RYUICHI ISHIMURA
YASUNORI OKADA

The existence and the continuation of holomorphic solutions for convolution equations in tube domains

<http://www.numdam.org/item?id=BSMF_1994__122_3_413_0>
THE EXISTENCE AND THE CONTINUATION OF
HOLOMORPHIC SOLUTIONS FOR CONVOLUTION
EQUATIONS IN TUBE DOMAINS

BY

RYUICHI ISHIMURA and YASUNORI OKADA (*)

0. Introduction

The convolution equation has been historically studied by many authors, especially the equation in the category of holomorphic functions defined on a complex domain. There are two most principal problems for those equations. One is the existence of holomorphic solutions, and the
other is the continuation of holomorphic solutions of the homogeneous equation.

The existence of holomorphic solutions in a complex domain were first considered by Malgrange [26] and the case when $n = 1$ was completely studied by Korobënik [21]-[23], Epifanov [7]-[9] and Tkachenko [35], there they found the important connection between the existence and the property of completely regular growth of the symbol of the operator. In these directions, we cite also interesting works of Napalkov [32], Morzhakov [29]-[31] and Lelong-Gruman [24]. In the case of differential operators of infinite order with holomorphic coefficients, Aoki [2] gives us complete information about the local existence. And in the category of hyperfunctions or Fourier-hyperfunctions, we have fundamental works of Kawai [19] and Okada [33] for convolution operators (see also Kaneko [17]). There are also series of results of Meise and Vogt for convolution equations in the categories of functions of Gevrey classes and ultra-distributions (see e.g. Franken-Meise [11]) and works of Meise and Momm concerning with the right inverse of convolution operators (see e.g. Momm [28]).

For these two problems for convolution equations, we also refer to Bony-Schapira [6], Méril-Struppa [27] and Berenstein-Struppa [4] and [5].

In the present paper, we consider the convolution operator $\mu *$ defined by a hyperfunction $\mu(x)$ with compact support, operating on holomorphic functions in tube domains invariant by any real translation. In all what follows we impose the natural condition called (S) introduced by Kawai [19]. This condition in the $n = 1$ case is in fact equivalent to the property of completely regular growth in pure-imaginary directions. First we will prove under this condition (S), the existence of solutions in any open tube domain. And conversely, we will also prove that the existence of solutions in some special tube domain implies the condition (S), that means (S) is sufficient and almost necessary condition for the existence. Secondly, we will define the characteristic set $\text{Char}(\mu *)$ of $\mu *$ and prove that all solutions of homogeneous equation $\mu * f = 0$ are extended holomorphically to any non-characteristic direction. Finally, by these results, we will conclude under the condition (S) that the micro-support of the complex defined by the operator $\mu *$ is included in the characteristic set $\text{Char}(\mu *)$.
The authors take this occasion to express their thanks to professors C.A. BERENSTEIN, T. KAWAI, Yu. KOROBEINIK, P. SCHAPIRA and D.C. STRUPPA for many useful discussions and suggestions, especially to professor P. SCHAPIRA who gave the motivation of this work and many fruitful discussions.

1. Problem and notations

In this paper we denote by $\mathcal{O}_{\mathbb{C}^n}$ the sheaf of holomorphic functions on \mathbb{C}^n and identify $\mathbb{R}^n \times \sqrt{-1}\mathbb{R}^n$ with \mathbb{C}^n. Denoting the projection $\mathbb{R}^n \times \sqrt{-1}\mathbb{R}^n \rightarrow \sqrt{-1}\mathbb{R}^n$ by τ, we set

$$\mathcal{O}^\tau := R\tau_\ast \mathcal{O}_{\mathbb{C}^n}$$

which is, in fact, concentrated at degree 0, so is considered as a sheaf on $\sqrt{-1}\mathbb{R}^n$. Let $\mu(x)$ be a hyperfunction on \mathbb{R}^n with compact support. Then the convolution operator $P := \mu^\ast$ operates on the sheaf \mathcal{O}^τ, and we consider the complex

$$S : 0 \rightarrow \mathcal{O}^\tau \xrightarrow{\mu^\ast} \mathcal{O}^\tau \rightarrow 0.$$

Now our problem is stated as follows.

Problem 1.3. — Estimate the micro-support $SS(S)$ by «the characteristic set» $\text{Char}(P)$ of $P = \mu^\ast$.

We refer to KASHIWARA-SCHAPIRA [18], for terminologies above.

For an analytic functional $T \in \mathcal{O}(\mathbb{C}^n)'$, we denote by $\hat{T}(\zeta)$ its Fourier-Borel transform

$$\hat{T}(\zeta) = \langle T, e^{z\cdot \zeta} \rangle_z,$$

which is an entire function of exponential type satisfying the following estimate (the theorem of Polya-Ehrenpreis-Martineau). If T is supported by a compact set $K \subset \mathbb{C}^n$, for every $\varepsilon > 0$, we can take a constant $C_\varepsilon > 0$ such that

$$|\hat{T}(\zeta)| \leq C_\varepsilon \exp(H_K(\zeta) + \varepsilon|\zeta|),$$

where $H_K(\zeta) := \sup_{z \in K} \text{Re}(z, \zeta)$ is the supporting function of K. In particular, if μ is a hyperfunction with compact support, its Fourier-Borel transform $\hat{\mu}(\zeta)$ is of infra-exponential growth on $\sqrt{-1}\mathbb{R}^n$.

In the sequel, we often write as $\zeta = \xi + \sqrt{-1}\eta$ the decomposition into the real and the imaginary parts and denote for $R > 0$ and $\zeta_0 \in \mathbb{C}^n$ by $B(\zeta_0; R)$ the open ball of center ζ_0 with radius R in \mathbb{C}^n.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
In this paper, we suppose the following condition (S) due to T. Kawai [19] for the entire function \(f(\zeta) = \hat{\mu}(\zeta) \).

\[
\begin{align*}
(\text{S}) & \quad \text{For every } \varepsilon > 0, \text{ there exists } N > 0 \text{ such that for any } \zeta \in \mathbb{C}^n, \\
& \quad \text{which satisfies } |-1\eta - \zeta| < \varepsilon|\eta|, \quad |f(\zeta)| \geq e^{-\varepsilon|\eta|}.
\end{align*}
\]

In the next section, we will investigate the meaning of this condition (S).

2. A division lemma

First we prove the following lemma which ensures the division of analytic functionals under the condition (S).

