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POLES OF IGUSA'S LOCAL ZETA

FUNCTION AND MONODROMY

BY

WILLEM VEYS

RESUME. — Soit K une extension finie de Qp et R son anneau de valuation. On
associe a chaque / C K[x], avec x = ( r c i , . . . ,Xn), la fonction zeta locale d'lgusa

-/„Z(s)= \ l/MI'lda-l,
J Rn

qui est meromorphe sur C. La conjecture de monodromie associe des valeurs propres de
la monodromie (complexe) de Phypersurface / = 0 aux poles de Z(s). On peut exprimer
une liste de candidats-poles de Z(s) ainsi que les valeurs propres de la monodromie
a Paide de donnees numeriques de varietes exceptionelles, associees a une resolution
plongee de / == 0. En utilisant des relations entre ces donnees numeriques on montre
que certains candidats-poles ne contribuent pas aux vrais poles, ce qui entraine une
forte evidence concernant la conjecture.

ABSTRACT. — Let K be a finite extension of Qp and R its valuation ring. To any
/ G K[x], with x = (a- i , . . . ,Xn), is associated Igusa's local zeta function

Z(s)= I /Mi'ld^l,
^J^

which is known to be meromorphic on C. The monodromy conjecture relates poles
of Z(s) to eigenvalues of the (complex) monodromy of the hypersurface / = 0. Now we
can express both a list of candidate-poles for Z(s) and the monodromy-eigenvalues in
terms of certain numerical data of exceptional varieties, associated to an embedded
resolution of / = 0. Using relations between those numerical data we study the
vanishing of bad candidate-poles for Z(s) to obtain a lot of evidence for the conjecture.

(*) Texte recu Ie 23 juillet 1992.
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Belgium.
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546 w. VEYS

Introduction

Let K be a number field and R its ring of algebraic integers. For any
maximal ideal p of R^ let J?p and Ky denote the completion of respectively
R and K with respect to the p-adic absolute value. Let \x denote this
absolute value for x G Kp, and let q be the cardinality of the residue
field K = R ^ / p R p . (For example if K = Q we have that p is determined
by a prime number p, then Kp is the field of p-adic numbers Qp and K is
the finite field with p elements.)

Let f(x) G K[x\^ with x = (a"i,... ^Xn-\-i)' Then Igusa's local zeta
function of / is defined by

Z(s)=Z,(s)= ( {fW^dx^
JR^

where \dx\ denotes the Haar measure normalized such that R^1 has
measure one. It describes the Poincare series

CO

P(T)=^N,(q-^T)\
1=0

where A^, with i C N, is the number of solutions of / == 0 in the
ring J?p/p^p, through the relation

Z{s)=(l-qs)P(q-s)+qs.

IGUSA [Igl] proved that Z(s), and therefore also P(T), is a rational
function of q~8 = T.

One can compute Z(s} using an embedded resolution with normal
crossings for / = 0 in A^^dy), where Q" is the algebraic closure
of Q. (An explicit formula of DENEF [Dl] is stated in THEOREM 1.2.)
Let (X, h) be such a resolution, obtained by Hironaka's main theorem [Hi],
and denote by Ei, with i G 6', the (reduced) irreducible components
of /^(/^{O}). We associate to each Ei, i G 6', a pair of numerical
data (Ni^fi) where N1 and (yi — 1) are the multiplicities of E^ in the
divisor of respectively f o h and /i*(da;i A • • • A drc^+i) on X.

In particular all real poles of Z{s) are part of the set {—yi/Ni i C S}.
So determining the real poles consists in throwing away the bad candi-
dates. Now it is striking that «most» candidate-poles are actually bad.
This fact would be elucidated if the following monodromy conjecture
is true.
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IGUSA'S LOCAL ZETA FUNCTION AND MONODROMY 547

CONJECTURE.—For all except a finite number ofp we have that^ ifs is
a pole o/Zp(s), then e^^5) is an eigenvalue of the monodromy acting
on the cohomology (in some dimension) of the Milnor fiber off associated
to some point of the hypersurface f = 0.

