On the cohomology of the classifying space of the gauge group over some 4-complexes

<http://www.numdam.org/item?id=BSMF_1991__119_1_1_0>
ON THE COHOMOLOGY OF THE CLASSIFYING
SPACE OF THE GAUGE GROUP
OVER SOME 4-COMPLEXES

BY

GREGOR MASBAUM (*)

1. Introduction

We consider pairs \((X, [X])\), where \(X\) is a space having the homotopy type of a bouquet of a finite number of 2-spheres with one 4-cell attached, and \([X]\) is a generator of \(H^4(X; \mathbb{Z}) \approx \mathbb{Z}\). For example, it is well known (see for instance [MH]) that any oriented closed simply-connected 4-manifold \(X\), with fundamental class \([X]\), is of this type. The algebraic invariants of the pair \((X, [X])\) are \((L, \varphi)\), where \(L = H_2(X; \mathbb{Z})\) is a free \(\mathbb{Z}\)-module of finite rank, and \(\varphi \in \text{BS}(L^*)\) is the symmetric bilinear form on \(L^* = H^2(X; \mathbb{Z})\) given by the cup product and evaluation on \([X]\). We call \(\varphi\) the "intersection form" of \(X\), even though \(X\) in general cannot be realized as a manifold.

Consider a principal SU(2)-bundle \(P \to X\), with second Chern number \(k\). Let \(G_k(X)\) be the gauge group of \(P\), that is the group of automorphisms of the bundle inducing the identity on \(X\). It is well known [D2]}

(*) Texte reçu le 24 janvier 1990, révisé le 26 septembre 1990.
G. MASBAUM, Université de Nantes, Département de Mathématiques, URA CNRS 758,
2 chemin de la Houssinière, 44072 Nantes Cedex 03, France.
that the classifying space \(BG_k(X)\) has the (weak) homotopy type of the function space \(C(X,BS^3)_k\) of continuous maps \(f : X \to BS^3 = \text{BSU}(2)\) of degree \(k\), i.e. such that \(\langle f^*(c_2), [X] \rangle = k\). We are interested in the cohomology of this space.

As in [D2], consider the linear map

\[
\mu : H_i(X; \mathbb{Z}) \to H^{4-i}(C(X,BS^3)_k; \mathbb{Z})
\]

defined by the slant product \(\mu(\alpha) = ev^*(c_2)/\alpha\), where :

\[
ev : X \times C(X,BS^3)_k \to BS^3
\]

is the evaluation map. As observed by DONALDSON, the map \(\mu\) generates all of the \textit{rational} cohomology of \(C(X,BS^3)_k\). More precisely, the rational cohomology of \(C(X,BS^3)_k\) is isomorphic to the polynomial algebra

\[
\mathbb{Q}[\mu([\text{base point}]), \mu(\alpha_1), \ldots, \mu(\alpha_s)],
\]

where \(\alpha_1, \ldots, \alpha_s\) is a basis of \(L\).

To analyze the situation, and study integral cohomology, we can proceed as follows. There is a natural isomorphism \(BS(L^*) \approx \pi_3(M(L,2))\), where \(M(L,2)\) denotes the 2-dimensional Moore space over \(L\). Viewing \(\varphi\) as an element of \(\pi_3(M(L,2))\) via this isomorphism, we can replace \(X\), up to (oriented) homotopy, by the cofibre of \(\varphi : X \sim M(L,2) \cup \varphi D^4\). This induces a fibration :

\[
(1) \quad \Omega^4 \hat{B} \to C(X,BS^3)_k \xrightarrow{r} C(M(L,2),BS^3).
\]

Here \(r\) denotes restriction of maps, \(\hat{B}\) is the 4-connective covering of \(BS^3\), and \(\Omega\) is the loop space functor.

Set \(A(L) = H^*(C(M(L,2),BS^3); \mathbb{Z})\). This algebra is a covariant functor of \(L\), and was determined in [M1].

Theorem 1.1.

\[
A(L) = \bigoplus_{i \geq 0} A_i(L)
\]

\[
= \mathbb{Z}[p][\{\mu_i(\alpha) \mid i \geq 0, \alpha \in L\}]/I.
\]
Here p has degree 4, $\mu_i(\alpha)$ has degree $2i$, and the ideal I is given by the following relations:

(i) $\mu_0(\alpha) = 1$;
(ii) $\mu_n(\alpha + \alpha') = \sum_{i+j=n} \mu_i(\alpha)\mu_j(\alpha')$;
(iii) $\mu_i(\alpha)\mu_j(\alpha) = \sum_k \binom{i + j - k - 1}{i - k} \mu_{i+j-2k}(\alpha)p^k$.

Moreover, we have $\mu ([\text{base point}]) = r^*(p)$, and $\mu(\alpha) = r^*(\mu_1(\alpha))$, $\alpha \in L = H_2(X; \mathbb{Z})$. Consider then Serre's spectral sequence of fibration (1):

$$E_2^{**} = A(L) \otimes H^*(\Omega^4 \tilde{B}; \mathbb{Z}) \Longrightarrow H^*(C(X, BS^3)_k; \mathbb{Z}).$$

Note that the E_2-terms is independent of φ and k. Moreover, $A(L)$ has no torsion, whereas $\tilde{H}^*(\Omega^4 \tilde{B}; \mathbb{Z})$ is torsion since $\pi_i(\Omega^4 \tilde{B}) = \pi_{i+3}(S^3)$ is finite for $i \geq 1$. Thus the restriction map r induces an inclusion

$$r^*: A(L) \hookrightarrow H^*(C(X, BS^3)_k; \mathbb{Z})$$

whose cokernel is torsion. From now on, we will identify $A(L)$ with its image under r^*.

Here is a brief outline of this paper.

In paragraph 2, we define and study some "natural" cohomology classes on the space $C(X, BS^3)_k$. In particular, the intersection form φ defines an integral class Q of degree 4, and as a corollary we show that the class $(kp+n\Omega)p^{n-1} \in H^{4n}(C(X, BS^3)_k; \mathbb{Z})$ is divisible by $2n+1$. This also shows that in general $A(L)$ is not a direct summand in the integral cohomology of the space $C(X, BS^3)_k$.

In paragraph 3, we use some results on Dyer-Lashof-operations to describe explicitly the homology of $\Omega^4 \tilde{B}$, the fiber of fibration (1).

Paragraph 4 is devoted to studying a certain map $j : \Omega^4 \tilde{B} \to BO$ in homology, which will be used later. We also describe the mod 2 cohomology algebra of $\Omega^4 \tilde{B}$ as a quotient of $H^*(BO; \mathbb{F}_2)$.

In paragraph 5, we put together the results of the previous sections to obtain some divisibility properties in the cohomology of $C(X, BS^3)_k$ that depend heavily on the second Chern number k. For example, in
PROPOSITION 5.4 we show that in the integral cohomology of the space $C(S^4, BS^3)_k$, for any odd prime ℓ, the element $p^{(\ell-1)/2}$ is divisible by ℓ if and only if $k \neq 0 (\ell)$. The results of this section allow to distinguish some of the topological group extensions:

$$1 \to G \approx C_\bullet(X, S^3) \to G_k(X) \to S^3 \to 1,$$

where G_\bullet is the subgroup of gauge transformations that act as the identity on one fibre (see Remark 5.6).