Lemma 2.1. — Let \(f, g \) and \(h \) be entire functions satisfying \(fg = h \), and \(M \) and \(K \) be two compact convex sets in \(\mathbb{R}^n \) and in \(\mathbb{C}^n \) respectively. We suppose that for every \(\varepsilon > 0 \), \(f \) and \(h \) satisfy the following estimates (2.1) and (2.2) with constants \(A_\varepsilon > 0 \) and \(B_\varepsilon > 0 \),

\[
\begin{align*}
(2.1) \quad \log|f(\zeta)| & \leq A_\varepsilon + H_M(\zeta) + \varepsilon|\zeta|, \\
(2.2) \quad \log|h(\zeta)| & \leq B_\varepsilon + H_K(\zeta) + \varepsilon|\zeta|.
\end{align*}
\]

We also assume that \(f \) satisfies the condition (S). Then for any \(\varepsilon > 0 \), there exists a compact set \(L = L_\varepsilon \subset \mathbb{C}^n \) and \(C_\varepsilon > 0 \) such that

\[
\begin{align*}
\tau(L) & \subset \tau(K + B(0; \varepsilon)), \\
\log|g(\zeta)| & \leq C_\varepsilon + H_L(\zeta).
\end{align*}
\]

Proof. — For any \(\varepsilon \) with \(0 < \varepsilon < 1 \), we set

\[
\Gamma_\varepsilon := \left\{ \zeta \in \mathbb{C}^n ; \text{ there exists } \sqrt{-1}\eta \in \sqrt{-1}\mathbb{R}^n \right\}
\]

such that \(|\zeta - \sqrt{-1}\eta| < \varepsilon|\eta| \).

First we prove the estimate (2.3) for \(\zeta \in \Gamma_\varepsilon \). By the condition (S), there exists \(N > 0 \) so that if \(|\zeta| > N \), we can find \(\zeta' \in \mathbb{C}^n \) satisfying \(|\zeta' - \sqrt{-1}\eta| < \varepsilon|\eta| \) and \(|f(\zeta')| \geq e^{-\varepsilon|\eta|} \). We recall a lemma of Harnack-Malgrange-Hörmander [12, lemma 3.1].

Lemma 2.2. — Let \(F(\zeta), H(\zeta) \) and \(G(\zeta) = H(\zeta)/F(\zeta) \) be three holomorphic functions in the open ball \(B(0; R) \). If the inequalities \(|F(\zeta)| < A \) and \(|H(\zeta)| < B \) hold on \(B(0; R) \), then the estimate

\[
|G(\zeta)| \leq B \cdot A^{\frac{2|\zeta|}{R-|\zeta|}} \cdot |F(0)|^{-\frac{R+|\zeta|}{R-|\zeta|}}
\]

holds for all \(\zeta \in B(0; R) \).
We apply this lemma to the ball $B(\zeta '; 3\varepsilon |\eta|)$. By (2.2), we have

$$\sup_{\zeta'' \in B(\zeta '; 3\varepsilon |\eta|)} \log |h(\zeta '')| \leq B_\varepsilon + \sup_{|\zeta'' - \zeta'| \leq 3\varepsilon |\eta|} (H_K(\zeta'') + \varepsilon |\zeta''|).$$

Since $|\zeta'' - \zeta'| \leq 3\varepsilon |\eta|$ implies $|\zeta'' - \sqrt{-1} \eta| \leq 4\varepsilon |\eta|$, setting

$$k := \sup_{z \in K} |z|,$$

the right hand side is estimated by

$$B_\varepsilon + \sup_{|\zeta'' - \sqrt{-1} \eta| \leq 4\varepsilon |\eta|} \left(H_K(\zeta'' - \sqrt{-1} \eta) + \varepsilon |\zeta'' - \sqrt{-1} \eta| \right) + H_K(\sqrt{-1} \eta) + \varepsilon |\eta|$$

$$\leq B_\varepsilon + 4(k + \varepsilon)\varepsilon |\eta| + H_K(\sqrt{-1} \eta) + \varepsilon |\eta|$$

$$\leq B_\varepsilon + (4k + 5)\varepsilon |\eta| + H_K(\sqrt{-1} \eta).$$

By the same way, by setting

$$m := \sup_{x \in M} |x|$$

and noting that $M \subset \mathbb{R}^n$, using (2.1) we have:

$$\sup_{\zeta'' \in B(\zeta '; 3\varepsilon |\eta|)} \log |f(\zeta '')| \leq A_\varepsilon + (4m + 5)\varepsilon |\eta| + H_M(\sqrt{-1} \eta)$$

$$= A_\varepsilon + (4m + 5)\varepsilon |\eta|.$$

Remarking that $\zeta \in B(\zeta '; 2\varepsilon |\eta|)$ (which implies $\zeta \in B(\zeta '; 3\varepsilon |\eta|)$), by the Lemma 2.2, we have:

$$\log |g(\zeta)| \leq B_\varepsilon + (4k + 5)\varepsilon |\eta| + H_K(\sqrt{-1} \eta)$$

$$+ \frac{4\varepsilon |\eta|}{3\varepsilon |\eta| - 2\varepsilon |\eta|} \left(A_\varepsilon + (4m + 5)\varepsilon |\eta| \right) + \frac{3\varepsilon |\eta| + 2\varepsilon |\eta|}{3\varepsilon |\eta| - 2\varepsilon |\eta|} \varepsilon |\eta|$$

$$= B_\varepsilon + 4A_\varepsilon + H_K(\sqrt{-1} \eta) + (4k + 16m + 30)\varepsilon |\eta|.$$

So for any $\varepsilon > 0$, we can find a constant $C'_\varepsilon > 0$ such that

$$\log |g(\zeta)| \leq C'_\varepsilon + H_K(\sqrt{-1} \eta) + \varepsilon |\eta|$$

for $\zeta \in \Gamma_\varepsilon$.

BULLETIN DE LA SOCIÉTÉ MATHEMATIQUE DE FRANCE
Now we prove the estimate (2.3) for all $\zeta \in \mathbb{C}^n$. Recall that if the quotient of two entire functions of exponential type is entire, then it is also of exponential type (see for example AAVANIISSIAN [1] or ISHIMURA [14, Lemma 8]). Thus g satisfies the estimate, for constants $\sigma > 0$ and $C > 0$,

$$\log|g(\zeta)| \leq \sigma|\zeta| + C.$$

We remark that in the case $n = 1$, by the Phragmén-Lindelöf principle and by the estimate in Γ_ε, we have the estimate (2.3) for all $\zeta \in \mathbb{C}$. But in the general case when $n \geq 1$, we prove it for $\zeta = \xi + \sqrt{-1}\eta \notin \Gamma_\varepsilon$ directly. So we may suppose $|\xi| \geq \varepsilon|\eta|$ and this implies:

$$|\zeta| \leq |\xi| + |\eta| \leq (1 + \frac{1}{\varepsilon})|\xi|.$$

Then we can take another constant $\sigma_\varepsilon > 0$ which satisfies

$$\log|g(\zeta)| \leq \sigma_\varepsilon|\xi| + C.$$

Finally put

$$L_\varepsilon := \text{the convex hull of } (K + B(0; \varepsilon)) \cup \{\xi \in \mathbb{R}^n ; \ |\xi| \leq \sigma_\varepsilon\},$$

$$C_\varepsilon := \max(C_\varepsilon', C),$$

and we conclude the desired estimate (2.3).

