{13}^*p_1^*F) \\
\cong \pi_*\mathbb{R}p_{23*}(p_{12}^*(\pi^!\mathcal{O}_X \overset{\mathbb{L}}{\otimes} \check{\mathcal{E}}) \overset{\mathbb{L}}{\otimes} p_{23}^*\mathcal{E} \overset{\mathbb{L}}{\otimes} p_{12}^*\pi^*F) \\
\cong \pi_* \big\{ \mathcal{E} \overset{\mathbb{L}}{\otimes} \mathbb{R}p_{23*}p_{12}^*(\pi^!\mathcal{O}_X \overset{\mathbb{L}}{\otimes} \check{\mathcal{E}} \overset{\mathbb{L}}{\otimes} \pi^*F) \big\} \\
\cong \pi_* \big\{ \mathcal{E} \overset{\mathbb{L}}{\otimes} \pi'^*\mathbb{R}\pi'_*\mathbb{R}\mathcal{H}om(\mathcal{E}, \pi^!F) \big\} \\
\cong \pi_* \mathcal{E} \overset{\mathbb{L}}{\otimes}_{\mathcal{R}} \mathbb{R} \operatorname{Hom}(\pi_*\mathcal{E}, F).$$

The fifth equality comes from the base change formula for the diagram below:

$$X imes \operatorname{Spec} R imes X \xrightarrow{p_{12}} X imes \operatorname{Spec} R$$
 $p_{23} \downarrow \qquad \qquad \downarrow \pi'$
 $X imes \operatorname{Spec} R \xrightarrow{\pi'} \operatorname{Spec} R.$

On the other hand, we have

$$\begin{aligned} \operatorname{Hom}_{X\times X}(\mathcal{Q},\mathcal{O}_{\Delta}) &= \operatorname{Hom}_{X\times X} \left(\mathbb{R} p_{13*} \left(p_{12}^{*} (\pi^{!}\mathcal{O}_{X} \overset{\mathbb{L}}{\otimes} \check{\mathcal{E}}) \overset{\mathbb{L}}{\otimes} p_{23}^{*} \mathcal{E} \right), \mathcal{O}_{\Delta} \right) \\ &= \operatorname{Hom}_{X} \left(\mathbb{L} \Delta^{*} \mathbb{R} p_{13*} \left(p_{12}^{*} (\pi^{!}\mathcal{O}_{X} \overset{\mathbb{L}}{\otimes} \check{\mathcal{E}}) \overset{\mathbb{L}}{\otimes} p_{23}^{*} \mathcal{E} \right), \mathcal{O}_{X} \right) \\ &= \operatorname{Hom}_{X} \left(\pi_{*} \mathbb{L} (\Delta, \operatorname{id})^{*} (p_{12}^{*} (\pi^{!}\mathcal{O}_{X} \overset{\mathbb{L}}{\otimes} \check{\mathcal{E}}) \overset{\mathbb{L}}{\otimes} p_{23}^{*} \mathcal{E}), \mathcal{O}_{X} \right) \\ &= \operatorname{Hom}_{X} \left(\mathbb{L} (\Delta, \operatorname{id})^{*} (p_{12}^{*} (\pi^{!}\mathcal{O}_{X} \overset{\mathbb{L}}{\otimes} \check{\mathcal{E}}) \overset{\mathbb{L}}{\otimes} p_{23}^{*} \mathcal{E}), \pi^{!}\mathcal{O}_{X} \right) \\ &= \operatorname{Hom}_{X} \left(\pi^{!}\mathcal{O}_{X} \overset{\mathbb{L}}{\otimes} \check{\mathcal{E}} \overset{\mathbb{L}}{\otimes} \mathcal{E}, \pi^{!}\mathcal{O}_{X} \right). \end{aligned}$$

The third equality comes from the base change formula for the diagram below:

$$X \times \operatorname{Spec} R \xrightarrow{\left(\Delta, \operatorname{id}\right)} X \times \operatorname{Spec} R \times X$$

$$\pi \downarrow \qquad \qquad \downarrow p_{13}$$

$$X \xrightarrow{\Delta} X \times X.$$

Let $\mu \colon \mathcal{Q} \to \mathcal{O}_{\Delta}$ be the morphism which corresponds to the morphism

$$\mathrm{id}_{\pi^!\mathcal{O}_X}\otimes\mathrm{ev}\colon \pi^!\mathcal{O}_X\overset{\mathbb{L}}{\otimes}\check{\mathcal{E}}\overset{\mathbb{L}}{\otimes}\mathcal{E}\longrightarrow \pi^!\mathcal{O}_X,$$

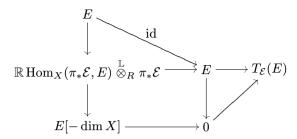
under the above isomorphisms. Let us take its cone $\mathcal{R} := \operatorname{Cone}(\mu) \in D(X \times X)$. Then the above calculation for $\Phi_{X \to X}^{\mathcal{Q}}$ implies the functor $T_{\mathcal{E}} : D(X) \to D(X)$ with kernel \mathcal{R} fits into the triangle

$$\mathbb{R} \operatorname{Hom}_X(\pi_* \mathcal{E}, F) \overset{\mathbb{L}}{\otimes}_R \pi_* \mathcal{E} \longrightarrow F \longrightarrow T_{\mathcal{E}}(F),$$

for $F \in D(X)$. We check $T_{\mathcal{E}}$ gives an equivalence. We follow the arguments of [10, 5]. Define E^{\perp} to be the subcategory $\{F \in D(X) \mid \mathbb{R} \operatorname{Hom}(E, F) = 0\}$. Then $\Omega := E \cup E^{\perp}$ is a spanning class in the sense of [2, Def. 2.1]. Let $\langle E \rangle$ be the minimum extension closed subcategory of D(X) which contains E. Then since R is finite dimensional, we have $\pi_*\mathcal{E} \in \langle E \rangle$. Therefore if $F \in E^{\perp}$, then $\mathbb{R} \operatorname{Hom}_X(\pi_*\mathcal{E},F) = 0$. Hence $T_{\mathcal{E}}(F) \cong F$ for $F \in E^{\perp}$. Next since \mathcal{E} is R-spherical, we have the distinguished triangle

$$E \longrightarrow \mathbb{R} \operatorname{Hom}_X(\pi_* \mathcal{E}, E) \overset{\mathbb{L}}{\otimes}_R \pi_* \mathcal{E} \longrightarrow E[-\dim X].$$