We explain this more in detail. (For the concept of monodromy we
0

refer to MILNOR [Mi]). Fix an exceptional variety Ej and set Ej =
^3 \ (U^ • ̂ ') ^or ^y scheme V of finite type over K let ^(V) denote
the Euler-Poincare characteristic of V(C). Suppose that v^ and Nj are
coprime and that there is no Ei, with i G 6' \ {j}, with Nj \ N^. The
monodromy conjecture implies, for all except a finite number of prime
ideals p, that s = -i^j/Nj is no pole of Z(s) if xf^j) = °- (We illustrate

0

this in paragraph 2.) Now in any concrete example we have that x(Ej) = 0
for « most)) exceptional varieties Ej.

IGUSA [Ig5] tested the monodromy conjecture for relative invariants
of certain reductive groups. LOESER verified it for arbitrary polynomials
in two variables [LI], and for polynomials which are non-degenerate
with respect to their Newton polyhedron, assuming certain additional
conditions [L3]. We should also mention that the archimedean analogon
of the conjecture has been proved by MALGRANGE [Mal], [Ma2].

In this paper we are interested in the vanishing of bad candidate-poles
for Z{s) to obtain more evidence for the monodromy conjecture, using
relations between the numerical data of the resolution (X, h) for / = 0.
Considering the formula for Z(s) of THEOREM 1.2, it is clear that relations
between the numerical data of Ej and of the Ei, i € S \ {j}, that inter-
sect Ej are very useful to make conclusions about the residue of — i / j / N j .

Relations. — In [V2] we proved for arbitrary polynomials / relations
between numerical data, which we state briefly in paragraph 0. We now
explain the essential aspects of those relations.

Fix one exceptional variety E with numerical data (TV, v). The variety E
in the final resolution X is in fact obtained by a finite succession of
blowing-ups

E^^-E1^— . . . E ^ ^ — E W - • ^Zl-Ern-l^——Ern=E

with irreducible nonsingular center in E^ and exceptional variety Q+i C
£^+1 for i = 0 , . . . . m — 1. The variety E° is created at some stage of the
global resolution process as the exceptional variety of a blowing-up with
center D and is isomorphic to a projective space bundle II : E° -^ D
over D.
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548 w. VEYS

There are two kinds of intersections of E with other components
of ^"^/"^O}). We have the repeated strict transforms ^m),..., C^
in E of the exceptional varieties C\,..., Cm '-, and furthermore we have
the repeated strict transforms C ^ ' in E of varieties Q, with i e T,
(of codimension one) in £^°.

For each ? e TU{1 , . . . , m} the strict transform C[ of Q in E is (an ir-
reducible component of) the intersection of E with exactly one other com-
ponent of ^^(/^{O}). Let this component have numerical data (N1,1/1)
and set ai = vi — ( u / N ) N i . (The numbers o ^ z C T L ^ l , . . . , m}, occur
in the expression for the residue of the candidate-pole — y / N for Z[s)^
see THEOREM 1.2.)

There are basic relations (Bl and B2) between the o^, i C T, and there
is for each z e { 0 , . . . ,m — 1} an additional relation (A) expressing o^+i
in terms of the a/c for A* c r u { l , . . . , ? } .

For the applications on the poles of Z(s), we choose the number field K
«large enough)), meaning that the resolution (X, h) over Q" is entirely
defined over K itself.

0

We now suppose that the fixed exceptional variety E satisfies \{E} = 0
and that there is no Ei, with i 6 5'\{j'}, intersecting E with V i / N i = u / N .
Denote by K the contribution of E to the residue of the candidate-
pole - y / N for Z(s).