3. The existence of holomorphic solutions

For the first cohomology group of the complex \mathcal{S}, we will prove the surjectivity theorem under the condition (S).

Theorem 3.1. — Let $\mu(x)$ be a hyperfunction with compact support. Assume that $\tilde{\mu}(\zeta)$ satisfies the condition (S). Then for any open set $\sqrt{-1}/omega \subset \sqrt{-1}/\mathbb{R}^n$, the operator

$$\mu^* : \mathcal{O}^r(\sqrt{-1}/omega) \rightarrow \mathcal{O}^r(\sqrt{-1}/omega)$$

is surjective.

Proof. — The transpose of

$$P := \mu^* : \mathcal{O}^r(\sqrt{-1}/omega) \rightarrow \mathcal{O}^r(\sqrt{-1}/omega)$$

TOME 122 — 1994 — No 3
is
\[tP = \mu* : \mathcal{O}(\mathbb{R}^n \times \sqrt{-1} \omega) \rightarrow \mathcal{O}(\mathbb{R}^n \times \sqrt{-1} \omega) \]
with \(\hat{\mu}(\zeta) = \mu(-\zeta) \). By the standard argument, it is enough to prove that \(tP \) is injective and that the image of \(tP \) is (weakly) closed. In fact, the injectivity of \(tP \) shows that the image of \(P \) is dense, and the closedness of the image of \(tP \) shows the closedness of the image of \(P \). Because \(\mu \) is not 0, the injectivity of \(tP \) is clear. Then we will show that the image of \(tP \) is weakly closed.

Let \((T_\nu) \) be a sequence in \(\mathcal{O}(\mathbb{R}^n \times \sqrt{-1} \omega) \) and assume that \((tP T_\nu) \) converges to \(S \) in \(\mathcal{O}(\mathbb{R}^n \times \sqrt{-1} \omega) \). By taking the Fourier-Borel transformation, \(\hat{\nu}(\zeta) := \hat{\mu}(\zeta) \hat{T}_\nu(\zeta) \) converges to \(\hat{S}(\zeta) \).

Then \(G(\zeta) := \hat{S}(\zeta)/\hat{\mu}(\zeta) \) becomes an entire function (cf. MALGRANGE [26]). By Lemma 2.1 and POLYA-EHRENPREIS-MARTINEAU (see [12, thm 4.5.3]), there exists \(T \in \mathcal{O}(\mathbb{R}^n \times \sqrt{-1} \omega) \) such that \(\hat{T} = G \) and so \(\mu* T = S \), i.e. \(S \in \text{the image of } tP \).

Corollary 3.2. — \(H^1(S) = 0 \) and so \(SS^H(S) = 0 \).

Conversely by means of FAVOROV [10] and MORZHAKOV [30] (see also LELONG-GRUMAN [24]), we also note that the condition \((S) \) is the necessary condition for the surjectivity in the following sense.

Theorem 3.3. — Let \(\sqrt{-1} \omega \) be a non-empty strictly convex bounded open domain with \(C^2 \)-boundary in \(\sqrt{-1} \mathbb{R}^n \). Then if
\[\mu* : \mathcal{O}(\sqrt{-1} \omega) \rightarrow \mathcal{O}(\sqrt{-1} \omega) \]
is surjective, then \(f(\zeta) := \hat{\mu}(\zeta) \) satisfies the condition \((S) \).

Proof. — Assume that \(\hat{\mu}(\zeta) \) does not satisfy the condition \((S) \). Then by the compactness of \(S := \{ \sqrt{-1} \eta \in \sqrt{-1} \mathbb{R}^n ; |\eta| = 1 \} \), there exist \(\varepsilon > 0, \sqrt{-1} \eta_0 \in \sqrt{-1} \mathbb{R}^n \) and the increasing sequence \((t_j) \) of positive numbers tending to infinity such that \(|\eta_0| = 1 \) and that
\[(3.1) \quad |f(t_j \zeta)| < e^{-\varepsilon t_j} \quad \text{if} \quad |\zeta - \sqrt{-1} \eta_0| < \varepsilon. \]
There is no loss of generality if we assume that \(t_j \) also satisfy \(2t_j < t_{j+1} \). From this, we derive that for any \(\delta \in [0, \min(\frac{1}{3}\varepsilon, \frac{1}{36})] \),
\[(3.2) \quad |f(t \zeta)| < e^{-\frac{1}{3} t} \quad \text{if} \quad \zeta \in B(\sqrt{-1} \eta_0 ; \delta), \quad t \in [(1-\delta)t_j, (1+\delta)t_j]. \]
Denoting \(U = \mathbb{R}^n \times \sqrt{-1} \omega \), we may take \(\sqrt{-1} y_0 \in \partial U = \mathbb{R}^n \times \sqrt{-1} \partial \omega \) and a non-empty ball \(B(z_1, s) \subset U \) so that
\[H_U(\sqrt{-1} \eta_0) = \Re(\sqrt{-1} \eta_0, \sqrt{-1} y_0), \]
\[B(z_1, s) \cap \partial U = \{ \sqrt{-1} y_0 \} \]

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
because U is strictly convex and has C^2-boundary. By a translation we may also assume that $z_1 = 0$. In this situation, we have:

(3.3) $H_{B(0; s)}(\zeta) \leq H_U(\zeta)$,

(3.4) $H_{B(0; s)}(\zeta) < H_U(\zeta)$ if $\zeta \notin B(\sqrt{-1} \eta_0; \frac{1}{3} \delta)$, $|\zeta| = 1$.

Then there exists small $a > 0$ such that:

(3.5) $s|\zeta| + 4sa \leq H_U(\zeta)$ if $\zeta \notin B(\sqrt{-1} \eta_0; \frac{1}{3} \delta)$, $|\zeta| = 1$.