Then the following diagram



shows $T_{\mathcal{E}}(E) \cong E[1 - \dim X]$. Therefore $T_{\mathcal{E}}$ is fully faithful on Ω , hence fully faithful on D(X). (cf. [2, Theorem 2.3]). Finally the assumption $E \otimes \omega_X \cong E$ implies $F \otimes \omega_X \in E^{\perp}$ for $F \in E^{\perp}$. Therefore $T_{\mathcal{E}}|_{\Omega}$ commutes with $\otimes \omega_X$. Hence $T_{\mathcal{E}}$ gives an equivalence by the argument of [2, Thm 5.4].

3. Flops at (0, -2)-curves

We give some examples of autoequivalences associated to R-spherical objects. Let $f\colon X\to Y$ be a three dimensional flopping contraction which contracts a rational curve $C\subset X$. Let $f^{\dagger}\colon X^{\dagger}\to Y$ be its flop, and $C^{\dagger}\subset X^{\dagger}$ be the flopped curve. Then in [1, 3, 4], the functor $\Phi_1\colon D(X^{\dagger})\to D(X)$ with kernel $\mathcal{O}_{X\times_YX^{\dagger}}$ gives an equivalence. Φ_1 satisfies the following (cf. [14, Lemma 5.1]):

- Φ_1 takes $\mathcal{O}_{C^{\dagger}}(-1)[1]$ to $\mathcal{O}_C(-1)$;
- Φ_1 commutes with derived push-forwards, i.e., $\mathbb{R}f_* \circ \Phi_1 \cong \mathbb{R}f_*^{\dagger}$.

Similarly we can construct the equivalence $\Phi_2 \colon D(X) \to D(X^{\dagger})$ with kernel $\mathcal{O}_{X \times_Y X^{\dagger}}$. Composing these, we obtain the autoequivalence

$$\Phi := \Phi_1 \circ \Phi_2 \colon D(X) \longrightarrow D(X^{\dagger}) \longrightarrow D(X).$$

Note that $\Phi(\mathcal{O}_C(-1)) = \mathcal{O}_C(-1)[-2]$ and Φ commutes with $\mathbb{R}f_*$. If $C \subset X$ is a (-1,-1)-curve, then $\mathcal{O}_C(-1)$ is a spherical object and Φ coincides with the associated twist $T_{\mathcal{O}_C(-1)}$. But if C is not a (-1,-1)-curve, then $\mathcal{O}_C(-1)$ is no longer spherical, so we have to find some new descriptions of Φ . The idea is to consider the moduli problem of $\mathcal{O}_C(-1)$ and use the universal family.

Here we assume $C \subset X$ is a (0,-2)-curve, *i.e.*, normal bundle is $\mathcal{O}_C \oplus \mathcal{O}_C(-2)$, and give the description of Φ . Let \mathcal{M} be the connected component of the moduli space of simple sheaves on X, which contains $\mathcal{O}_C(-1)$. We define

$$R_m := \mathbb{C}[t]/(t^{m+1}), \qquad S_m := \operatorname{Spec} R_m.$$

Since $\operatorname{Ext}_X^1(\mathcal{O}_C(-1), \mathcal{O}_C(-1)) = \mathbb{C}$ and $C \subset X$ is rigid, we can write \mathcal{M} as $\mathcal{M} = S_m$ for some $m \in \mathbb{N}$. Let $\mathcal{E} \in \operatorname{Coh}(X \times S_m)$ be the universal family.

Theorem 3.1. — \mathcal{E} is a R_m -spherical object and the associated functor

$$T_{\mathcal{E}} \colon D(X) \longrightarrow D(X)$$

coincides with Φ .

Proof. — For n < m, define \mathcal{E}_n to be

$$\mathcal{E}_n := \pi_{n*}(\mathcal{E}|_{X \times S_n}) \in \operatorname{Coh}(X),$$

where $\pi_n \colon X \times S_n \to X$ is a projection. Since we have the exact sequences of R_m -modules

$$0 \longrightarrow R_{n-1} \longrightarrow R_n \longrightarrow \mathbb{C} \longrightarrow 0,$$

$$0 \longrightarrow \mathbb{C} \longrightarrow R_n \longrightarrow R_{n-1} \longrightarrow 0,$$

we have the exact sequences in Coh(X):

$$(1) 0 \longrightarrow \mathcal{E}_{n-1} \longrightarrow \mathcal{E}_n \longrightarrow E \longrightarrow 0,$$

$$(2) 0 \longrightarrow E \longrightarrow \mathcal{E}_n \longrightarrow \mathcal{E}_{n-1} \longrightarrow 0.$$