Surfaces. — When n = 2, the surface E° is created by blowing-up
a point or a nonsingular curve D. In the first case E° ^ P2 and in the
latter E° is a ruled surface II : E° —^ D over D.

By the formula for Z(s) of THEOREM 1.2 we can express K in this

case as follows. Set d= C^ \ \J^ C^ and a, = v, - ^ / N ) N , for
i G T U { ! , . . . , m}. Then

7Z=card^
card Ci+ ( ^ - i ) E q^ - 1ieru{i,...,m}

card^^ UCJ^)
+ ( < 7 - I ) 2 T ^^ "^ -T v y / ^ (g^- l ) (g^- l )

{zJ}CTU{l,...,m} w Ay /

^j
0 0

where card E and card Ci are the number of K -rational points of the
0 0

reduction of respectively E and Ci modulo fRp.

TOME 121 — 1993 — N° 4



IGUSA'S LOCAL ZETA FUNCTION AND MONODROMY 549

Using the Relations (A) and (B) we prove for a lot of intersection
/ x 0

configurations of the C ^ ' on E that 7^ = 0 if \{E) = 0. We proceed as
follows.

By PROPOSITION 2.3 we may suppose that UieTu{i m} Q m ^
is the canonical embedded resolution of U^rQ m E°. Therefore the
intersection configuration of the C' , i G TU { 1 , . . . , m}, on E is entirely
determined by the intersection configuration of the Q, i C T, on £'°. An
important result is then that we can reduce the calculation of 7^ for a
given ^-configuration on E° to the calculation of K for the very easy
configuration described in PROPOSITION 2.5. This reduction is possible by
a somewhat surprising blowing-down technique (THEOREM 2.4).

Of course the described techniques are only valuable if there exist
a lot of (complicated) intersection configurations of the Q, i G T, on

0 0

E° such that \(E) = 0. Now although \(E^) = 0 for most exceptional
0

varieties E^ in a concrete example, we have that \(E) > 0 for a general
configuration of curves on a projective plane or ruled surface E°. So one
could hope that only some simple configurations of curves Q, i € T, on E°
satisfy )((E) = 0.

Projective planes. — Here the most simple configuration is the
following.

EXAMPLE. — Let E° ^ IP2 and (after some permutation of the indices)
T = { 0 , . . . , k} for k ^ 2. Let Q, 1 ̂  i < k^ be projective lines all passing
through the same point P and Co a line not passing through P. Since
^(P2) == 3 and ^(P1) = 2 we have that \{E) = 0.

In PROPOSITION 3.1 we (easily) prove that K = 0 in this case using the
relations (Bl) and (A).

Unfortunately there exists, after intensive examination, an amount of
(essentially different) exotic configurations of curves Q on E° ^ P2 such
that x(E) = 0.

EXAMPLE. — Let E° ^ P2 and (after some permutation of the indices)
T = {0,1,2,3}. Let the Q be described in homogeneous coordinates x, y , z
by the equations

Co : ykz = .r^ where k > 2,

Ci : y = 0, C2 : z = 0, Cs : x = 0.

Since ^(Q) = 2 for 0 < i ̂  3 we have that \{E) = 0.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



550 W.VEYS

In PROPOSITION 3.5 we prove that K = 0 using relation (Bl) and 2A;+2
times relation (A), and the blowing-down technique of THEOREM 2.4.

In particular we succeeded in classifying all «low multiplicity)) cases
and then obtained by case distinction (THEOREM 4.9) :

0

THEOREM. — If \{E) = 0 and E is created by blowing-up a point of
multiplicity at most 4 [on the strict transform of f = 0), then 7^ = 0.

In this context we would like to propose the following for eventual
further investigations.

CONJECTURE. — Let Ci, i € r, be irreducible curves in the complex
projective plane P^C). If \(P2 \ IJzeT^) ^ ° then a11 curves Q are
rational.