Now we follow the argument of the theorem 7 of Morzhakov [30] (or it is possible to follow the argument of Theorem 9.35 in Lelong-Gruman [24]). By the proof of theorem 6 in Favorov [10] (or Morzhakov [30, thm 5]), we can take an entire function $g(\zeta)$ on \mathbb{C}^n satisfying with large $R_0 > 0$,

(3.6) $h^*_g(\zeta) \leq (1 + a)s|\zeta|$,

(3.7) $h^*_g(\zeta) \geq s|\zeta|$ if $\zeta \in B(\sqrt{-1} \eta_0; \frac{1}{12} \delta)$,

(3.8) \[
\log |g(t\zeta)| \leq \begin{cases}
(1 - 2a)s|\zeta|t & \text{if } \zeta \in B(\sqrt{-1} \eta_0; \delta), \\
(1 - \delta)t, (1 + \delta)t_j & \text{if } \zeta \notin \bigcup_{j=1}^{\infty} [(1 - \delta)t_j, (1 + \delta)t_j] \cup [0, R_0].
\end{cases}
\]

Here $h^*_g(\zeta)$ is the regularized radial growth indicator, (see for example, Lelong–Gruman [24]). Taking $a < \frac{\delta \varepsilon}{2888}$, for every r with $\frac{1}{1 + 2a} < r \leq 1$ we define entire function $\phi_r(\zeta) := g(r\zeta)$ in ζ. For any $\tau > 0$, there exists $R_0 = R_0(\tau) > 0$ such that

(3.9) $\frac{\log |\phi_r(t\zeta)|}{t} \leq H_{B(0; sr)}(\zeta) + asr + \tau$ if $t \geq R_0$, $|\zeta| = 1$.

Because we have $rB(\sqrt{-1} \eta_0; \frac{1}{3} \delta) \subset B(\sqrt{-1} \eta_0; \delta)$, using (3.8) there exists $R_1 > 0$ such that:

(3.10) $\frac{\log |\phi_r(t\zeta)|}{t} \leq (1 - 2a)sr|\zeta|$ if $\zeta \in B(\sqrt{-1} \eta_0; \frac{1}{3} \delta)$,

$t \notin \bigcup_{j=1}^{\infty} [(1 - \delta)t_j, (1 + \delta)t_j] \cup [0, R_1]$.

TOME 122 — 1994 — N° 3
By the fact $\text{supp} \mu = M$, there exists also $R_2 > 0$ such that:

\begin{equation}
\frac{\log |f(t\zeta)|}{t} \leq H_{-M}(\zeta) + \tau \quad \text{if} \quad t \geq R_2, \quad |\zeta| = 1.
\end{equation}

(I) Suppose $\zeta \notin B(\sqrt{-1}\eta_0; \frac{1}{3}\delta)$ with $|\zeta| = 1$ and $t \geq R := \max(R_0, R_1, R_2)$.

Then we have:

\begin{equation}
\frac{\log |f(t\zeta)\phi_r(t\zeta)|}{t} \leq H_{-M}(\zeta) + (1 + a)sr + \tau \\
\leq H_{-M}(\zeta) + H_{B(0;sr)}(\zeta) + asr + \tau.
\end{equation}

(II) Suppose $\zeta \in B(\sqrt{-1}\eta_0; \frac{1}{3}\delta)$ with $|\zeta| = 1$ and $t \geq R$.

(i) In addition, if $t \in \bigcup_{j=1}^{\infty}[(1-\delta)t_j, (1+\delta)t_j]$, then by (3.2), (3.5) and (3.9) we have:

\begin{equation}
\frac{\log |f(t\zeta)\phi_r(t\zeta)|}{t} \leq H_{B(0;sr)}(\zeta) + asr - \frac{1}{2}\varepsilon + \tau \\
\leq H_{B(0;sr)}(\zeta) - 3asr + \tau
\end{equation}

because $as < \delta\varepsilon/288 < \frac{1}{8}\varepsilon$.

(ii) If $t \notin \bigcup_{j=1}^{\infty}[(1-\delta)t_j, (1+\delta)t_j]$, then by (3.10) and (3.11), we have:

\begin{equation}
\frac{\log |f(t\zeta)\phi_r(t\zeta)|}{t} \leq H_{-M}(\zeta) + (1 - 2a)sr + \tau \\
\leq H_{-M} + H_{B(0;sr)}(\zeta) - 2asr + \tau.
\end{equation}

Finally setting $\tau = as$, by (3.12), (3.13) and (3.14) we have:

\begin{equation}
\frac{\log |f(t\zeta)\phi_r(t\zeta)|}{t} \leq H_{-M}(\zeta) + (1 - 2a)sr + \tau \\
\quad \text{if} \quad t \geq R, \quad |\zeta| = 1.
\end{equation}

Now we are ready to prove that $\mu^* : \mathcal{O}^r(\sqrt{-1}\omega) \to \mathcal{O}^r(\sqrt{-1}\omega)$ is not surjective. It is enough to prove that the image of $\phi : \mathcal{O}(U)' \to \mathcal{O}(U)'$ is not closed: for any $r > 0$ with $\frac{1}{1 + 2a} < r \leq 1$, there is $v_r \in \mathcal{O}(U)'$ so that $\phi_r' = \phi_r(\zeta)$. By (3.9) and (3.15), if $r < 1$, we know $v_r, \mu^* v_r \in \mathcal{O}(U)'$.
By (3.15) we have $\mu \ast v_r \to \mu \ast v_1$ in $\mathcal{O}(U)$ when $r \to 1$. But by (3.7) we have:

$$\log|\hat{v}_1(\sqrt{-1} \eta_0)| \geq tH_{B(0; r)}(\sqrt{-1} \eta_0) = t \text{Re}(\sqrt{-1} y_0, \sqrt{-1} \eta_0).$$

If $L \subset U$ is a compact convex set supporting v_1, we have for every $\varepsilon > 0$, there exists $C_\varepsilon > 0$ such that

$$\log|\hat{v}_1(t\sqrt{-1} \eta_0)| \leq C_\varepsilon + H_{L+B(0; \varepsilon)}(t\sqrt{-1} \eta_0),$$

so we have

$$\frac{C_\varepsilon}{t} + H_{L+B(0; \varepsilon)}(\sqrt{-1} \eta_0) \leq \text{Re}(\sqrt{-1} y_0, \sqrt{-1} \eta_0)$$

for any $t \gg 1$. But by taking ε so small that $L + B(0; \varepsilon) \subset U$ and taking t large enough, as $\sqrt{-1} y_0 \in \partial U$ this gives a contradiction. So v_1 is not in $\mathcal{O}(U)'$ i.e. $\mu \ast v_1$ is not an element of the image of $\mu : \mathcal{O}(U) \to \mathcal{O}(U)'$ while $\mu \ast v_r$ converges to $\mu \ast v_1$ in $\mathcal{O}(U)'$. This means that the image of $\mu : \mathcal{O}(U) \to \mathcal{O}(U)'$ is not closed. \[\square\]

Proposition 3.4. — In the case $n = 1$, the condition (S) is nothing but to say that $f(\zeta)$ is of (completely) regular growth (see for example Levin [25]) in the pure imaginary directions $\sqrt{-1} \mathbb{R}^1$.