Here $E := \mathcal{O}_C(-1)$. Applying $\operatorname{Hom}(*, E)$ to the sequence (1), we obtain the long exact sequence

$$\operatorname{Hom}(\mathcal{E}_n, E) \longrightarrow \operatorname{Hom}(\mathcal{E}_{n-1}, E) \xrightarrow{\xi_n} \operatorname{Ext}^1(E, E) = \mathbb{C}$$
$$\longrightarrow \operatorname{Ext}^1(\mathcal{E}_n, E) \longrightarrow \operatorname{Ext}^1(\mathcal{E}_{n-1}, E) \xrightarrow{\eta_n} \operatorname{Ext}^2(E, E) = \mathbb{C}.$$

On the other hand, the sequence (2) determines the non-zero element

$$e_n \in \operatorname{Ext}^1(\mathcal{E}_{n-1}, E),$$

and $\eta_n(e_n) \in \operatorname{Ext}^2(E, E)$ gives the obstruction to deforming $\mathcal{E}|_{X \times S_n}$ to a coherent sheaf on $X \times S_{n+1}$ flat over S_{n+1} (cf. [13, Prop. 3.13]). Therefore $\eta_n(e_n) = 0$ for n < m and $\eta_m(e_m) \neq 0$. On the other hand, we have the following morphism of exact sequences

where s_n is a natural surjection. Hence $\xi_n(s_n) \in \operatorname{Ext}^1(E, E)$ corresponds to the extension \mathcal{E}_1 , which is a non-trivial first order deformation of E. Therefore $\xi_n(s_n) \neq 0$ and ξ_n is surjective. Combining these, we have

$$\operatorname{Ext}^{1}(\mathcal{E}_{n-1}, E) \cong \operatorname{Ext}^{1}(\mathcal{E}_{n}, E) \cong \mathbb{C} \text{ (for } n < m), \quad \operatorname{Ext}^{1}(\mathcal{E}_{m}, E) \cong 0,$$
$$\operatorname{Hom}(\mathcal{E}_{n-1}, E) \cong \operatorname{Hom}(\mathcal{E}_{n}, E) \cong \mathbb{C}.$$

Similarly applying $\operatorname{Hom}(E, *)$ to the sequence (2), we obtain $\operatorname{Ext}^1(E, \mathcal{E}_m) = 0$ and $\operatorname{Hom}(E, \mathcal{E}_m) = \mathbb{C}$. By Serre duality, we can conclude \mathcal{E} is R_m -spherical.

Next let us consider the equivalence

$$\widetilde{\Phi} := T_{\mathcal{E}} \circ \Phi^{-1} \colon D(X) \longrightarrow D(X).$$

Then $\widetilde{\Phi}$ takes $\mathcal{O}_C(-1)$ to $\mathcal{O}_C(-1)$, and commutes with $\mathbb{R}f_*$. Therefore $\widetilde{\Phi}$ preserves perverse t-structure ${}^0\mathrm{Per}(X/Y)$ in the sense of [3]. Then the argument of [14, Thm 6.1] shows $\widetilde{\Phi}$ is isomorphic to the identity functor.

4. Deformations of ℙ-twists

Review of \mathbb{P} -objects and associated twists. — R-spherical twists can also be used to construct deformations of \mathbb{P} -twists. Let us recall the definition of \mathbb{P} -objects and the associated autoequivalences introduced in [5]. Again we assume X is a smooth projective variety over \mathbb{C} .

DEFINITION 4.1 (see [5]). — An object $E \in D(X)$ is called \mathbb{P}^n -object if it satisfies the following:

- $\operatorname{Ext}_X^*(E,E)$ is isomorphic to $H^*(\mathbb{P}^n,\mathbb{C})$ as a graded ring;
- $E \otimes \omega_X \cong E$.

Note that if \mathbb{P}^n -object exists, then dim X=2n by Serre duality. D. Huybrechts and R. Thomas [5] constructed an equivalence $P_E \colon D(X) \to D(X)$ associated to E, which is described as follows. Let $h \in \operatorname{Ext}_X^2(E,E)$ be the degree two generator. First consider the morphism in $D(X \times X)$:

$$H := \check{h} \boxtimes \operatorname{id} - \operatorname{id} \boxtimes h \colon \check{E} \boxtimes E[-2] \longrightarrow \check{E} \boxtimes E.$$

Let us take its cone $\mathcal{H} \in D(X \times X)$. We can see the composition H with the trace map $\operatorname{tr} : \check{E} \boxtimes E \to \mathcal{O}_{\Delta}$ becomes zero. Therefore there exists a (in fact unique) morphism $t \colon \mathcal{H} \to \mathcal{O}_{\Delta}$ such that the following diagram commutes [5, Lemma 2.1]:

$$\check{E}\boxtimes E[-2] \xrightarrow{H} \check{E}\boxtimes E \xrightarrow{\operatorname{tr} \downarrow t} \mathcal{H}$$
 CO_{Δ} .

Then define $Q_{\mathcal{E}}$ to be the cone

$$Q_{\mathcal{E}} := \operatorname{Cone}(t : \mathcal{H} \to \mathcal{O}_{\Delta}) \in D(X \times X).$$

Then in [5], it is shown that the functor $P_{\mathcal{E}} : D(X) \to D(X)$ with kernel $\mathcal{Q}_{\mathcal{E}}$ gives the equivalence.