Ruled Surfaces. — When E° is a ruled surface we especially studied
the problem in the case that E° is created by blowing-up a curve D at
the stage of the resolution process where the strict transform of / = 0
is already nonsingular. Even under this restriction a lot of different
configurations of curves Q, i G T, occur on EQ such that \{E) == 0.

EXAMPLE. — Let E° be a ruled surface II : E° -^ D over D ^ P1

and (after permutation of the indices) T = {!, . . . ,5}. Let (7i, Ca, €3 be
sections and C^C^ be fibers of E° intersecting as in figure 1, where the
intersection multiplicities of respectively C\ and C^ at P and C\ and C^
at Q are arbitrary positive numbers m and m'. Since x{-^°) = 4 and
all Ci ^ P1 we have that \{E) = 0.

By means of our blowing-down technique we prove in PROPOSITION 5.6
simultaneously for all m and m/ that 7^ = 0, using the relations (Bl)
and (B2) and m + m' times relation (A).

E°

Figure 1
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We classified all cases where D is a projective curve and finally obtained
(THEOREM 5.9) :

E°

Figure 2 Figure 3
0

THEOREM. — Let x(E) = 0- Suppose that E° is created by blowing-up
a projective curve D and that the strict transform of f = 0 before this
blowing-up is already nonsingular. Except for the two special situations
when

(1) the genus of D is 1 and the Q, i <E T, consist of three noninter-
secting sections of the ruled surface E° (Fig. 2), or

(2) D ̂  P1 and the Q, i G T, consist of three sections intersecting as
in figure 3,
we have that 7^ = 0.

In the theorem above the second exceptional case is no obstruction
for the monodromy conjecture (remark 5.7); and it is not clear whether
the first can occur in a concrete situation (see remark 5.0). For example
if / = 0 has only absolutely isolated singularities this configuration is
impossible (PROPOSITION 5.12).

We return to the general case where EQ is created at an arbitrary stage
of the resolution process. If £'° is a ruled surface over any projective
curve of genus g ^ 2 we prove that only a few (simple) intersection
configurations of the Q, i e T, can occur on E°, and that Ti = 0 in
these cases. The key result is (PROPOSITION 5.13) :

PROPOSITION. — Suppose that E° is a ruled surface over a projective
curve of genus g ^ 2 and that at least two curves Ci, i C T, are not fibers

0

o/II. If \(E) = 0 then the Q, i C T, consist of a number of fibers and
exactly two sections C and C', such that each point ofCnC' also belongs
to some fiber Ci {see Fig. 5.5).

Higher dimensions.—We also study some intersection configurations
for arbitrary n. In particular if we suppose that E° ^ E^ (^ E) we have
the following results (PROPOSITIONS 6.1 and 6.4).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



552 w. VEYS

PROPOSITION. — If E ^ P" and the C^ i € T, consist of k + 1
0

hyperplanes in general position (1 <^ k <^ n), then \{E) = 0 and 7^ = 0.

PROPOSITION.—Suppose that E is a projective space bundle H: E —> D
over some nonsingular variety D with fibers isomorphic to P1. Let Q,
i G T, consist of two nonintersecting sections and of the inverse images
II~lBi of nonsingular varieties Bi in D such that |ĵ  Bi has normal

0

crossings on D {see figure 6.4). Then %{E) = 0 and 7^ = 0.

Terminology. — All schemes will be quasi-projective, a variety is
an irreducible and reduced scheme, and (when not specified) points are
assumed to be closed. The reduced scheme associated to a scheme X is
denoted by X^ed-

Let V be a subscheme of everywhere codimension one of a nonsingular
scheme X. For all x G X we define the multiplicity of x on V as the
maximal integer m, such that the m-th power of the maximal ideal of the
local ring Ox,x of a; on X contains the ideal of V in Ox,x'

0. Relations between numerical data

Let k be an algebraically closed field of characteristic zero, let /
in k[x\^... ,^n+i] be a non-constant polynomial, and let Y denote the
(reduced) zero set of / in affine space A714'1 over k. We fix an embedded
resolution (X, h) for Y in A77^1 in the sense of Hironaka's main theorem II
[Hi, p. 142].