Proof. — In fact if $f(\zeta)$ is of regular growth, then it is easy to see that $f(\zeta)$ satisfies (S). Conversely, if $f(\zeta)$ satisfies (S), then by the Theorem 3.1, for any bounded open interval $\sqrt{-1} \omega \subset \sqrt{-1} \mathbb{R}^1$, $\mu \ast : \mathcal{O}(\sqrt{-1} \omega) \to \mathcal{O}(\sqrt{-1} \omega)$ is surjective. But by the proof of the theorem 9.35 of Lelong-Gruman [24], we can conclude that $f(\zeta)$ is of regular growth (in their meanings, but in the case $n = 1$ they coincide with the classical one).

Remark 3.5. — In the case $n \geq 1$, we can verify that the property of the regular growth in the pure imaginary directions $\sqrt{-1} \mathbb{R}^n$ of Lelong-Gruman sense [24] or of the sense of Agranovich-Ronkin (see Favorov [10]) implies the condition (S), but we do not know whether the converse is true.
4. The characteristic set and the continuation of homogeneous solutions

For the 0-th cohomology group of the complex S, under the condition (S) for $\mu \in B_c(\mathbb{R}^n)$ a hyperfunction with compact support, we shall now solve the problem of continuation for \mathcal{O}^τ-solutions of the homogeneous equation $\mu \ast g = 0$ by the method of KISELMAN [20]–SÉBBAR [34]. We denote the sheaf of \mathcal{O}^τ-solutions by \mathcal{N}, that is, for any open set $\sqrt{-1}\omega \subset \sqrt{-1}\mathbb{R}^n$, we set:

$$\mathcal{N}(\sqrt{-1}\omega) := \{g \in \mathcal{O}^\tau(\sqrt{-1}\omega); \mu \ast g = 0\}.$$

For an open set $\sqrt{-1}\Omega \subset \sqrt{-1}\mathbb{R}^n$ with $\sqrt{-1}\omega \subset \sqrt{-1}\Omega$, the problem is formulated as to get the condition so that the restriction map

$$r : \mathcal{N}(\sqrt{-1}\Omega) \longrightarrow \mathcal{N}(\sqrt{-1}\omega)$$

is surjective.

We note that the subspace $\mathcal{N}(\sqrt{-1}\omega)$ of the (FS) space $\mathcal{O}^\tau(\sqrt{-1}\omega)$, endowed with the induced topology is a closed subspace. We have:

Proposition 4.1. Let $\sqrt{-1}\omega$ and $\sqrt{-1}\Omega$ be two open sets of $\sqrt{-1}\mathbb{R}^n$ with $\sqrt{-1}\omega \subset \sqrt{-1}\Omega$. Assume that μ satisfies (S), then the image $r(\mathcal{N}(\sqrt{-1}\Omega))$ of the restriction map r is dense in $\mathcal{N}(\sqrt{-1}\omega)$.

Proof. Let E be the space of exponential-polynomial solutions and E° its polar set in $\mathcal{O}(\mathbb{C}^n)'$, that is,

$$E := \left\{ g(z) = \sum_{j=1}^{\ell} p_j(z) e^{\alpha_j \cdot z}; \mu \ast g = 0, \text{ } p_j's \text{ are polynomials in } z \text{ and } \alpha_j's \text{ are constants} \right\},$$

$$E^\circ := \{ T \in \mathcal{O}(\mathbb{C}^n)'; \langle T, g \rangle = 0 \text{ for any } g \in E \}.$$

We shall show that E is dense in $\mathcal{N}(\sqrt{-1}\omega)$. To do this, it is sufficient, by Hahn-Banach’s theorem, to prove that any functional

$$T \in E^\circ \cap \mathcal{O}(\mathbb{R}^n \times \sqrt{-1}\omega)'$$

is orthogonal to $\mathcal{N}(\sqrt{-1}\omega)$. With regard to functionals in E°, we quote the following lemma.
LEMMA 4.2. (B. Malgrange [26]). — \(T \in \mathcal{O}(\mathbb{C}^n)' \) belongs to \(\mathcal{E}^\circ \) if and only if there exists an entire function \(s(\zeta) \) satisfying
\[
\widehat{T}(\zeta) = s(\zeta) \hat{\mu}(-\zeta).
\]

We note that the above \(s \) in the lemma is of exponential type. Moreover if \(T \) is in \(\mathcal{O}(\mathbb{R}^n \times \sqrt{-1} \omega)' \), then by the LEMMA 2.1, we can take a functional \(S \in \mathcal{O}(\mathbb{R}^n \times \sqrt{-1} \omega)' \) with \(s(\zeta) = \widehat{S}(\zeta) \). Finally we get the desired result,
\[
\langle T, g \rangle = \langle \hat{\mu} \star S, g \rangle = \langle S, \mu \star g \rangle = 0, \text{ for any } g \in \mathcal{N}(\sqrt{-1} \omega),
\]
where we have used the convention \(\mu(\zeta) = s(-\zeta) \).

In order to describe the theorem of continuation, we will prepare the notion of characteristics which is a natural generalization of the case of usual differential operators of finite order with constant coefficients. We define the sphere at infinity \(S_{\infty}^{2n-1} \) by \((\mathbb{C}^n \setminus \{0\})/\mathbb{R}_+ \) and consider the compactification with directions \(\mathbb{D}^{2n} = \mathbb{C}^n \cup S_{\infty}^{2n-1} \) of \(\mathbb{C}^n \). For \(\zeta \in \mathbb{C}^n \setminus \{0\} \), we write \(\zeta_{\infty} \in S_{\infty}^{2n-1} \) the class represented by \(\zeta \), i.e.
\[
\{\zeta_{\infty}\} = \text{(the closure of } \{t\zeta; \ t > 0\} \text{ in } \mathbb{D}^{2n}) \cap S_{\infty}^{2n-1}.
\]
We denote by \(\sqrt{-1} S_{\infty}^{n-1} \) the pure imaginary sphere at infinity
\[
\{(\xi + \sqrt{-1} \eta)_{\infty} \in S_{\infty}^{2n-1}; \ \xi = 0\},
\]
which is a closed subset of \(S_{\infty}^{2n-1} \).