In paragraph 6, we study integral cohomology modulo torsion in the special case $X = S^4$, $k = 1$. The main result of this section is stated in Proposition 6.1, where we completely determine the subring of $H^*(C(S^4, BS^3)_1; \mathbb{Z})$/torsion generated by p and the natural classes of paragraph 2. It is possible that this subring is actually equal to $H^*(C(S^4, BS^3)_1; \mathbb{Z})$/torsion. We show this to be the case at least in low degrees, and after inverting 2 (see Corollary 6.3).

Finally, the main result of paragraph 7 is Theorem 7.1 where we show that in the case of base-point-preserving maps, the analogue of fibration (1) is a product when localised at a prime ≥ 5. This gives an upper bound on divisibility of classes of the form $\mu(\alpha)^n$ (see Corollary 7.2).

REMARK. — Gauge Theory has been used by Donaldson to prove striking results on smooth 4-manifolds (see [D1] for an overview). These results are obtained by studying moduli spaces of anti-self-dual connections, using non-linear analysis and algebraic geometry. The definition of Donaldson’s “polynomial invariants” [D3] makes use, at least formally, of the cohomology of the moduli space of all (irreducible) connections on a SU(2)-bundle over a compact smooth 4-manifold X. This space has the (weak) homotopy type of the classifying space of the group $G_k(X)$, the quotient of the gauge group $G_k(X)$ of the bundle by its center $\{\pm 1\}$ (cf. [D2]). Hence this space is at odd primes the same as the space $BG_k(X) \approx C(X, BS^3)_k$ studied in this paper. This relationship originally motivated our interest in divisibility properties in the cohomology ring of $BG_k(X)$.

2. Natural cohomology classes on $C(X, BS^3)_k$

Suppose we can associate to each $(X, [X])$ a cohomology class $\omega(X)$ on $C(X, BS^3)_k$ such that for any degree one map $f : X \to X'$ (i.e. such that $f_*[X] = [X']$) we have $F^*(\omega(X)) = \omega(X')$, where

$$F : C(X', BS^3)_k \to C(X, BS^3)_k$$
is composition with \(f \). Then we will call \(\omega(X) \) a natural cohomology class. For example, \(p = \mu \) ([base point]) is natural. The intersection form \(\varphi \) of \(X \) defines another natural class \(\Omega \) as follows.

Recall that the universal quadratic module \(\Gamma_2(L) \) is defined as \(F/R \), where \(F \) is the free \(\mathbb{Z} \)-module generated by \(L \), and \(R \) is the smallest submodule such that the map \(\gamma_2 : L \to \Gamma_2(L) \) defined in the obvious way satisfies:

1) \(\gamma_2(n\alpha) = n^2\gamma_2(\alpha) \) for \(n \in \mathbb{Z} \);
2) the map \((\alpha, \beta) \mapsto \gamma_2(\alpha + \beta) - \gamma_2(\alpha) - \gamma_2(\beta) \) is bilinear.

There is a well known natural isomorphism \(\Gamma_2(L) \approx BS(L^*) \), given by sending \(\gamma_2(\alpha) \) to the bilinear form \((\ell_1, \ell_2) \mapsto \ell_1(\alpha)\ell_2(\alpha) \). Next observe that \(\Gamma_2(L) \) is also the degree 4 part of the classical divided power algebra \(\Gamma(L) = \bigoplus_{i \geq 0} \Gamma_i(L) = \mathbb{Z}[\gamma_i(\alpha) \mid i \geq 0, \alpha \in L]/J \),

where \(\gamma_i(\alpha) \) has degree \(2i \), and the ideal \(J \) is given by relations (i), (ii) and (iii) of Theorem 1.1 with \(\mu_i \) replaced by \(\gamma_i \), and \(p = 0 \). (Note that (iii) becomes simply \(\gamma_i(\alpha)\gamma_j(\alpha) = \binom{i+j}{i}\gamma_{i+j}(\alpha) \).) The correspondence \(\mu_n(\alpha) \mapsto \gamma_n(\alpha) \) defines a ring homomorphism \(A(L) \to \Gamma(L) \), whose kernel is the ideal generated by \(p \) (cf. [M1]). Moreover, the exact sequence

\[
0 \to \mathbb{Z} \cdot p \to A_2(L) \to \Gamma_2(L) \to 0
\]
is canonically split, upon lifting \(\gamma_2(\alpha) \) to \(\mu_2(\alpha) \). Here is then the promised definition: the class \(\Omega \in A_2(L) \subset H^4(C(X, BS^3)_k; \mathbb{Z}) \) is the canonical lift of the intersection form \(\varphi \in BS(L^*) \), where the latter group is identified with \(\Gamma_2(L) \) as explained above.

Here is the main result of this section:

Theorem 2.1

(i) There are natural classes \(\tilde{p}_n(X) \in H^{4n}(C(X, BS^3)_k; \mathbb{Z}[\frac{1}{2}]) \), verifying:

\[
2(2n + 1)s_n(\tilde{p}_1(X), \tilde{p}_2(X), \ldots) = (-1)^{n+1}(kp + n\Omega)p^{n-1}.
\]

(ii) If the intersection form of \(X \) is even, there are natural classes \(\tilde{w}_i(X) \in H^i(C(X, BS^3)_k; \mathbb{F}_2) \), verifying:

\[
s_n(\tilde{w}_1(X), \tilde{w}_2(X), \ldots)^4 = (k\tilde{p} + n\tilde{\Omega})p^{n-1}.
\]

Moreover in this case the \(\tilde{p}_n(X) \) are integral classes, and they verify the relations given above in integral cohomology modulo an element of order 2.

Here \(s_n \) is the \(n \)-th Newton polynomial, and "\(\equiv \)" means reduction mod 2.

Before defining these classes and proving their properties, let us point out the following corollary:

Corollary

...
COROLLARY 2.2. — The class \((kp + n\Omega)p^{n-1} \in H^{4n}(C(X, BS^3)_k; \mathbb{Z})\) is divisible by \(2n + 1\).

Note that if \(\varphi \in BS(L^*)\) is indivisible (e.g. if \(\varphi\) is non-degenerate), and if \((k, n) = 1\), then \((kp + n\Omega)p^{n-1}\) is indivisible in \(A_{2n}(L)\). (Indeed, it is obvious from the definition of the class \(\Omega\) that \(kp + n\Omega\) is indivisible in \(A_2(L)\) if \((k, n) = 1\). Moreover, it is not hard to see that \(A(L)\) is isomorphic as a \(\mathbb{Z}[p]\)-module (but not as a ring, cf. [M1]), to \(\mathbb{Z}[p] \otimes \Gamma(L)\). Hence multiplication by \(p\) preserves indivisible elements, and the statement follows.)

Thus the corollary implies that the subalgebra

\[A(L) \subset H^*(C(X, BS^3)_k; \mathbb{Z}) \]

is not a direct summand in this case.

REMARK 2.3. — Note that \(H^*(C(X; BS^3)_k; \mathbb{Z})/\text{torsion} \) injects into \(A(L) \otimes \mathbb{Q}\). A calculation shows that modulo torsion, we have:

\[
1 - \tilde{p}_1 + \tilde{p}_2 - \cdots = (1 + p)^{-k/2} \exp \left[\left(k - \frac{\Omega}{2p} \right) \left(1 - \frac{\arctan \sqrt{p}}{\sqrt{p}} \right) \right]
\]

\[
= 1 - \frac{1}{6}(kp + \Omega) + \frac{1}{360} \left(18k + 5k^2 \right)p^2 + \left(10k + 36 \right)p\Omega + 5\Omega^2 + \cdots
\]

To define the classes appearing in THEOREM 2.1, we need the following lemma, whose proof is left to the reader.