In particular h : X —> A77'"1"1 is a finite succession of blowing-ups
with nonsingular center, such that all points of the center have (the
same) maximal multiplicity on the strict transform of Y. The restriction
h : X \ h^Y —^ A71"^1 \ Y is an isomorphism, and h~lY has only normal
crossings in X.

Let Ei, i G 5', be the irreducible components of (h^Y)^. These
consist of the components £^, i € J, of the strict transform of V, and of
the exceptional divisors £^, i G S \ 7, of the blowing-ups. The numerical
data of the resolution (X^h) for Y are defined as follows. For each 2^,
i G 5', let Ni be the multiplicity of Ei in the divisor of / o h on X, and
let (yi — 1) be the multiplicity of Ei in the divisor of /i*(da-i A • • • A da-n+i)
on X. We have that A^, v^ G No; and if / has no multiple components
then all Ei, i e I , have numerical data (A^, ̂ ) = (1,1).

Fix now one exceptional variety E with numerical data {N,v). There
are basic relations (Bl and B2) associated to the creation of E in the
resolution process, and there are additional relations (A) associated to
each blowing-up of the resolution that « changes » E.
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More precisely, the variety E in the final resolution X is in fact obtained
by a finite succession of blowing-ups

^0 ^_ ̂  ^__ ...^ ^__ ^+1 . . . ^_ ^m-l ^_L Ern=E

with irreducible nonsingular center Z^ C E^ and exceptional variety
Q+i C E^1 for i = 0 , . . . , m — 1. The variety ^° is created at some stage
of the global resolution process as the exceptional variety of a blowing-up
with center D and is isomorphic to a projective space bundle II : E° —^ D
over D.

For i = l , . . . , m and for any variety V C E3 ^ 0 < j < z, let the
repeated strict transform of V in E1 (by TT^-I o ' • • o TTj) be denoted
by V^. There are two kinds of intersections of E with other components
of h~lY. We have the repeated strict transforms C ' , . . . , C^ in E
of the exceptional varieties C\,..., Cm 5 and furthermore we have the
repeated strict transforms C ^ ' in E of varieties Q, i € T, (of codimension
one) in E°.

Those last varieties are the intersections of E° with previously crea-
ted exceptional varieties in the global resolution process or with the
strict transform of Y (at the stage where E° is created). Remark
that { ! , . . . , m}nr= 0.

THEOREM 0.1. — For each i G T U {1, . . . , m} the variety C ^ ' is (an
irreducible component of) the intersection of E with exactly one other
component ^/'(/^y^ed- Let this component have numerical data (A^,^)
and set ai = v^ — (v/N)Ni.

(1) Then we have

relation (Bl) ^^ di(ai — 1) + k = 0,
iGT

where k = n + 1 — dim-D and d^, i € T, is the degree of the intersection
cycle d • F on F for a general fiber F ^ P^-1 of H : E° -^ D over a
point of D. We also have

relation (B2) ^ ——— (a, - 1)11, (C^) + ̂  (a, - 1)B, = KD
i<ET kd^ i^T
di^O di=0

in PicZ), where C^ is the k-th selfintersection of Ci in E°, Cz = II*£^
when di ==• 0, and KD is the canonical divisor on D.
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(2) Fix one i G {0,..., m - 1}. Then we have

relation (A) a,+i = ^ /^(o^ - 1) + d,
fc€TU{l,...^}

w/iere /^, A* e T U {1 , . . . , z}, 25 ^/ie multiplicity of the generic point of P,
on C^ and d = codim(P,, E1).

Those relations are proved in respectively theorems 6.2, 6.5 and 4 4
of[V2].