томе 135 - 2007 - по 1

Next let us consider a one parameter deformation of X. Let $f: \mathcal{X} \to C$ be a smooth family over a smooth curve C with a distinguished fibre $j: X = f^{-1}(0) \hookrightarrow \mathcal{X}$, $0 \in C$. Suppose $E \in D(X)$ is a \mathbb{P}^n -object and let be its Atiyah-class $A(E) \in \operatorname{Ext}^1_X(E, E \otimes \Omega_X)$. Then the obstruction to deforming E sideways to first order is given by the product

$$A(E) \cdot \kappa(X) \in \operatorname{Ext}_X^2(E, E),$$

where $\kappa(X) \in H^1(X, T_X)$ is the Kodaira-Spencer class of the family $f: \mathcal{X} \to C$. In [5], the case of $A(E) \cdot \kappa(X) \neq 0$ is studied. In that case, j_*E is a spherical object and the associated equivalence $T_{j_*E} \colon D(\mathcal{X}) \to D(\mathcal{X})$ fits into the commutative diagram [5, Prop. 2.7]

$$egin{aligned} D(X) & \stackrel{j_*}{\longrightarrow} D(\mathcal{X}) \ P_E igg| & igg| T_{j_*E} \ D(X) & \stackrel{j_*}{\longrightarrow} D(\mathcal{X}). \end{aligned}$$

Our purpose is to treat the case of $A(E) \cdot \kappa(X) = 0$.

R-spherical objects via deformations of \mathbb{P} -objects. — Let $f: \mathcal{X} \to C$ and $E \in D(X)$ be as before, and assume $A(E) \cdot \kappa(X) = 0$. Note that j_*E is not spherical. In fact we have the distinguished triangle

$$E[1] \longrightarrow \mathbb{L}j^*j_*E \longrightarrow E \stackrel{A(E) \cdot \kappa(X)}{\longrightarrow} E[2],$$

by [5, Prop. 3.1]. Hence we have the decomposition $\mathbb{L}j^*j_*E \cong E \oplus E[1]$, and for $0 \leq k \leq 2n+1$ we calculate

$$\operatorname{Ext}_{\mathcal{X}}^{k}(j_{*}E, j_{*}E) \cong \operatorname{Ext}_{\mathcal{X}}^{k}(\mathbb{L}j^{*}j_{*}E, E)$$
$$\cong \operatorname{Ext}_{\mathcal{X}}^{k}(E, E) \oplus \operatorname{Ext}_{\mathcal{X}}^{k-1}(E, E) \cong \mathbb{C}.$$

As in the previous section, we are going to consider deformations of j_*E in \mathcal{X} . The moduli theories of complexes were carried out by [6, 9]. Following the notation used in [6], we consider the functor $\operatorname{Splcpx}_{\mathcal{X}/C}$ from the category of locally noetherian schemes over C to the category of sets,

$$\operatorname{Splcpx}_{\mathcal{X}/C}(T)$$

$$:= \left\{ \mathcal{F}^{\bullet} \middle| \begin{array}{c} \mathcal{F}^{\bullet} \text{ is a bounded complex of coherent sheaves on } \mathcal{X}_{T} \\ \text{such that each } \mathcal{F}^{i} \text{ is flat over } T \text{ and for any } t \in T, \\ \text{Ext}_{X_{t}}^{0}(\mathcal{F}^{\bullet}(t), \mathcal{F}^{\bullet}(t)) \cong k(t), \text{Ext}_{X_{t}}^{-1}(\mathcal{F}^{\bullet}(t), \mathcal{F}^{\bullet}(t)) = 0 \end{array} \right\} \middle/ \sim.$$

Here

$$\mathcal{X}_T := \mathcal{X} \times_C T, \quad \mathcal{F}^{\bullet}(t) := \mathcal{F}^{\bullet} \otimes_T k(t),$$

and $\mathcal{F}^{\bullet} \sim \mathcal{F}'^{\bullet}$ if and only if there exist $\mathcal{L} \in \operatorname{Pic}(T)$, a bounded complex of quasi-coherent sheaves \mathcal{G}^{\bullet} and quasi-isomorphisms $\mathcal{G}^{\bullet} \to \mathcal{F}^{\bullet}$, $\mathcal{G}^{\bullet} \to \mathcal{F}'^{\bullet} \otimes \mathcal{L}$.

Let $\operatorname{Splcpx}_{\mathcal{X}/C}^{\operatorname{\acute{e}t}}$ be the associated sheaf of $\operatorname{Splcpx}_{\mathcal{X}/C}$ in the étale topology. M. Inaba [6] showed the following:

THEOREM 4.2 (see [6]). — The functor $\operatorname{Splcpx}_{\mathcal{X}/C}^{\text{\'et}}$ is represented by a locally separated algebraic space \mathcal{M} over C.

Let $S_m = \operatorname{Spec} \mathbb{C}[t]/(t^{m+1})$ be as before and $\gamma \colon S_1 \hookrightarrow C$ be an extension of $0 \hookrightarrow C$. Let r be the restriction,

$$r \colon \operatorname{Splcpx}_{\mathcal{X}/C}^{\operatorname{\acute{e}t}}(\gamma) \longrightarrow \operatorname{Splcpx}_{\mathcal{X}/C}^{\operatorname{\acute{e}t}}(0).$$

By the assumption $A(E) \cdot \kappa(X) = 0$, we have $r^{-1}(E) \neq \emptyset$. Moreover by [6, Prop. 2.3], there is a bijection between $r^{-1}(E)$ and $\operatorname{Ext}_X^1(E,E)$, which is zero. Therefore the map $T_{\mathcal{M},E} \to T_{C,0}$ is an isomorphism, hence $\dim \mathcal{M} \leq 1$ at $[E] \in \mathcal{M}$. Note that by taking push-forward along the inclusion $\mathcal{X} \times_C T \to \mathcal{X} \times T$, we get the morphism of functors:

$$\delta \colon \operatorname{Splcpx}_{\mathcal{X}/C}^{\text{\'et}} \longrightarrow \operatorname{Splcpx}_{\mathcal{X}/S_0}^{\text{\'et}}.$$

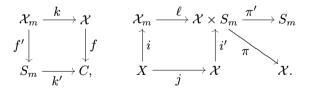
We put the following technical assumption:

 $(\star) \qquad \begin{cases} \text{The morphism } \delta \text{ gives an isomorphism between connected components of both sides, which contain } E \text{ and } j_*E \text{ respectively. Let} \\ [E] \in \mathcal{M}' \subset \mathcal{M} \text{ be the connected component. We assume } \mathcal{M}' \text{ is a zero-dimensional scheme.} \end{cases}$

Note that we can write $\mathcal{M}' = S_m$ for some m. Let

$$\mathcal{X}_m := \mathcal{X} \times_C \mathcal{M}' = \mathcal{X} \times_C S_m$$

and $\mathcal{E} \in D(\mathcal{X}_m)$ be the universal family. We use the following notations for morphism:



If there is no confusion, we will use the same notations for $n \leq m$. We show the following proposition:

PROPOSITION 4.3. — The object $\ell_*\mathcal{E} \in D(\mathcal{X} \times S_m)$ is R_m -spherical.

Proof. — Since $\pi_*\ell_*\mathcal{E} \cong k_*\mathcal{E}$ and $\mathbb{L}i^{'*}\ell_*\mathcal{E} \cong j_*E$, we have to calculate $\operatorname{Ext}^i_{\mathcal{X}}(k_*\mathcal{E},j_*E)$. By the assumption (\star) , we cannot deform $\ell_*\mathcal{E}$ to (m+1)-th order. For $n \leq m$, let $\mathcal{E}_n := \mathcal{E}|_{\mathcal{X}_n} \in D(\mathcal{X}_n)$ and $\widetilde{\mathcal{E}}_n := k_*\mathcal{E}_n \in D(\mathcal{X})$. We consider distinguished triangles:

(3)
$$\widetilde{\mathcal{E}}_{n-1} \longrightarrow \widetilde{\mathcal{E}}_n \longrightarrow j_* E \xrightarrow{e'_n} \widetilde{\mathcal{E}}_{n-1}[1],$$

$$(4) j_*E \longrightarrow \widetilde{\mathcal{E}}_n \longrightarrow \widetilde{\mathcal{E}}_{n-1} \xrightarrow{e_n} j_*E[1].$$

Then by the argument of [13, Prop. 3.13], we can see that the composition

$$e_n \circ e'_n \colon j_*E \longrightarrow \widetilde{\mathcal{E}}_{n-1}[1] \longrightarrow j_*E[2]$$

gives the obstruction to deforming $\ell_*\mathcal{E}_n$ to (n+1)-th order. If E is a sheaf, this is just [13, Prop. 3.13] and we can generalize this by replacing the exact sequences in [13, Prop. 3.13] by the exact sequences of representing complexes. We leave the detail to the reader. Hence $e_m \circ e'_m \neq 0$ and $e_n \circ e'_n = 0$ for n < m. Applying $\text{Hom}(*, j_*E)$ to the triangle (3), we obtain the long exact sequence,

$$\operatorname{Ext}^{1}_{\mathcal{X}}(j_{*}E, j_{*}E) \longrightarrow \operatorname{Ext}^{1}_{\mathcal{X}}(\widetilde{\mathcal{E}}_{n}, j_{*}E)$$

$$\longrightarrow \operatorname{Ext}^{1}_{\mathcal{X}}(\widetilde{\mathcal{E}}_{n-1}, j_{*}E) \longrightarrow \operatorname{Ext}^{2}_{\mathcal{X}}(j_{*}E, j_{*}E) = \mathbb{C}.$$

Then using the above sequence and the same argument as in Theorem 3.1, we can conclude $\operatorname{Ext}^1_{\mathcal{X}}(k_*\mathcal{E},j_*E)=0$.

Next we use the existence of the distinguished triangle [1, Lemma 3.3]:

$$\mathcal{E}[1] \longrightarrow \mathbb{L}k^*k_*\mathcal{E} \longrightarrow \mathcal{E} \longrightarrow \mathcal{E}[2].$$

Pulling back to X, we have the triangle

(5)
$$E[1] \longrightarrow \mathbb{L}j^*k_*\mathcal{E} \longrightarrow E \stackrel{\theta}{\longrightarrow} E[2].$$

Since $\operatorname{Ext}_X^2(E,E)$ is one dimensional, θ is zero or non-zero multiple of h. Assume $\theta=0$. Then $\mathbb{L}j^*k_*\mathcal{E}\cong E\oplus E[1]$, and

$$\begin{split} \operatorname{Ext}^1_{\mathcal{X}}(k_*\mathcal{E}, j_*E) &\cong \operatorname{Ext}^1_{\mathcal{X}}(\mathbb{L}j^*k_*\mathcal{E}, E) \\ &\cong \operatorname{Ext}^1_{X}(E, E) \oplus \operatorname{Hom}(E, E) \cong \mathbb{C}, \end{split}$$

which is a contradiction. Hence we may assume $\theta = h$. Applying $\operatorname{Hom}(*, E)$ to the triangle (5), we obtain the long exact sequence

$$\to \operatorname{Ext}_X^i(E,E) \longrightarrow \operatorname{Ext}_X^i(\mathbb{L}j^*k_*\mathcal{E},E) \longrightarrow \operatorname{Ext}_X^{i-1}(E,E) \stackrel{h}{\longrightarrow} \operatorname{Ext}_X^{i+1}(E,E) \to .$$

By the definition of \mathbb{P}^n -object, we obtain

$$\operatorname{Ext}_{\mathcal{X}}^{i}(k_{*}\mathcal{E}, j_{*}E) \cong \operatorname{Ext}_{X}^{i}(\mathbb{L}j^{*}k_{*}\mathcal{E}, E) = \begin{cases} \mathbb{C} & \text{if } i = 0 \text{ or } i = 2n+1, \\ 0 & \text{otherwise.} \end{cases}$$