LEMMA 2.4. — The homology Chern character of \(X\) is injective. Moreover, for all \(X\) of the considered type, we have

\[
\text{ch}_*(K_0(X)) \otimes \mathbb{Z}\left[\frac{1}{2}\right] \approx H_*(X; \mathbb{Z}\left[\frac{1}{2}\right]) \subset H_*(X; \mathbb{Q}),
\]

and if \(X\) has even intersection form, then

\[
\text{ch}_*(K_0(X)) = H_*(X; \mathbb{Z}) \subset H_*(X; \mathbb{Q}).
\]

We introduce the following notation. Let :

\[
[X]_K = (\text{ch}_*)^{-1}[X] \in K_0(X; \mathbb{Z}\left[\frac{1}{2}\right]).
\]

Define \(\eta_X \in \tilde{K}^0(X \times C(X, BS^3)_k; \mathbb{Z}\left[\frac{1}{2}\right])\) by the evaluation map

\[
X \times C(X, BS^3)_k \to BS^3 = BSU(2) \to BSU
\]
and put \(\xi_X = \eta_X/ [X]_K \in K^0(\mathcal{C}(X, BS^3)_k; \mathbb{Z}[\frac{1}{2}]) \). We now define:

\[
\tilde{p}_n(X) = (-1)^n c_{2n}(\xi_X) \in H^{4n}(\mathcal{C}(X, BS^3)_k; \mathbb{Z}[\frac{1}{2}]).
\]

Note that, by Lemma 2.4, we have \([X]_K \in K_0(X) \subset K_0(X; \mathbb{Z}[\frac{1}{2}])\) if \(X\) has even intersection form. Hence \(\xi_X \in K^0(\mathcal{C}(X, BS^3)_k)\) in this case, and \(\tilde{p}_n(X) \in H^{4n}(\mathcal{C}(X, BS^3)_k; \mathbb{Z})\). Moreover, we can then define \(\tilde{w}_i(X) = w_i(\xi_X) \in H^4(\mathcal{C}(X, BS^3)_k; \mathbb{F}_2)\).

It is not hard to see that \(\xi_X\) qualifies as natural in our sense, hence the classes \(\tilde{p}_n(X)\) and \(\tilde{w}_i(X)\) are natural. Moreover, after inverting 2, a space \(X\) which is the cofiber of \(\varphi \in \pi_3(M(L, 2))\) has the same homotopy type as a space \(X'\) which is the cofiber of \(4\varphi\) because there is an obvious degree one map \(X \to X'\) induced by multiplication by 2 on \(L\). Hence, to prove Theorem 2.1 we may suppose that \(X\) has even intersection form.

Consider \(S_g = M(\mathbb{Z}^{2g}, 2) \cup_{\varphi_g} D^4\), where \(\varphi_g = \sum [e_i, e'_i]\), the standard basis of \(\mathbb{Z}^{2g}\) being \((e_1, e'_1, \ldots, e_g, e'_g)\). (Here, \([\alpha, \beta] = \gamma_2(\alpha + \beta) - \gamma_2(\alpha) - \gamma_2(\beta)\) is the Whitehead product.) Note that \(S_g\) has the homotopy type of a connected sum of \(g\) copies of \(S^2 \times S^2\). If \(X\) has even intersection form \(\varphi\), then we can write \(\varphi = \sum [\alpha_i, \alpha'_i]\) where \(\alpha_i, \alpha'_i \in L\). Clearly the map \(f : \mathbb{Z}^{2g} \to L\), defined by \(f(e_i) = \alpha_i, f(e'_i) = \alpha'_i\), extends to a degree one map \(f : S_g \to X\). Since the classes \(p, \Omega, \tilde{p}_n, \tilde{w}_i\) are all natural, this shows that it suffices to prove Theorem 2.1 in the case \(X = S_g\).

From now on, we consider \(X = S_g\). The idea of proof is as follows. The stabilisation map \(j : S^3 = SU(2) \to SU\) induces a commutative diagram:

\[
\begin{array}{ccc}
S_g \times \mathcal{C}(S_g, BS^3)_k & \xrightarrow{\eta} & BS^3 \\
\downarrow 1 \times j & & \downarrow j \\
S_g \times \mathcal{C}(S_g, BSU)_k & \xrightarrow{\tilde{\eta}} & BSU.
\end{array}
\]

Here \(\eta\) and \(\tilde{\eta}\) are the evaluation maps. Let \(c_n \in H^{2n}(BSU; \mathbb{Z})\) be the \(n\)-th Chern class. For \(n \geq 3\) we have \(j^*(c_n) = 0\), hence \((1 \times j)^*(\eta(\tilde{\eta})) = 0\). Writing this equation explicitely will prove the theorem.

In order to calculate the total Chern class of \(\tilde{\eta}\), we will first decompose the space \(\mathcal{C}(S_g, BSU)_k\) as a product. Let \(\mathcal{C}_\bullet(S_g, BSU)_k\) be the subspace formed by the base-point preserving maps. The restriction map

\[
r : \mathcal{C}_\bullet(S_g, BSU)_0 \to \mathcal{C}_\bullet(M(\mathbb{Z}^{2g}, 2), BSU)
\]

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
admits a canonical section s defined as follows: thinking of $M(\mathbb{Z}^2,2)$ as a bouquet of $2g$ copies of the 2-sphere, we have:

$$C_\bullet(M(\mathbb{Z}^2,2), \text{BSU}) = (\Omega^2 \text{BSU})^{2g}.$$

Let $\varepsilon_i, \varepsilon'_i : S^2 \to M(\mathbb{Z}^2,2) \to S_g$ correspond to $e_i, e'_i \in \mathbb{Z}^2$, and define retractions $r_i, r'_i : S_g \to S^2 \times S^2 \to S^2$ by first contracting to the base point those parts of the 2-skeleton corresponding to an index different from i, identifying the result in a standard way with $S^2 \times S^2$, and then projecting onto one of the two factors. Then the section s is defined by the formula

$$s(f_1, f'_1, \ldots, f_g, f'_g)(x) = f_1(r_1(x)) \cdot f'_1(r'_1(x)) \cdots f_g(r_g(x)) \cdot f'_g(r'_g(x)).$$

(Here we use the multiplication on BSU induced by Whitney sum of bundles.) Next, define a map $\tilde{Q} : C(S_g, \text{BSU})_k \to C(S_g, \text{BSU})_k$ by the formula

$$\tilde{Q}(f) = (s(r(f(pt)^{-1} \cdot f)))^{-1} f(pt)^{-1} \cdot f.$$

We may suppose that the multiplication on BSU has a strict identity. Then the restriction of $\tilde{Q}(f)$ to $M(\mathbb{Z}^2,2)$ is the trivial map, hence \tilde{Q} factors in the obvious way over a map $Q : C(S_g, \text{BSU})_k \to \Omega^2 \text{BSU}$. Moreover, the following is a homotopy equivalence:

$$C(S_g, \text{BSU})_k \xrightarrow{\cong} \text{BSU} \times C_\bullet(M(\mathbb{Z}^2,2), \text{BSU}) \times \Omega^2 \text{BSU}$$

$$f \mapsto (f(pt), r(f(pt)^{-1} \cdot f), Q(f)).$$

Let $F : S^2 \times \text{BU} \to \text{BSU}, \tilde{F} : S^4 \times \text{BU} \times k \to \text{BSU}$ be adjoint to the Bott equivalences $\text{BU} \approx \Omega^2 \text{BSU}, \text{BU} \times k \approx \Omega^2 \text{BSU}$. Using the inverse of the above homotopy equivalence, the evaluation map $\tilde{\eta}$ becomes:

$$S_g \times \text{BSU} \times (\text{BU})^{2g} \times \text{BU} \times k \approx S_g \times C(S_g, \text{BSU})_k \longrightarrow \text{BSU}$$

$$(x, z, (y_1, y'_1, \ldots, y_g, y'_g), y) \mapsto z \cdot F(r_1(x), y_1) \cdot F(r'_1(x), y'_1) \cdots$$

$$\cdots F(r_g(x), y_g) \cdot F(r'_g(x), y'_g) \cdot \tilde{F}([x], y).$$

(Here, $[x]$ means the image of $x \in S_g$ in $S_g/M(L,2) \approx S^4$.) Let c be the total Chern class. A standard calculation using the splitting principle shows:

$$F^*(c) = 1 + \sigma_2 \otimes A, \quad \text{where } A = \sum_{n \geq 1} (-1)^{n+1} s_n(c_1, c_2, \ldots);$$

$$\tilde{F}^*(c) = 1 + \sigma_4 \otimes B, \quad \text{where } B = k + \sum_{n \geq 1} (-1)^{n+1} (n+1)s_n(c_1, c_2, \ldots).$$
(Here, \(\sigma \) is the standard generator of \(H^i(S^1; \mathbb{Z}) \).) Let \((a_1, a_1', \ldots, a_g, a_g') \) be the basis of \(H^2(S_g; \mathbb{Z}) = (\mathbb{Z}^{2g})^* \) dual to \((e_1, e_1', \ldots, e_g, e_g') \), and let \(\sigma = [S_g]^* \in H^4(S_g; \mathbb{Z}) \) be the standard generator of \(H^4(S_g; \mathbb{Z}) \). Since our multiplication on BSU is induced by Whitney sum of bundles, the total Chern class of \(\eta \) is given by:

\[
c(\eta) = (1 \otimes c)(1 + a_1 \otimes A_1) (1 + a_1' \otimes A_1') \cdots (1 + a_g \otimes A_g) (1 + a_g' \otimes A_g')(1 + \sigma \otimes B)
\]

\[
= 1 \otimes c + \sum a_i \otimes cA_i + \sum a_i' \otimes cA_i' + \sigma \otimes (B + \sum A_iA_i').
\]

(Here, the classes \(c, A_i, A_i' \) and \(B \in H^* (\mathcal{C}(S_g, BSU)_k; \mathbb{Z}) \) are meant to correspond in the obvious way to the different components of \(\mathcal{C}(S_g, BSU)_k \approx BSU \times (BU)^{2g} \times BU \times k \). We also used \(a_ia_j' = \delta_{ij}\sigma \) and \(a_ia_j = 0 = a_i'a_j \).)

Now consider diagram (2). Clearly the total Chern class of \(\eta \) is of the form:

\[
c(\eta) = 1 \otimes (1 + p) + \sum a_i \otimes b_i + \sum a_i' \otimes b_i' + \sigma \otimes k.
\]

Since \(H^*(S_g; \mathbb{Z}) \) has no torsion, we deduce:

\[
j^*(c) = 1 + p, \quad j^*(cA_i) = b_i, \quad j^*(cA_i') = b_i', \quad j^*(c(B + \sum A_iA_i')) = k.
\]

Multiplying by \(\sum_{n \geq 0} (-p)^n = 1/(1 + p) \), we deduce \(j^*(A_i) = b_i/(1 + p), \quad j^*(A_i') = b_i'/(1 + p) \). Hence

\[
j^*(B) = \frac{k}{1 + p} - \frac{\Omega}{(1 + p)^2} = k + \sum_{n \geq 1} (-1)^n(kp + n\Omega)p^{n-1},
\]

where we used \(\sum b_ib_i' = \Omega \). Thus, the following lemma immediately implies Theorem 2.1.

Lemma 2.5. — We have:

(i) \(2j^*(B) = 2\left(k - 2 \sum_{n \geq 1} (2n + 1)s_n(\bar{p}_1, \bar{p}_2, \ldots) \right) \in H^* \left(\mathcal{C}(S_g, BS^3)_k; \mathbb{Z} \right) \);

(ii) \(j^*(B) = \sum_{n \geq 1} s_n(\tilde{w}_1(X), \tilde{w}_2(X), \ldots)^4 \in H^* \left(\mathcal{C}(S_g, BS^3)_k; \mathbb{F}_2 \right) \).

Bulletin de la Société Mathématique de France
Proof. — The main point here is that $\eta/[S_g] \in \tilde{K}^0(C(S_g,BSU)_k)$ is represented by the map $Q : C(S_g,BSU)_k \to \Omega^1_k BSU \approx BU$. This can be seen as follows. Put $\pi_i = \varepsilon_i \circ r_i$, $\pi'_i = \varepsilon'_i \circ r'_i$, and let $\pi : S_g \to S_g$ be the constant map to the base point. Then for $f \in C(S_g,BSU)_k$, $\tilde{Q}(f)$ can be written:

\[
\left((f \circ \pi)^{-1} \cdot (f \circ \pi_1) \cdot (f \circ \pi)^{-1} \cdot (f \circ \pi'_1) \cdots \right) \left((f \circ \pi)^{-1} \cdot (f \circ \pi_g) \cdot (f \circ \pi)^{-1} \cdot (f \circ \pi'_g) \right)^{-1} \cdot (f \circ \pi)^{-1} \cdot f.
\]

Define $\Phi : S_g \times C(S_g,BSU)_k \to BSU$ by the formula

\[
\Phi(x,f) = \tilde{Q}(f)(x) = \tilde{\eta}(x,\tilde{Q}(f)).
\]

Since $\tilde{\eta}(x,f \circ \pi_i) = f(\pi_i(x)) = \tilde{\eta}(\pi_i(x),f)$, we see that in K-theory we can write:

\[
\Phi = (q \times 1)(\tilde{\eta}) \in \tilde{K}^0(S_g \times C(S_g,BSU)_k),
\]

where $q = K^0(S_g) \to K^0(S_g)$ is given by $q = 1 - \sum \pi_i - \sum \pi_i^* + (2g-1)\pi^*$. Clearly, q is a projector onto $\tilde{K}^0(S^4) \subset K^0(S_g)$. Applying the Chern character, it is not hard to see that q corresponds to $[S_g]_K = ch^{-1}_*([S_g])$ under the canonical isomorphism:

\[
\text{Hom}(K^0(S_g),\tilde{K}^0(S^4)) \approx \text{Hom}(K^0(S_g),\mathbb{Z}) \approx K_0(S_g).
\]

It follows

\[
\Phi = \theta \otimes (\eta/[S_g]_K),
\]

where $\theta \in \tilde{K}^0(S^4) \subset K^0(S_g)$ denotes the canonical generator. Since Φ is essentially the adjoint of Q, this shows $Q = \eta/[S_g]_K$ as required.