For a hyperfunction \(\mu \) with compact support, using the terms of the modulus of the Fourier-Borel transform \(f = \hat{\mu} \) of \(\mu \), we define the characteristics \(\text{Char}_{\infty}(\mu_*) \) as follows. For \(\epsilon > 0 \) we set :
\[
V_f(\epsilon) := \{\zeta \in \mathbb{C}^n; \ \epsilon e^{||\zeta||} |f(\zeta)| < 1\},
\]
\[
W_f(\epsilon) := \sqrt{-1} S_{\infty}^{n-1} \cap (\text{the closure of } V_f(\epsilon) \text{ in } \mathbb{D}^{2n}).
\]
Now we define the characteristic set of \(\mu_* \).

Definition 4.3. — With the above notation, we define the characteristics of \(\mu_* \) (at infinity)
\[
\text{Char}_{\infty}(\mu_*) := \text{the closure of } \bigcup_{\epsilon>0} W_f(\epsilon),
\]
a closed set in \(\sqrt{-1} S_{\infty}^{n-1} \).

TOMÉ 122 — 1994 — N° 3
We remark that if $P = \mu*$ defines a finite order differential operator with constant coefficients, the characteristic set of $\mu*$ coincides with the usual characteristics of P defined as zeros of its principal symbol. Even if P is a differential operator of infinite order, it can be shown by a similar argument to the proof of Lemma 2.1, that $\text{Char}_\infty(\mu*)$ coincides with accumulating directions of zeros of the total symbol. (See for example T. Kawai [19].)

We note that the direction $\sqrt{-1} \rho \in \sqrt{-1} S^{n-1}$ does not belong to $\text{Char}_\infty(\mu*)$ if and only if for any $\varepsilon > 0$, there exist a conical neighborhood $\Gamma \subset \mathbb{C}^n$ of $\sqrt{-1} \rho$ and a positive N such that $f(\zeta)$ satisfies the following estimate on $\Gamma \cap \{|\zeta| > N\}$:

$$|f(\zeta)| > e^{-\varepsilon|\zeta|}$$

For this $\text{Char}_\infty(\mu*)$ and an open convex set $\sqrt{-1} \omega \subset \sqrt{-1} \mathbb{R}^n$, now we put

$$\sqrt{-1} \Omega := \text{the interior of } \bigcap_{\sqrt{-1} \eta \in \text{Char}_\infty(\mu*)^a} \left\{ \sqrt{-1} y \in \sqrt{-1} \mathbb{R}^n; -y \cdot \eta \leq H_{\sqrt{-1} \omega}\left(\sqrt{-1} \eta\right) \right\},$$

here «a» means the antipodal. Then $\sqrt{-1} \Omega$ becomes an open convex subset in $\sqrt{-1} \mathbb{R}^n$ containing $\sqrt{-1} \omega$. Moreover for any compact set L in $\mathbb{R}^n \times \sqrt{-1} \Omega$, we can take compact set K in $\mathbb{R}^n \times \sqrt{-1} \omega$ such that

$$H_L\left(\sqrt{-1} \eta\right) \leq H_K\left(\sqrt{-1} \eta\right) \quad \text{for any } \sqrt{-1} \eta \in \text{Char}_\infty(\mu*)^a.$$

Under the above situation we are ready to state the main theorem of this section.

Theorem 4.4. Let μ be a hyperfunction with compact support, and a pair of open sets $\sqrt{-1} \omega \subset \sqrt{-1} \Omega$ as above. Assume that μ satisfies the condition (S). Then the restriction

$$r : \mathcal{N}(\sqrt{-1} \Omega) \longrightarrow \mathcal{N}(\sqrt{-1} \omega)$$

is surjective.

Proof. Remark that the restriction $r : \mathcal{N}(\sqrt{-1} \Omega) \rightarrow \mathcal{N}(\sqrt{-1} \omega)$ has a dense image, the transpose $r' : \mathcal{N}(\sqrt{-1} \Omega)' \leftarrow \mathcal{N}(\sqrt{-1} \omega)'$ is injective and we must show only its surjectivity. By Hahn-Banach's theorem, any functional $T \in \mathcal{N}(\sqrt{-1} \Omega)'$ has an extension

$$T_1 \in \mathcal{O}(\mathbb{R}^n \times \sqrt{-1} \Omega)' ,$$

and we prove that we can choose $R \in \mathcal{O}(\mathbb{R}^n \times \sqrt{-1} \omega)'$ so that T_1 and R coincide on $\mathcal{N}(\sqrt{-1} \Omega)$. To do this, we use the following division lemma.
LEMMA 4.5. — Let L and K be a pair of compact subsets of \mathbb{C}^n satisfying the estimate (4.2) on $\text{Char}_{\infty}(\mu^*)$ and $p(\zeta)$ be an entire function satisfying the estimate

$$\log |p(\zeta)| \leq H_L(\zeta).$$

Then for any $\varepsilon > 0$, there exist constants $C_\varepsilon > 0$, $k_\varepsilon > 0$ and entire functions $q(\zeta)$ and $r(\zeta)$ which satisfy:

$$p(\zeta) = \bar{\mu}(-\zeta)q(\zeta) + r(\zeta),$$

$$\log |q(\zeta)| \leq H_{L\cup K}(\zeta) + k_\varepsilon |\text{Re}\zeta| + \varepsilon |\zeta| + C_\varepsilon,$$

$$\log |r(\zeta)| \leq H_K(\zeta) + k_\varepsilon |\text{Re}\zeta| + \varepsilon |\zeta| + C_\varepsilon.$$

Proof of the lemma. — In this proof, we write $f(\zeta) := \bar{\mu}(-\zeta)$. For any constant $\delta > 0$, consider the following set

$$\Lambda_1 := \{ \zeta \in S^{2n-1}_\infty ; H_L(\zeta) < H_K(\zeta) + \delta |\zeta| \},$$

which is a neighborhood of $\text{Char}(\mu^*)^a$ in S^{2n-1}_∞. Since $\sqrt{-1} S^{2n-1}_\infty \setminus \Lambda_1$ is compact and does not meet $\text{Char}(\mu^*)^a$, we can take a neighborhood Λ_2 of $\sqrt{-1} S^{2n-1}_\infty \setminus \Lambda_1$ in S^{2n-1}_∞ and a constant $N > 1$ such that

$$\zeta \in \Lambda_2, \ |\zeta| > N \text{ implies } |f(\zeta)| > e^{-\delta|\zeta|}.$$