EXAMPLE 0.2. — If D is a point we have that E°(^ F) ̂  r and d, is
just the degree of the hypersurface Q for i C T. Moreover relation (B2)
does not occur since Pic D is trivial.

EXAMPLE 0.3. — When n = 1 we have necessarily that D is a point
and moreover that E° ^ E. So the relations (A) and (B2) do not occur
and we easily see that relation (Bl) reduces to :

^ (a , - l )+2=0.
i^T

EXAMPLE 0.4. —When n = 2 we have that D is a point or a nonsingular
curve.

(1) If D is a point then E° ^ P2 and relation (Bl) is

d , ( a , - l ) + 3 = = 0 ,2-̂
iCT

where di is the degree of the curve Q in E°.
(2) If D is a nonsingular curve then E° is a ruled surface over D and

relation (Bl) is
^^(a , - l )+2=0,
ieT

where di is the number of intersection points of the curve Ci with a general
fiber F ^ P1 of II : E° —^ D. If moreover D is a protective nonsingular
curve then relation (B2) becomes a numerical relation by taking degrees
in PicD. More precisely if g denotes the genus of D and ^ the self-
intersection number of Ci in E°, then we obtain

(t) E —(^- l )+E(^- l )=2f f -2.
ier zai zeT
diyiO di=0
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The divisors 11̂  (Cf) occurring in relation (B2) are effectively compu-
table in terms of concrete intersection cycles (see [V2, prop. 7.1]).

EXAMPLE 0.5. — When n = 2 and D is a projective nonsingular curve
we can describe the self-intersection numbers /^ in (:]:) above as follows.
Let Co, C\, C^ occur with di -^ 0 for i = 0,1, 2. Denote 7112 = deg((7i • C^)
and analogously noi and no2- Then we have that

KO = -—— (d^no'2 + ̂ 2^01 — don^Y
did2

In paragraph 1 we describe how to compute Igusa's local zeta function
using an embedded resolution, and the impact of the monodromy conjec-
ture on its poles. In the next sections we then compute the contribution 7^
of a fixed exceptional variety in a number of cases when we expect it to
be zero.

For surfaces we present in paragraph 2 the blowing-down technique that
reduces the computation of a given 7^ to an easy one. If the exceptional
surface E is created by blowing-up a point we study in paragraph 3 a series
of general situations and in paragraph 4 all «low multiplicity)) (^ 4) cases.
In paragraph 5 we treat the case that E is created by blowing-up a curve.
For arbitrary dimensions we give a number of applications in paragraph 6.

1. Igusa's local zeta function and the monodromy conjecture

Let K be a number field and R its ring of algebraic integers. For any
maximal ideal p of R, let Rp and Kp denote the completion of respectively
R and K with respect to the p-adic absolute value. Let |.r| denote this
absolute value for x C ^Cp, and let q be the cardinality of the residue
field X=J?p/pJ?p.

DEFINITION 1.1. — Let f(x) C K[x], x = ( a - i , . . . ,rr^+i). Then Igusa's
local zeta function of / is (the meromorphic continuation to C of)

Z(s)=Z,(s)= ( {fW^dx
JR^

for s C C, Re(s) > 0, where \dx denotes the Haar measure on K^1,
normalized such that ^+1 has measure one.

One can compute Z(s) using an embedded resolution for / = 0 in
^n+i^Qa^ where Q° is the algebraic closure of Q (and hence of K).
Let (X, h) be such a resolution, using now all notations of paragraph 0.
DENEF [Dl, thm 2.4 and 3.1] proved the following formula.
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THEOREM 1.2.—jLe^X andEi, i e S, denote the reduction modulo pR^
of respectively X and E,. Then for almost all p (i.e. for all except a finite
number) we have

z(.)»,-<->^c,n—^,
ics iei q

where cj = card{a e X \ a is rational over K, and a e Ei ̂  i e I}.