Thus, we have from the very definition of B:

\[
B = k + \sum_{n \geq 1} (-1)^{n+1}(n+1)s_n(c_1(\eta/[S_g]_K),c_2(\eta/[S_g]_K),\ldots).
\]

Since $\xi_{S_g} = \eta_{S_g}/[S_g]_K = j^*(\eta/[S_g]_K) \in K^0(C(X,BS^3)_k)$, it follows:

\[
j^*(B) = k + \sum_{n \geq 1} (-1)^{n+1}(n+1)s_n(c_1(\xi_{S_g}),c_2(\xi_{S_g}),\ldots).
\]

Now recall that we have defined $\tilde{p}_n = (-1)^nc_{2n}(\xi_{S_g})$, $\tilde{w}_i = w_i(\xi_{S_g})$. Of course, the reason for this definition is that ξ_{S_g} is in the image of
the complexification $KO^0 \to K^0$, since the stabilisation map $S^3 \to SU$ factors over Sp. Thus, it follows from the well known description of the complexification map $BO \to BU$ in integral cohomology that the odd Chern classes of ξ_{S_g} are torsion of order 2. This implies:

$$s_{2n}(c_1(\xi_{S_g}), c_2(\xi_{S_g}), \ldots) = 2s_n(\tilde{p}_1, \tilde{p}_2, \ldots) + \text{an element of order 2},$$

whence part (i) of the lemma. Part (ii) is proved similarly.

This completes the proof of Theorem 2.1.

Remark 2.6. — Let M_g a closed orientable (real) surface of genus g. Note that M_g has the homotopy type of a bouquet of circles with one 2-cell attached. The analogy of this with the homotopy type of S_g may be used to apply the above method to study the cohomology algebra of $C(M_g, BS^3) \approx BG(M_g)$, the classifying space of the gauge group of a (necessarily trivial) $SU(2)$-bundle over M_g. This generalizes [M1]. Here we only state the result; details may be found in [M2].

Let $\alpha_1, \ldots, \alpha_g, \alpha'_1, \ldots, \alpha'_g$ be a symplectic basis of $H_1(M_g; \mathbb{Z})$. Define

$$p = \mu(\text{base point}), \quad \beta_i = \mu(\alpha_i), \quad \beta'_i = \mu(\alpha'_i), \quad t = \mu([M_g]),$$

where $\mu : H_1(M_g; \mathbb{Z}) \to H^{4-i}(C(M_g, BS^3); \mathbb{Z})$ is defined as in paragraph 1. Set $\Phi = \sum \beta_i \beta'_i \in H^6(C(M_g, BS^3); \mathbb{Z})$. Let $\eta \in K^0(M_g \times C(M_g, BS^3))$ correspond to the evaluation map, set $[M_g]_K = ch^{-1}_*[M_g]$, and define $x_i = c_i(\eta/[M_g]_K) \in H^{2i}(C(M_g, BS^3); \mathbb{Z})$. Note $x_1 = t$. Then

$$H^*(C(M_g, BS^3); \mathbb{Z}) \subset H^*(C_g; \mathbb{Q})$$

$$\approx \mathbb{Q}[p] \otimes \Lambda_{\mathbb{Q}}(\beta_1, \ldots, \beta_g, \beta'_1, \ldots, \beta'_g) \otimes \mathbb{Q}[t]$$

is the subalgebra generated $p, \beta_1, \ldots, \beta_g, \beta'_1, \ldots, \beta'_g$, and the x_i. (This fact was already shown in [AB].) Calculating as in [M1], we find:

$$\sum_{n=0}^{\infty} x_n = \exp \left[\left(t - \frac{\Phi}{2p} \right) \frac{\arctan \sqrt{p}}{\sqrt{p}} + \frac{\Phi}{2p(1 + p)} \right].$$

(This power series can be written $\exp(tf(p) + \Phi f'(p))$, where $f(p) = \arctan(\sqrt{p})/(\sqrt{p})$.)

Here is a description of this algebra analogous to Theorem 1.1. As an algebra over $\mathbb{Z}[p] \otimes \Lambda_{\mathbb{Z}}(\beta_1, \ldots, \beta'_g)$ (which is the cohomology algebra corresponding to the 1-skeleton of M_g), $H^*(C(M_g, BS^3); \mathbb{Z})$ is isomorphic
to the algebra generated by the \(x_i \), divided by an ideal of relations of the form:

\[
x_i x_j = \sum_{k, \ell = 0}^{\infty} A_{ijkl} x_{i+j-2k-3\ell} p_k \Phi^\ell.
\]

(Note that \(\Phi^\ell \) is divisible by \(\ell! \) in \(\Lambda_\mathbb{Z}(\beta_1, \ldots, \beta_g'). \)) Here is a formula for the numbers \(A_{ijkl} \):

\[
A_{ijkl} = \sum_{s=0}^{k} (-1)^s \left(\begin{array}{c} i + j - k - s - 3\ell - 1 \\ k - s \end{array} \right) \times \\
\sum_{-s \leq h \leq s \mod 2} \left(\begin{array}{c} i + j - 2k - 2\ell \\ i - k - \ell + h \end{array} \right) \left(\begin{array}{c} \ell + \frac{1}{2}(s - h) - 1 \\ \frac{1}{2}(s - h) \end{array} \right) \left(\begin{array}{c} \ell + \frac{1}{2}(s + h) - 1 \\ \frac{1}{2}(s + h) \end{array} \right).
\]

Note that, as they must, the numbers \(A_{ijk0} \) coincide with the \(A_{ijk} \) given in Theorem 1.1. It also follows from this description that \(x_1^n \in H^{2n}(C(M_g, BS^3); \mathbb{Z}) \) is divisible precisely by the power of 2 contained in \(n! \). This generalizes Corollary 1 of [M1].

3. The classifying space of the based gauge group on \(S^4 \)

The subgroup of the gauge group formed by those gauge transformations whose restriction to the fiber over the base point is the identity, is called the \textit{based} gauge group, and denoted by \(G_b(X) \). It is well known that for any \(S^3 \)-bundle, it is isomorphic to the group \(C_\ast(X, S^3) \) of base-point preserving maps \(X \to S^3 \). Hence the classifying space of the based gauge group on \(S^4 \) has the homotopy type of the space \(\Omega^4 \hat{B} \), the fiber of fibration (1).

The space \(\Omega^4 \hat{B} \) is the zero component of \(\Omega^4 BS^3 \approx \Omega^3 S^3 \approx \Omega^3 \Sigma^3 S^0 \), and it is well known how to describe the homology of the latter in terms of Dyer-Lashof-operations acting on \([1] \in H_0(\Omega^3 S^3)\) (see for example [CLM]). However, since we are ultimately interested in cohomology, it is more convenient to restrict attention to the zero component. We proceed as follows. From the definition of \(\hat{B} \), we deduce a fibration:

\[
S^1 \approx K(\mathbb{Z}, 1) \to \Omega^2 \hat{B} \to \Omega^2 BS^3 \approx \Omega S^3.
\]

An easy calculation with the Serre spectral sequence then shows:

\[
H_\ast(\Omega^2 \hat{B}; F_\ell) \approx P(z_{2\ell}) \otimes E(\beta z_{2\ell}).
\]
(Here, ℓ is a prime, P means polynomial algebra, E means exterior algebra, z_n is an element of degree n, and β is the Bockstein operator in (mod ℓ) homology.) Proceeding as in [CLM, p. 229], we see that $H_*(\Omega^4 \hat{B}; F_\ell)$ is the free graded commutative algebra on generators obtained by certain Dyer-Lashof-operations acting on an element $y_{2\ell-2} \in H_*(\Omega^4 \hat{B}; F_\ell)$ obtained from z_2 by transgression. (Note however that if $\ell = 2$, y_2 is well defined only modulo $(\beta y_2)^2$.) Here is the result:

Proposition 3.1.

a) $H^B(\Omega^4 \hat{B}; F_2) \approx P[(Q_1)^i \beta y_2, (Q_1)^j (Q_2)^j y_2; i, j \geq 0]$;

b) for $\ell \geq 3$, $H_*(\Omega^4 \hat{B}; F_\ell)$ is the free graded commutative algebra on generators $\beta^e (Q_{\ell-1})^j \beta^e (Q_{2(\ell-1)})^i y_{2\ell-2}$, where $i, j \geq 0$, $e, \bar{e} \in \{0, 1\}$, $\varepsilon \leq j$ and $(j \geq 1 \Rightarrow \bar{e} = 1)$.