Moreover if we remark that $\Lambda_1 \cup \Lambda_2$ is a neighborhood of $\sqrt{-1} S^{2n-1}_\infty$ in S^{2n-1}_∞, we can take a positive δ' such that

$$\zeta \in \mathbb{C}^n, \ |\text{Re}\zeta| < \delta'|\text{Im}\zeta| \text{ implies } \zeta \in \Lambda_1 \cup \Lambda_2.$$

According to the above, we get the covering $\bigcup_j \gamma_j$ of \mathbb{C}^n by :

$$\gamma_1 = \{ \zeta \in \mathbb{C}^n ; \zeta \in \Lambda_1, |\zeta| > N \},$$

$$\gamma_2 = \{ \zeta \in \mathbb{C}^n ; \zeta \in \Lambda_2, |\zeta| > N \},$$

$$\gamma_3 = \{ \zeta \in \mathbb{C}^n ; |\text{Re}\zeta| \geq \delta'|\text{Im}\zeta|, |\zeta| > N \},$$

$$\gamma_4 = \{ \zeta \in \mathbb{C}^n ; |\zeta| \leq N \}.$$

Now we construct $q(\zeta)$ and $r(\zeta)$ as following :

$$\left\{ \begin{array}{l}
q(\zeta) := \frac{p(\zeta)}{f(\zeta)} \left(1 - \varphi(e^{A(|\zeta|)} f(\zeta)) \right) + v(\zeta), \\
r(\zeta) := p(\zeta) \varphi(e^{A(|\zeta|)} f(\zeta)) - f(\zeta) v(\zeta),
\end{array} \right.$$
by choosing a suitable C^∞ function $v(\zeta)$ on \mathbb{C}^n, with fixed real-valued functions $\varphi(\tau) \in C^\infty(\mathbb{C})$ and $\lambda(t) \in C^\infty([0, \infty])$ so that $0 \leq \varphi(\tau) \leq 1$, $0 \leq \lambda(t) \leq \delta t$, $0 \leq \lambda'(t) \leq 1$ and that

$$
\varphi(\tau) = \begin{cases}
1 & \text{if } |\tau| \leq \frac{1}{2}, \\
0 & \text{if } |\tau| \geq 1,
\end{cases} \quad \lambda(t) = \begin{cases}
0 & \text{if } |\tau| \leq \frac{1}{2}, \\
\delta t & \text{if } |\tau| \geq 1.
\end{cases}
$$

The condition for q and r to be holomorphic, is given as

$$
(4.3) \quad \partial v = \frac{p(\zeta)}{f(\zeta)} e^{\lambda(|\zeta|)} \left\{ \left(\frac{\partial \varphi}{\partial \tau} f(\zeta) + \frac{\partial \varphi}{\partial \bar{\tau}} \bar{f}(\zeta) \right) \frac{\lambda'(|\zeta|)}{2|\zeta|} \zeta \cdot d\bar{\zeta} + \frac{\partial \varphi}{\partial \bar{\tau}} \bar{f} \right\}.
$$

We denote the right hand side by w which satisfies $\bar{\partial} w = 0$. Let us estimate w.

- In the outside of $\{ \frac{1}{2} < e^{\lambda(|\zeta|)}|f(\zeta)| < 1 \}$, especially in γ_2, we have $w = 0$ since $\varphi(e^{\lambda(|\zeta|)} f(\zeta))$ is constant there.

- In $\{ \frac{1}{2} < e^{\lambda(|\zeta|)}|f(\zeta)| < 1 \}$, we have:

$$
|w| \leq |p| e^{\lambda(|\zeta|)} \left\{ \frac{1}{2} \left(\max_{|\tau| \leq 1} \left| \frac{\partial \varphi}{\partial \tau} \right| + \max_{|\tau| \leq 1} \left| \frac{\partial \varphi}{\partial \bar{\tau}} \right| \right) + \max_{|\tau| \leq 1} \left| \frac{\partial \varphi}{\partial \bar{\tau}} \right| \right\} \leq e^{H_L(\zeta) + \lambda(|\zeta|)} \max_{|\tau| \leq 1} \left(\left| \frac{\partial \varphi}{\partial \tau} \right|, \left| \frac{\partial \varphi}{\partial \bar{\tau}} \right| \right) \left(1 + 2 e^{\lambda(|\zeta|)}|\partial f| \right).
$$

Here we employed the norm

$$
|w| := \sup |w_{I,J}|
$$

of a (p,q)-form

$$
w = \sum w_{I,J} d\zeta^I \wedge d\bar{\zeta}^J.
$$

Since $|\partial f| \exp(-H_{\text{supp} \tilde{\mu}}(\zeta) - \delta|\zeta|)$ is bounded, we have, with some constant $C > 0$,

$$
\log |w| \leq H_L(\zeta) + H_{\text{supp} \tilde{\mu}}(\zeta) + 3\delta|\zeta| + C.
$$

In γ_1, from the estimate $H_L(\zeta) < H_K(\zeta) + \delta|\zeta|$, we get:

$$
\log |w| \leq H_K(\zeta) + H_{\text{supp} \tilde{\mu}}(\zeta) + 4\delta|\zeta| + C.
$$

In γ_3, setting $\ell := \max_{z \in L} |z|$, we have:

$$
H_L(\zeta) \leq \ell|\zeta| \leq \ell(|\text{Re} \zeta| + |\text{Im} \zeta|) \leq \ell \left(1 + \frac{1}{\delta'} \right) |\text{Re} \zeta|.
$$
Thus we get:

$$\log |w| \leq H_{\text{supp} \hat{\mu}}(\zeta) + \ell \left(1 + \frac{1}{\delta^l}\right)|\text{Re} \zeta| + 3\delta|\zeta| + C.$$

Remarking that γ_4 is compact, we can take another constant $C_1 > 0$ such that the estimate

$$\log |w| \leq H_K(\zeta) + \left\{ \ell \left(1 + \frac{1}{\delta^l}\right) + m \right\}|\text{Re} \zeta| + 4\delta|\zeta| + C_1,$$

holds in the whole \mathbb{C}^n, where $m := \max_{x \in \text{supp} \hat{\mu}} |x|$.

By the same argument as Sébbar [34, p. 205–206], we conclude by the theorem 4.4.2 and the proof of the theorem 4.2.5 in Hörmander [13] that there exists a solution $v \in C^\infty(\mathbb{C}^n)$ of (4.3) which satisfies the following estimate

$$(4.4) \quad \log |v| \leq H_K(\zeta) + \left\{ \ell \left(1 + \frac{1}{\delta^l}\right) + m \right\}|\text{Re} \zeta| + 5\delta|\zeta| + C_2$$

for some $C_2 > 0$.