So all real poles of Z(s) are part of the set {-^/7v, \ i e S}. These poles
are connected with certain eigenvalues of monodromy by the following
conjecture.

CONJECTURE 1.3. — For all except a finite number off we have that,
if s is a pole of Z^(s), then e^^5) is an eigenvalue of the monodromy
acting on the cohomology (in some dimension) of the Milnor fiber of f
associated to some point of the hypersurface f == 0.

Now by a formula of A'CAMPO [A, thm 3] we can connect also the
eigenvalues of monodromy with the resolution (X, h). For example if / = 0
has just one isolated singular point w, then the monodromy in dimension
n associated to w is the only non-trivial one and its characteristic
polynomial P(t) is [A, thm 4] :

^-f— Tl^-i)^]
I L -LL ies\i J

(-i)"

Here for i e S we set E, = E, \ \J^ Ej, and for any scheme V of finite
type over K we denote by \(V) the Euler-Poincare characteristic of V(C)
with respect to singular cohomology.

Combining the expression for P(t) above with the monodromy conjec-
ture we can generally expect that when x(Ej) = 0 for an exceptional
variety Ej, maybe even when \(Ej) < 0 for even n or x(Ej) ^ 0 for
odd 72, then Ej doesn't contribute to an eventual pole of Z(s) in -vJNj.
Now it is striking and somewhat mysterious that in any concrete example
we have that xiSj) = 0 for «most» exceptional varieties Ej.

In the next paragraphs we will verify this presumption for a lot of
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IGUSA'S LOCAL ZETA FUNCTION AND MONODROMY 557

different cases. For this purpose we now fix the following data :

' • From now on we suppose that the number field K is chosen
large enough, that is the resolution (X, h) over Q" is entirely
defined over K itself.

0

• Fix an exceptional variety Ej with \{Ej) < 0 for even n
(^ \ 0

) \ or \(Ej) >_ 0 for odd n. We suppose that Ej is «in general
position » with respect to its numerical data, i.e. there is no Ei,
i G S \ {j}, intersecting Ej with V I / N I = V j / N j . Denote by
7^ == Kp the contribution of Ej to the residue of the candidate-

t pole - V j / N j for Zp(s).

(Eventually there can be other contributions to this residue but those
don't interfere with 7^ because of the «general position)) condition.)
We will give examples of this situation, mostly for surfaces, and prove
that U = 0 (for almost all p).

Note that 7^ is an expression in the ai = ^ — ( v j / N j ) N i (7^ O!) for
intersecting £^, so we can use the relations (A) and (B) between numerical
data of paragraph 0 to prove that K = 0.

REMARK 1.4.
(i) In fact the result that 7^ == 0 in the data (*) is in general not

implied by the monodromy conjecture. It is implied in the special case
that / == 0 has only isolated singularities when there is no E^y i C S\ {j},
with TV' A^, where i^j/Nj = v ' J N 1 and v9 and TV' are coprime. (See also
remark 5.7 (b).)

0 0

(ii) When \(Ej) > 0 for even n or \(Ej) < 0 for odd n we have
usually that K ^ 0.

We now describe the only two possible examples for curves (n = 1),
illustrating the general idea. See also STRAUSS [S, thm 2] and (in a more
general setting) MEUSER [Mel, thm 1] and IGUSA [Ig3, thm 1] for absolu-
tely analytically irreducible f{x\^x^)^ and LOESER [LI, lemme IV.2.3] for
arbitrary f(x\^x'z).

0

PROPOSITION 1.5. — For n = 1 we have that x(Ej) ^ 0 if and only
0

if Ej intersects one or two times another curve ̂ , i G 5', and then x { E j )
is respectively 1 and 0. In both cases we have that 7^ = 0.

0

Proof. — Since Ej ^ P the claims about x(Ej) are evident. Say Ej
intersects E\ and £3 (see figure 1.1 next page ). Then the contribution
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