(See [CLM, p. 7] for a definition of the operations Q_n. Compare also [Mi].)

Note that $|(Q_1)^i \beta y_2| = 2^{i+1} - 1$, $|(Q_1)^i (Q_2)^j y_2| = 2^{i+j+2} - 2^i - 1$, and that $|\beta^e (Q_{\ell-1})^j \beta^e (Q_{2(\ell-1)})^i y_{2\ell-2}| = 2\ell^j (\ell^{i+1} - 1) - e - \bar{e}$.

For $\ell \geq 3$, $y_{2\ell-2}$ is clearly primitive, hence it follows from the Cartan formula that $H_*(\Omega^4 \hat{B}; F_\ell)$ is primitively generated. This implies that the mod ℓ cohomology algebra $H^*(\Omega^4 \hat{B}; F_\ell)$ is simply a tensor product of an exterior algebra (on odd-dimensional generators) with a divided power algebra (on even-dimensional generators), the generators being the duals of the homology generators given above. The analogous statement is not true for mod 2 cohomology. In the next section, we will obtain a presentation of $H^*(\Omega^4 \hat{B}; F_2)$.

The relations between Dyer-Lashof-operations and the higher Bockstein operators can also be found in [CLM]. This allows to determine the additive structure of $H_*(\Omega^4 \hat{B}; Z)$ as follows. Set $n(i, j; \ell) = 2\ell^j (\ell^i - 1)$ and $\varphi_n(t) = (1 + t^{n-1})/(1 - t^n)$.

Proposition 3.2. — For any prime ℓ, the Poincaré series of

$$E^r H_*(\Omega^4 \hat{B}; F_\ell), \quad r \geq 2,$$

is given by

$$f_r(t) = \prod_{i \geq 1} \varphi_{n(i, r-1; \ell)}(t).$$

We leave it to the reader to write down $f_1(t)$, i.e. the Poincaré series of $E^1 H_*(\Omega^4 \hat{B}; F_\ell) = H_*(\Omega^4 \hat{B}; F_\ell)$, using Proposition 3.1.
Now recall that $H^B_\ell(\Omega^4 \tilde{B}; \mathbb{Z}) = \bigoplus_{r \geq 1} H^B_\ell(\Omega^4 \tilde{B}; \mathbb{Z}/\ell^r)^{a_{nr}}$, since the space $\Omega^4 \tilde{B}$ is rationally contractible. Moreover, if we write

$$H_n(\Omega^4 \tilde{B}; \mathbb{Z}_\ell) \approx \bigoplus_{r \geq 1} (\mathbb{Z}/\ell^r)^{a_{nr}},$$

then the a_{nr} are given by

$$\sum_{n \geq 1} a_{nr} t^n = \frac{f_r(t) - f_{r+1}(t)}{1+t}.$$

This determines the additive structure of $H_*(\Omega^4 \tilde{B}; \mathbb{Z})$. For later use, we record the following

Corollary 3.3. — Let $\ell = 2m + 1$ be an odd prime, and set $N(\ell) = \ell^2 - \frac{1}{2}(\ell + 3)$ if $\ell \geq 5$, and $N(3) = 536$. Suppose $1 \leq n < N(\ell)$. If $n \equiv 0 (m)$, then $H^{4n}(\Omega^4 \tilde{B}; \mathbb{Z}_\ell)$ has exponent $\ell^{1+\nu_\ell(n/m)}$. If $n \not\equiv 0 (m)$, then $H^{4n}(\Omega^4 \tilde{B}; \mathbb{Z}_\ell) = 0$.

Here $\nu_\ell : \mathbb{Q}^* \to \mathbb{Z}$ is ℓ-adic valuation.

Sketch of proof. — The Bockstein spectral sequence of $H_*(\Omega^4 \tilde{B}; F_\ell)$ has a direct summand of the form $P(y_{2\ell-2}) \otimes E(\beta y_{2\ell-2})$, with $\beta_{r+1} y_{2\ell-2} = y_{2\ell-2} - \beta y_{2\ell-2}$. The \mathbb{Z}_ℓ-cohomology corresponding to this direct summand verifies the statement of the corollary for all n. Moreover, it turns out that for $n < N(\ell)$, the exponent of $H^{4n}(\Omega^4 \tilde{B}; \mathbb{Z}_\ell)$ stems from this direct summand. Details are left to the reader.

4. The map $j : \Omega^4 \tilde{B} \to BO$

The stabilisation map $S^3 = SU(2) \to SU$ factors over the inclusion $Sp \subset SU$. Thus, the induced map $\mathcal{C}(X, BS^3) \to \mathcal{C}(X, BSU)$ factors over $\mathcal{C}(X, BSp)$. Restricting to base-point preserving maps, and using real Bott periodicity, we have a map $\Omega^4 BS^3 \to \Omega^4 BSp \approx BO \times \mathbb{Z}$. In this section, let us denote by $j : \Omega^4 \tilde{B} \to BO$ the map obtained by restricting to the zero degree component. Clearly, this is a morphism of 4-fold loop spaces.

Proposition 4.1. — $j_* : H_*(\Omega^4 \tilde{B}; \mathbb{F}_2) \to H_*(BO; \mathbb{F}_2)$ is injective.

Proof. — Recall $H_* (BO; \mathbb{F}_2) = P(a_1, a_2, \ldots)$, where $|a_i| = i$. Since the inclusion $S^3 \to Sp$ is 6-connected, j_* is an isomorphism in degrees ≤ 2. Replacing, if necessary, y_2 by $y_2 + (\beta y_2)^2$, it follows $j_*(y_2) = a_2$, $j_*(\beta y_2) = a_1$. From [K], Theorem 36, we know that in $H_*(BO; \mathbb{F}_2)$, we have $Q_n(a_k) =$
\((n+k-1)a_{n+2k}\) modulo decomposable elements. Since \(j_*\) commutes with \(Q_1\) and \(Q_2\), it follows that \(j_*\) sends the generators of \(H_*(\Omega^4 \tilde{B}; \mathbb{F}_2)\) given in Proposition 3.1 to indecomposable elements. This implies the proposition.

Corollary 4.2. — \(H^*(\Omega^4 \tilde{B}; \mathbb{F}_2) \approx H^*(BO; \mathbb{F}_2)/(\ker j^*)\).

The Hopf algebra structure of \(H^*(BO; \mathbb{F}_2)\) is given by

\[
\Delta a_n = \sum a_i \otimes a_{n-i}.
\]

Since \(j_*\) is injective, it follows \(\Delta y_2 = 1 \otimes y_2 + \beta y_2 \otimes \beta y_2 + y_2 \otimes 1\). This and the Cartan formula for Dyer-Lashof-operations completely determine the Hopf algebra structure of \(H_*(\Omega^4 \tilde{B}; \mathbb{F}_2)\). Note that generators of the form \((Q_1)^i \beta y_2\) are primitive, whereas those of the form \((Q_1)^i (Q_2)^j y_2\) are not.