Finally let us estimate the growth of q and r constructed from this solution v of $\bar{\partial}v = w$. About q, we have

$$|q - v| = \left| \frac{(1 - \varphi)p}{f} \right| \leq \begin{cases} 0 & \text{if } e^{\lambda(|\zeta|)}|f(\zeta)| \leq \frac{1}{2}, \\ 2 \exp(H_L(\zeta) + \lambda(|\zeta|)) & \text{if } e^{\lambda(|\zeta|)}|f(\zeta)| > \frac{1}{2}. \end{cases}$$

Thus we have

$$|q| \leq 2 \max(|q - v|, |v|)$$

$$\leq \exp\left(H_{L \cup K}(\zeta) + \left\{ \ell \left(1 + \frac{1}{\delta^l}\right) + m \right\}|\text{Re} \zeta| + 5\delta|\zeta| + C_3 \right)$$

by a constant $C_3 > 0$. About r, we have

$$|p\varphi| \leq \exp(H_L(\zeta)) \leq \exp\left(H_K(\zeta) + \delta|\zeta| \right) \quad \text{in } \gamma_1,$$

$$|p\varphi| = 0 \quad \text{in } \gamma_2,$$

$$|fv| \leq \exp\left(H_K(\zeta) + \left\{ \ell \left(1 + \frac{1}{\delta^l}\right) + 2m \right\}|\text{Re} \zeta| + 6\delta|\zeta| + C_4 \right)$$

by a constant $C_4 > 0$. If we take sufficiently small δ satisfying $6\delta < \varepsilon$, we get the desired results. (End of Lemma 4.5.)
End of the proof of the theorem. — We can choose a compact
\[L \subseteq \mathbb{R}^n \times \sqrt{-1} \Omega \]
with \(\hat{T}_1(\zeta) \leq \text{Const} \cdot e^{H_L(\zeta)} \). For this \(L \), take a compact \(K \subseteq \mathbb{R}^n \times \sqrt{-1} \omega \) and a constant \(\varepsilon > 0 \) so that:

\[
\begin{cases}
K \text{ satisfies (4.2)}, \\
K + B(0; \varepsilon) \subseteq \mathbb{R}^n \times \sqrt{-1} \omega, \\
(L \cup K) + B(0; \varepsilon) \subseteq \mathbb{R}^n \times \sqrt{-1} \Omega.
\end{cases}
\]

Applying the lemma to \(p = \hat{T}_1, L \) and \(K \), we obtain \(Q \in O(\mathbb{R}^n \times \sqrt{-1} \Omega)' \) and \(R \in O(\mathbb{R}^n \times \sqrt{-1} \omega)' \), which satisfy \(\hat{T}_1 = \hat{\mu} \cdot \hat{Q} + \hat{R} \). Then for any \(g \in N(\sqrt{-1} \Omega) \), we get:

\[
\langle T, g \rangle = \langle T_1, g \rangle = \langle Q, \mu * g \rangle + \langle R, g \rangle = \langle R, g \rangle.
\]

It follows that \(T = t_r R \). \[\square \]

5. Main theorem

In this section, we define the characteristic set \(\text{Char}(\mu^*) \) of \(\mu^* \) as the closed conic set in \(T^*(\sqrt{-1} \mathbb{R}^n) \) defined by \(\text{Char}_\infty(\mu^*) \) i.e.

Definition 5.1.

\[
\text{Char}(\mu^*) := \left\{ (z, \eta) \in T^*(\sqrt{-1} \mathbb{R}^n) ; \right. \\
\left. \sqrt{-1} \eta \in \text{Char}_\infty(\mu^*) \text{ or } \sqrt{-1} \eta = 0 \right\}.
\]

Now we will resume our results of preceding sections as following final theorem.

Theorem 5.2. — Under the condition (\(S \)), we have

\[\text{SS}(S) \subseteq \text{Char}(\mu^*). \]

Proof. — We can prove our theorem as same way as the proof of the theorem 11.3.3 in Kashiwara-Schapira [18] : take any

\[
q = (\sqrt{-1} y_0, \sqrt{-1} \eta_0) \in T^*(\sqrt{-1} \mathbb{R}^n) \setminus \text{Char}(\mu^*). \]
By the Definition 5.1, we have $\eta_0 \neq 0$ and then there exists a closed convex neighborhood G of $\sqrt{-1} \eta_0 \in \sqrt{-1} S_{n-1}^n$ which does not intersect $\text{Char}_\infty(\mu^*)$. Set $\gamma := \{\sqrt{-1} v; \sqrt{-1} \infty \in G \text{ or } v = 0\}^\circ$, then we have:

$$\gamma \setminus \{0\} \subset \{\sqrt{-1} v; \langle \sqrt{-1} v, \sqrt{-1} \eta_0 \rangle < 0\}.$$

For any $\varepsilon > 0$, we set:

$$H := \{\sqrt{-1} y \in \sqrt{-1} \mathbb{R}^n; \langle \sqrt{-1} (y - y_0), \sqrt{-1} \eta_0 \rangle \geq -\varepsilon\},$$

$$L := \{\sqrt{-1} y \in \sqrt{-1} \mathbb{R}^n; \langle \sqrt{-1} (y - y_0), \sqrt{-1} \eta_0 \rangle = -\varepsilon\}.$$

Remark that $R\Gamma(\sqrt{-1} K, 0^\tau) \simeq 0^\tau(\sqrt{-1} K)$ for any compact convex set $\sqrt{-1} K \subset \sqrt{-1} \mathbb{R}^n$, because $\sqrt{-1} K$ has a fundamental system of neighborhood which consists of open convex sets in $\sqrt{-1} \mathbb{R}^n$. Now in virtue of the prop. 5.1.1, (3) in [18], using the Theorem 3.1, it suffices to prove for any $\sqrt{-1} y$ (near $\sqrt{-1} y_0$),

$$(5.3) \ f \in 0^\tau((\sqrt{-1} y + \gamma) \cap L), Pf = 0 \implies f \in 0^\tau((\sqrt{-1} y + \gamma) \cap H).$$

In the notation of the Theorem 4.4, the open convex set $\sqrt{-1} \Omega$ for $\text{Char}(\mu^*)$ and for $\sqrt{-1} \omega := \text{(any small open convex neighborhood of } (\sqrt{-1} y + \gamma) \cap L \text{)}$ contains, by construction, $(\sqrt{-1} y + \gamma) \cap H$ and this implies (5.3) by the Theorem 4.4.

BIBLIOGRAPHY

TOME 122 — 1994 — N° 3