REMARK 4.4. — Assumption (\star) is satisfied if E is a sheaf and dim $\mathcal{M}' = 0$. In fact suppose $\ell_*\mathcal{E}$ extends to a S_{m+1} -valued point of $\operatorname{Splcpx}_{\mathcal{X}/S_0}^{\operatorname{\acute{e}t}}$. Then as in [13, Prop. 3.13], there exists $\widetilde{\mathcal{E}}_{m+1} \in \operatorname{Coh}(\mathcal{X})$ such that there exists a morphism of exact sequences of $\mathcal{O}_{\mathcal{X}}$ -modules:

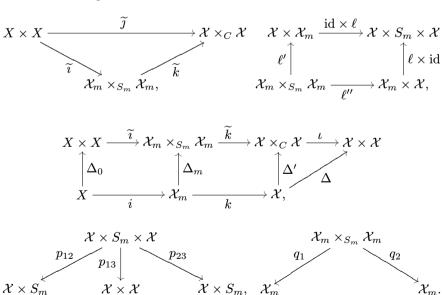
$$egin{aligned} 0 & \longrightarrow & \widetilde{\mathcal{E}}_{m-1} & \longrightarrow & \widetilde{\mathcal{E}}_m & \longrightarrow & j_*E & \longrightarrow & 0 \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & \\$$

An easy diagram chase shows $\widetilde{\mathcal{E}}_{m+1}$ is a $\mathcal{O}_{\mathcal{X}}/(t^{m+2})$ -module for the uniformizing parameter $t \in \mathcal{O}_{C,0}$. Moreover we have $t \cdot \widetilde{\mathcal{E}}_{m+1} = \operatorname{Im} \nu$. Therefore the map

$$\widetilde{\mathcal{E}}_{m+1} \otimes_{\mathcal{O}_C/(t^{m+2})} (t) \longrightarrow \widetilde{\mathcal{E}}_{m+1}$$

is a morphism from $\widetilde{\mathcal{E}}_m$ onto $\operatorname{Im} \nu \cong \widetilde{\mathcal{E}}_m$, hence injective. Then [13, Lemma 3.7] shows $\widetilde{\mathcal{E}}_{m+1}$ is flat over $\mathcal{O}_{C,0}/(t^{m+2})$ and gives a S_{m+1} -valued point of $\operatorname{Splcpx}_{\mathcal{X}/C}^{\operatorname{\acute{e}t}}$.

 \mathbb{P} -twists and R-spherical twists. — By Proposition 4.3, we have the associated functor $T_{\ell_*\mathcal{E}} \colon D(\mathcal{X}) \to D(\mathcal{X})$ under assumption (*). The next purpose is to show the existence of the diagram as in [5, Prop. 2.7]. We use the following notations for morphisms:



томе 135 - 2007 - № 1

THEOREM 4.5. — The functor $T_{\ell_*\mathcal{E}}$ fits into the following commutative diagram:

$$egin{aligned} D(X) & \stackrel{j_*}{\longrightarrow} D(\mathcal{X}) \ P_E igg| & igg| T_{\ell_* \mathcal{E}} \ D(X) & \stackrel{j_*}{\longrightarrow} D(\mathcal{X}). \end{aligned}$$

Proof. — We try to imitate the argument of [5, Prop. 2.7]. First we construct the morphism

$$\alpha \colon \widetilde{k}_*(q_1^* \check{\mathcal{E}} \overset{\mathbb{L}}{\otimes} q_2^* \mathcal{E})[-1] \longrightarrow \Delta'_* \mathcal{O}_{\mathcal{X}}$$

in $D(\mathcal{X} \times_C \mathcal{X})$. This is constructed by the composition of \widetilde{k}_* tr,

$$\widetilde{k}_* \operatorname{tr}: \widetilde{k}_*(q_1^* \check{\mathcal{E}} \overset{\mathbb{L}}{\otimes} q_2^* \mathcal{E})[-1] \longrightarrow \widetilde{k}_* \Delta_{m*} \mathcal{O}_{\mathcal{X}_m}[-1] = \Delta_*' k_* \mathcal{O}_{\mathcal{X}_m}[-1],$$

with the morphism $\Delta'_* k_* \mathcal{O}_{\mathcal{X}_m}[-1] \to \Delta'_* \mathcal{O}_{\mathcal{X}}$ obtained by applying Δ'_* to the exact sequence,

$$0 \longrightarrow \mathcal{O}_{\mathcal{X}} \longrightarrow \mathcal{O}_{\mathcal{X}}(\mathcal{X}_m) \longrightarrow k_* \mathcal{O}_{\mathcal{X}_m} \longrightarrow 0.$$

Let $\mathcal{L} := \operatorname{Cone}(\alpha) \in D(\mathcal{X} \times_C \mathcal{X})$. Applying Chen's lemma [4], it suffices to show

$$\iota_*\mathcal{L} \cong \operatorname{Cone}(\mathbb{R}p_{13*}(p_{12}^*(\ell_*^*\mathcal{E} \overset{\mathbb{L}}{\otimes} \pi^! \mathcal{O}_{\mathcal{X}}) \overset{\mathbb{L}}{\otimes} p_{23}^* \ell_* \mathcal{E}) \xrightarrow{\mu} \Delta_* \mathcal{O}_{\mathcal{X}}), \quad \mathbb{L}\widetilde{\jmath}^* \mathcal{L} \cong \mathcal{H}.$$