For \(n\) a positive integer, let \(\varepsilon_0(n)\) be the number of zeros of \(n\) when written in binary form. Note that \(H_*(\Omega^4 \tilde{B}; \mathbb{F}_2)\) has a generator precisely in those degrees \(n\) such that \(\varepsilon_0(n) \leq 1\). Recall that \(H^*(BO; \mathbb{F}_2)\) is a polynomial algebra on the Stiefel-Whitney-classes \(w_i\). The following proposition will be proved in the appendix:

Proposition 4.3

(i) For each \(n\) such that \(\varepsilon_0(n) \geq 2\), the ideal \(\ker(j^*) \subset H^*(BO; \mathbb{F}_2)\) contains an element \(r_n\) of degree \(n\), such that if \(n = 2^m \sqrt{m}\) where \(m\) is odd, then \(r_n\) is indecomposable if \(\varepsilon_0(m) \geq 2\), and \(r_n\) is the square (the fourth power) of an indecomposable element if \(\varepsilon_0(m) = 1\) (\(\varepsilon_0(m) = 0\)).

(ii) The ideal \(\ker(j^*) \subset H^*(BO; \mathbb{F}_2)\) is freely generated by any system of elements \(r_n\) verifying the indecomposability properties of part (i).

Note that the proposition implies \(w_n^4 \in \ker(j^*)\) for all \(n\). Here are generators for \(\ker(j^*)\) in degrees \(\leq 16\): \(w_1^4, w_2^4, s_9, s_8^2, w_3^4, w_4^4\). \((s_n\) means the \(n\)-th Newton polynomial of the \(w_i\).) In the appendix, we will give an algorithm to construct generators \(r_n\) in terms of Stiefel-Whitney-classes.

We now study the map \(j\) at an odd prime \(\ell\). Recall that \(H_*(\Omega^4 \tilde{B}; \mathbb{F}_\ell)\) is the free graded commutative algebra on certain elements of the form \(\beta^{i}(Q_{\ell-1})^{i} \beta^{i}(Q_{2(\ell-1)})^{i} y_{2\ell-2}\).

Proposition 4.4. — The kernel of \(j_* : H_*(\Omega^4 \tilde{B}; \mathbb{F}_\ell) \to H_*(BO; \mathbb{F}_\ell)\) is the ideal generated by those of the above elements whose degree is not divisible by \(4\).

Note that these are precisely the generators not of the form \((Q_{2(\ell-1)})^{i} y_{2\ell-2}, i \geq 0\).
Proof. — Clearly these elements are in the kernel of j_*, since $H_n(BO; F_\ell)$ is zero unless n is divisible by 4. To complete the proof, it suffices to show that the subalgebra of $H_*(\Omega^4\tilde{B}; F_\ell)$ generated by the classes $(Q_{2(\ell - 1)})^i y_{2\ell - 2}$ injects into $H_*(BO; F_\ell)$. To see this, we proceed as follows. Write

\[H_*(\Omega^3S^3; F_\ell) = H_*(\Omega^4\tilde{B}; F_\ell) \otimes F_\ell[Z], \]
\[H_*(BO \times \mathbb{Z}; F_\ell) = H_*(BO; F_\ell) \otimes F_\ell[Z]. \]

From [CLM] we know that in $H_*(\Omega^3S^3; F_\ell)$, one has $Q_1(1 \otimes [1]) \neq 0$. Hence $y_{2\ell - 2}$ may be chosen such that $Q_1(1 \otimes [1]) = y_{2\ell - 2} \otimes [\ell]$. From [K], Theorem 33, we know that in $H_*(BO \times \mathbb{Z}; F_\ell)$, we have $Q_1(1 \otimes [1]) = p_{(\ell - 1)/2} \otimes [\ell]$. Here $p_n \in H_{4n}(BO; F_\ell)$ is the dual of \tilde{p}_n, the mod ℓ reduction of the n-th Pontryagin class. (The dual is taken with respect to the obvious basis of $H^{4n}(BO; F_\ell)$ given by monomials in the \tilde{p}_j, $j \leq n$.) Since the map $\Omega^3S^3 \to BO \times \mathbb{Z}$ is a morphism of 3-fold loop spaces, and respects components, it follows $j_*(y_{2\ell - 2}) = p_{(\ell - 1)/2}$. From [K], Theorem 25, it follows:

\[j_*((Q_{2(\ell - 1)})^i y_{2\ell - 2}) = (Q_{2(\ell - 1)})^i p_{(\ell - 1)/2} = \pm p_{(\ell + i + 1)(\ell - 1)/2}. \]

It is well known that p_n is, up to scalar multiples, the unique primitive element in $H_{4n}(BO; F_\ell)$. (Recall that $H_*(BO; F_\ell) \approx \mathbb{P}(a_n$; $n \geq 1)$, with $|a_n| = 4n$, and $\Delta a_n = \sum a_i \otimes a_{n-i}$. From the Newton formula, we see that $p_{(\ell - 1)/2}$ is indecomposable, since $\frac{1}{2}(\ell^i - 1)$ is not divisible by ℓ. Thus, $\text{Im}(j_*)$ is freely generated by $\{p_n \mid n = \frac{1}{2}(\ell^i - 1), i \geq 1\}$. This implies the proposition.

5. Divisibility properties depending on k

In this section, we study the fibration (1) in cohomology. First, we study the situation at the prime 2.

Proposition 5.1. — If X has even intersection form, then the mod 2 cohomology spectral sequence of fibration (1) degenerates at the E_2-level

Proof. — It suffices to prove this in the case $X = S_g$, since there is a degree one map $S_g \to X$ (cf. the proof of Theorem 2.1). The stabilisation map $S^3 \to Sp$ induces a morphism of fibrations $C(S_g, BS^3)_k \to C(S_g, BSp)_k$ whose restriction to the fiber is the map $j : \Omega^4\tilde{B} \to BO$ studied in paragraph 4. Proceeding as in the proof of Theorem 2.1, we can decompose $C(S_g, BSp)_k$ as a product $BSp \times (\Omega Sp)^{2g} \times BO$. Hence the spectral sequence of this fibration degenerates at the E_2-level. Since $j^* : H^*(BO; F_2) \to H^*(\Omega^4\tilde{B}; F_2)$ is surjective by Proposition 4.1, the result follows.
COROLLARY 5.2. — If X has even intersection form, then
\[H^*(\mathcal{C}(X,BS^3)_k;\mathbb{F}_2) \]
is an extension of the algebra $H^*(BO;\mathbb{F}_2)/\ker(j^*)$ determined in Proposition 4.3 by $A(L) \otimes \mathbb{F}_2$.

Note that $\tilde{w}_1^4 = k\bar{p} + \bar{p}$ by Theorem 2.1, hence the above extension of algebras is non-trivial if k is odd.

COROLLARY 5.3. — If X has even intersection form, then
\[H^*(\mathcal{C}(X,BS^3)_k;\mathbb{Z}(2)) \cong A(L) \otimes \mathbb{Z}(2) \oplus \text{torsion}. \]

Here, $\mathbb{Z}(2)$ is \mathbb{Z} localized at 2. Note that this is not true at odd primes, cf. Corollary 2.2.

Now let ℓ be an odd prime. Consider first the case $X = S^4$.

PROPOSITION 5.4. — In $H^*(\mathcal{C}(S^4,BS^3)_k;\mathbb{Z})$, the element $p^{(\ell-1)/2}$ is divisible by ℓ if and only if $k \neq 0 (\ell)$.

Proof. — To simplify notation, set $C_k = \mathcal{C}(S^4,BS^3)_k$ and $m = \frac{1}{2}(\ell - 1)$.