Here μ is the morphism constructed in the proof of Theorem 2.3 and \mathcal{H} is the kernel of P_E . First we check $\iota_*\mathcal{L} \cong \operatorname{Cone}(\mu)$. Note that $\pi^!\mathcal{O}_{\mathcal{X}} = \mathcal{O}_{\mathcal{X} \times S_m}$ and $\ell_*\check{\mathcal{E}} \cong \ell_*\check{\mathcal{E}}[-1]$ by the duality isomorphism. Hence we have

$$\mathbb{R}p_{13*}\left(p_{12}^{*}(\ell_{*}\check{\mathcal{E}}\overset{\mathbb{L}}{\otimes}\pi^{!}\mathcal{O}_{\mathcal{X}})\overset{\mathbb{L}}{\otimes}p_{23}^{*}\ell_{*}\mathcal{E}\right)\cong\mathbb{R}p_{13*}\left(p_{12}^{*}\ell_{*}\check{\mathcal{E}}\overset{\mathbb{L}}{\otimes}p_{23}^{*}\ell_{*}\mathcal{E}\right)[-1]$$

$$\cong\mathbb{R}p_{13*}\left\{(\ell\times\mathrm{id})_{*}r_{1}^{*}\check{\mathcal{E}}\overset{\mathbb{L}}{\otimes}(\mathrm{id}\times\ell)_{*}r_{2}^{*}\mathcal{E}\right\}[-1]$$

$$\cong\mathbb{R}p_{13*}(\mathrm{id}\times\ell)_{*}\left\{\mathbb{L}(\mathrm{id}\times\ell)^{*}(\ell\times\mathrm{id})_{*}r_{1}^{*}\check{\mathcal{E}}\overset{\mathbb{L}}{\otimes}r_{2}^{*}\mathcal{E}\right\}[-1]$$

$$\cong\mathbb{R}p_{13*}(\mathrm{id}\times\ell)_{*}(\ell_{*}^{\prime}\mathbb{L}\ell^{\prime\prime}^{*}r_{1}^{*}\check{\mathcal{E}}\overset{\mathbb{L}}{\otimes}r_{2}^{*}\mathcal{E})[-1]$$

$$\cong\mathbb{R}p_{13*}(\mathrm{id}\times\ell)_{*}\ell_{*}^{\prime}(\mathbb{L}\ell^{\prime\prime}^{*}r_{1}^{*}\check{\mathcal{E}}\overset{\mathbb{L}}{\otimes}\mathbb{L}\ell^{\prime}^{*}r_{2}^{*}\mathcal{E})[-1]$$

$$\cong\ell_{*}\check{k}_{*}(q_{1}^{*}\check{\mathcal{E}}\overset{\mathbb{L}}{\otimes}q_{2}^{*}\mathcal{E})[-1].$$

Here r_1 , r_2 are defined by the fiber squares:

Under the above isomorphism, we can check $\iota_*\alpha = \mu$. Hence $\widetilde{\ell}_*\mathcal{L} \cong \operatorname{Cone}(\mu)$. Next we check $\mathbb{L}\widetilde{\jmath}^*\mathcal{L} \cong \mathcal{H}$. Note that we have

$$\mathbb{L}\widetilde{\jmath}^*\mathcal{L} = \operatorname{Cone}(\mathbb{L}\widetilde{\jmath}^*\widetilde{k}_*(q_1^*\check{\mathcal{E}} \overset{\mathbb{L}}{\otimes} q_2^*\mathcal{E})[-1] \xrightarrow{\mathbb{L}\widetilde{\jmath}^*\alpha} \mathbb{L}\widetilde{\jmath}^*\Delta_*'\mathcal{O}_{\mathcal{X}} = \Delta_{0*}\mathcal{O}_X),$$

and there exists the distinguished triangle

$$q_1^*\check{\mathcal{E}} \overset{\mathbb{L}}{\otimes} q_2^*\mathcal{E}[-2] \longrightarrow q_1^*\check{\mathcal{E}} \overset{\mathbb{L}}{\otimes} q_2^*\mathcal{E} \longrightarrow \mathbb{L}\widetilde{k}^*\widetilde{k}_*(q_1^*\check{\mathcal{E}} \overset{\mathbb{L}}{\otimes} q_2^*\mathcal{E})[-1],$$

as in [1, Lemma 3.3]. Then applying $\mathbb{L}\widetilde{\imath}^*$, we have the triangle

$$\check{E} \boxtimes E[-2] \stackrel{u}{\longrightarrow} \check{E} \boxtimes E \longrightarrow \mathbb{L}\widetilde{\jmath}^* \widetilde{k}_* (q_1^* \check{\mathcal{E}} \stackrel{\mathbb{L}}{\otimes} q_2^* \mathcal{E})[-1].$$

We can easily check the following:

$$\operatorname{Ext}_{X\times X}^{2}(\check{E}\boxtimes E,\check{E}\boxtimes E)$$

$$\cong \left(\operatorname{Ext}_{X}^{2}(E,E)\otimes\operatorname{Ext}_{X}^{0}(E,E)\right)\oplus \left(\operatorname{Ext}_{X}^{0}(E,E)\otimes\operatorname{Ext}_{X}^{2}(E,E)\right).$$

Hence we can write $u = a(\mathring{h} \boxtimes id) + b(id \boxtimes h)$ for some $a, b \in \mathbb{C}$. On the other hand, we can check that the following diagram commutes:

$$\check{E}\boxtimes E[-2] \xrightarrow{u} \check{E}\boxtimes E \xrightarrow{} \mathbb{L}\widetilde{\jmath}^*\widetilde{k}_*(q_1^*\check{\mathcal{E}}\overset{\mathbb{L}}{\otimes} q_2^*\mathcal{E})$$

$$\downarrow \text{tr} \qquad \downarrow \mathbb{L}\widetilde{\jmath}^*\alpha$$

$$\Delta_{0*}\mathcal{O}_X.$$

This is easily checked using the same argument of [5, Prop. 2.7], and leave the detail to the reader. Therefore $\operatorname{tr} \circ u = 0$, which implies b = -a. Hence if we show $u \neq 0$, then we can conclude $\mathbb{L}\widetilde{\jmath}^*\mathcal{L} \cong \mathcal{H}$. Assume u = 0. Then we have the decomposition

(6)
$$\mathbb{L}\widetilde{\jmath}^*\widetilde{k}_*(q_1^*\check{\mathcal{E}} \overset{\mathbb{L}}{\otimes} q_2^*\mathcal{E})[-1] \cong (\check{E} \boxtimes E) \oplus (\check{E} \boxtimes E)[-1].$$

Since $\operatorname{Hom}_{X\times X}(\check{E}\boxtimes E[-1], \Delta_*\mathcal{O}_X)=0$, the morphism

$$\mathbb{L}\widetilde{\jmath}^*\alpha \colon \mathbb{L}\widetilde{\jmath}^*\widetilde{k}_*(q_1^*\check{\mathcal{E}} \overset{\mathbb{L}}{\otimes} q_2^*\mathcal{E})[-1] \longrightarrow \Delta_{0*}\mathcal{O}_X$$

is a non-zero multiple of (tr, 0) under the decomposition (6). Let $S \in D(X \times X)$ be the cone of the trace map:

$$\check{E} \boxtimes E \stackrel{\operatorname{tr}}{\longrightarrow} \Delta_{0*} \mathcal{O}_X \longrightarrow \mathcal{S}.$$

Then we have the decomposition $\mathbb{L}\tilde{\jmath}^*\mathcal{L} \cong \mathcal{S} \oplus (\check{E} \boxtimes E)$, and the following diagram commutes by Chen's lemma [4]:

$$D(X) \xrightarrow{\Phi_{X \to X}^{\widetilde{\mathbb{L}_{J}^{*}} \mathcal{L}}} D(X)$$

$$j_{*} \downarrow \qquad \qquad \downarrow j_{*}$$

$$D(\mathcal{X}) \xrightarrow{T_{\ell_{*}} \mathcal{E}} D(\mathcal{X}).$$

In particular we have

$$j_*\Phi_{X\to X}^{\widetilde{\mathbb{L}_j^*}^*\mathcal{L}}(E)\cong T_{\ell_*\mathcal{E}}(j_*E)\cong j_*E[1-\dim\mathcal{X}],$$

which is indecomposable. It follows that

$$\Phi_{X \to X}^{\mathcal{S}}(E) \cong 0$$
 or $\Phi_{X \to X}^{\check{E} \boxtimes E}(E) \cong 0$.

Since $\Phi_{X \to X}^{E \boxtimes E}(E) \cong \mathbb{R} \operatorname{Hom}(E, E) \otimes_{\mathbb{C}} E$, the latter is impossible by the definition of \mathbb{P}^n -object. Hence $\Phi_{X \to X}^{\mathcal{S}}(E)$ must be zero. Since we have the distinguished triangle:

$$\mathbb{R} \operatorname{Hom}(E, E) \otimes_{\mathbb{C}} E \longrightarrow E \longrightarrow \Phi_{X \to X}^{\mathcal{S}}(E) \cong 0,$$

we have $\mathbb{R} \operatorname{Hom}(E, E) \otimes_{\mathbb{C}} E \cong E$. But again this is impossible by the definition of \mathbb{P}^n -object.

BIBLIOGRAPHY

- [1] A. BONDAL & D. ORLOV "Semiorthogonal decomposition for algebraic varieties", preprint, 1995, arXiv:math.AG/9506012, p. 1–55.
- [2] T. Bridgeland "Equivalences of triangulated categories and Fourier-Mukai transforms", Bull. London Math. Soc. 31 (1999), p. 25–34.
- [3] _____, "Flops and derived categories", *Invent. Math.* **147** (2002), p. 613–632.
- [4] J.-C. CHEN "Flops and equivalences of derived categories for three-folds with only Gorenstein singularities", J. Differential Geom. 61 (2002), p. 227–261.
- [5] D. HUYBRECHTS & R. THOMAS "P-objects and autoequivalences of derived categories", preprint, 2005, arXiv:math.AG/0507040, p. 1–13.

- [6] M. INABA "Toward a definition of moduli of complexes of coherent sheaves on a projective scheme", J. Math. Kyoto Univ. 42-2 (2002), p. 317– 329.
- [7] A. ISHII & H. UEHARA "Autoequivalences of derived categories on the minimal resolutions of A_n -singularities on surfaces", preprint, 2004, arXiv:math.AG/0409151, p. 1–53.
- [8] M. Kontsevich "Homological algebra of mirror symmetry", in *Proceedings of the International Congress of Mathematicians, Zurich (1994)* vol. I, Birkhäuser, 1995, p. 120–139.
- [9] M. LIEBLICH "Moduli of complexes on a proper morphism", *J. Algebraic Geom.* **15** (2006), p. 175–206.
- [10] D. Ploog "Autoequivalences of derived categories of smooth projective varieties", Ph.D. Thesis, 2005.
- [11] P. Seidel "Graded Lagrangian submanifolds", Bull. Soc. Math. France 128 (2000), p. 103–149.
- [12] P. SEIDEL & R. THOMAS "Braid group actions on derived categories of coherent sheaves", Duke Math. J. 108 (2001), p. 37–107.
- [13] R. Thomas "A holomorphic casson invariant for Calabi-Yau 3-folds and bundles on K3-fibrations", J. Differential Geom. **54** (2000), p. 367–438.
- [14] Y. Toda "Stability conditions and crepant small resolutions", preprint, 2005, arXiv:math.AG/0512648, p. 1–25.