From Proposition 3.1, it follows $H^i(\Omega^4\hat{B};\mathbb{F}_\ell) = 0$ for $1 \leq i \leq 4m - 2$, $H^{4m-1}(\Omega^4\hat{B};\mathbb{F}_\ell) \approx \mathbb{F}_\ell$, $H^{4m}(\Omega^4\hat{B};\mathbb{F}_\ell) \approx \mathbb{F}_\ell$. Moreover, the latter is generated by $i^*(\tilde{p}_m)$ where $i : \Omega^4\hat{B} \to C_k$ is the inclusion of the fiber. This follows from Proposition 4.4 since $i^*(\tilde{p}_m) = j^*(p_m)$ where $j : \Omega^4\hat{B} \to BO$ is the map studied in paragraph 4. Also, in the mod ℓ cohomology spectral sequence of the fibration $\Omega^4\hat{B} \to C_k \to BS^3$, the first non-trivial differential is:
\[d_{4m} : H^{4m-1}(\Omega^4\hat{B};\mathbb{F}_\ell) \to H^{4m}(BS^3;\mathbb{F}_\ell). \]

Clearly, p^m is divisible by ℓ if and only if $d_{4m} \neq 0$.

If $k \neq 0 (\ell)$, then it follows immediately from Corollary 2.2 that p^m is divisible by ℓ. Now suppose $k = \ell k'$. Consider:
\[z = 4(-1)^{m+1}s_m(\tilde{p}_1,\tilde{p}_2,\ldots) - 2k'p^m \in H^{4m}(C_k;\mathbb{Z}). \]

Since $i^*(z) = \pm 4s_m(i^*(\tilde{p}_1),i^*(\tilde{p}_2),\ldots) = \pm 4mi^*(\tilde{p}_m)$, we have $\bar{z} \neq 0 \in H^{4m}(C_k;\mathbb{F}_\ell)$. On the other hand, Theorem 2.1 implies $\ell z = 0$. It follows that \bar{z} is in the image of the mod ℓ cohomology Bockstein operator. In particular, we have $H^{4m-1}(C_k;\mathbb{F}_\ell) \neq 0$. This implies $d_{4m} = 0$ in the spectral sequence, hence p^m is not divisible by ℓ.

This completes the proof of Proposition 5.4.

For general X, we have:
PROPOSITION 5.5. — Suppose \(C(X, BS^3)_k \) and \(C(X, BS^3)_{k'} \) have isomorphic cohomology algebras. Then for each prime \(\ell \geq 5 \), one has:

\[
k \equiv 0 \ (\ell) \iff k' \equiv 0 \ (\ell).
\]

Moreover, if the intersection form of \(X \) is even, or divisible by 3, then this is also true for \(\ell = 2 \), or \(\ell = 3 \), respectively.

As an example where the last condition is satisfied, one may take \(X = S^4 \).

Proof. — Let \(\varphi \in BS(L^*) \) be the intersection form of \(X \), and set \(C_k = C(X, BS^3)_k \). As before, set \(m = \frac{1}{2}(\ell - 1) \). We distinguish three cases.

Case 1 : \(\ell = 2 \). Then \(\varphi \) is even by hypothesis, hence by THEOREM 2.1, we have:

\[
\bar{w}_1^8 = s_2(\bar{w}_1, \bar{w}_2)^4 = k\bar{p}^2.
\]

PROPOSITION 5.1 implies \(\bar{p}^2 \neq 0 \). Hence we have \(\bar{w}_1^8 = 0 \) if and only if \(k \equiv 0 \ (2) \). Since \(\bar{w}_1 \) generates \(H^1(C_k; F_2) \approx F_2 \), the result follows.

Case 2 : \(\ell \) an odd prime, and \(\varphi \equiv 0 \ (\ell) \). Then \(\bar{\omega} \), the mod \(\ell \) reduction of \(\omega \), is zero. In this case, we proceed as in the case \(X = S^4 \) to see that \(p^m \) is divisible by \(\ell \) if and only if \(k \neq 0 \ (\ell) \). Actually the proof shows that \(H^{4m-1}(C_k; F_\ell) = 0 \) if and only if \(k \neq 0 \ (\ell) \). The result follows.

Case 3 : \(\ell \) a prime \(\geq 5 \), and \(\varphi \neq 0 \ (\ell) \). We consider again the fibration \(\Omega^4\tilde{B} \to \tilde{C}_k \to \tilde{C}(M(L,2), BS^3) \). In this proof, all cohomology classes will be reduced modulo \(\ell \). But here we will distinguish between \(\bar{\omega}, \bar{\Omega} \) as cohomology classes on \(\tilde{C}(M(L,2), BS^3) \), and their images \(r^* (\bar{\omega}), r^* (\bar{\Omega}) \) on \(\tilde{C}_k \). THEOREM 2.1 implies \(r^* ((k\bar{p} + m\bar{\Omega})\bar{p}^{m-1}) = 0 \). Since \(\varphi \neq 0 \ (\ell) \), it follows easily from the description of \(A(L) \) that for all \(k \), the element \((k\bar{p} + m\bar{\Omega})\bar{p}^{m-1} \) is non-zero (compare the reasoning following COROLLARY 2.2). Arguing as in the proof of PROPOSITION 5.4, we see from the spectral sequence that in degree \(4m \), \(\ker(r^*) = \text{Im}(d_{4m}) \) is one-dimensional. Hence \(\ker(r^*) \) is generated by \((k\bar{p} + m\bar{\Omega})\bar{p}^{m-1} \).

Now let \(\alpha^* : H^*(\tilde{C}_k; F_\ell) \approx H^*(\tilde{C}_k; F_\ell) \) be a (graded) algebra isomorphism. Affect all objects concerning \(\tilde{C}_k \) with \(\alpha \). Since \(\ell \geq 5 \), \(r^* \) and \(r^* \) are isomorphisms in degree 4. Hence, there are elements \(\bar{q}, \bar{\Lambda} \in A(L) \) of degree 4 such that:

\[
\alpha^*(r^*(\bar{p})) = r^*(\bar{q}), \quad \alpha^*(r^*(\bar{\Omega})) = r^*(\bar{\Lambda}).
\]

Again, THEOREM 2.1 implies \(r^*((k'\bar{p} + m\bar{\Omega})\bar{p}^{m-1}) = 0 \). Applying \(\alpha^* \), it follows \((k'\bar{q} + m\bar{\Lambda})\bar{q}^{m-1} \in \ker r^* \). Since \(\ker r^* \) is one-dimensional, there is \(\lambda \neq 0 \) such that \((k'\bar{q} + m\bar{\Lambda})\bar{q}^{m-1} = \lambda (k\bar{p} + m\bar{\Omega})\bar{p}^{m-1} \). It then follows easily from the description of \(A(L) \) that \(k \equiv 0 \ (\ell) \) if and only if \(k' \equiv 0 \ (\ell) \).

This completes the proof.
Remark 5.6. — Proposition 5.5 was motivated by the following amusing application. Consider the family of topological group extensions

\[1 \to G_\bullet \approx C_\bullet(X, S^3) \to G_k(X) \to S^3 \to 1 \]

depending on the second Chern number \(k \). Here the map \(G_k(X) \to S^3 \) is given by restriction to the fiber over the base point. One wants to conjecture that these extensions are distinguished by \(k \). Since \(BG_k(X) \approx C(X, BS^3)_k \), Proposition 5.5 gives a partial answer. In the literature, there seems to be only the following invariant: if \(X \) has even intersection form, then the central element \(-1 \in G_k(X)\) is homotopic to 1 if and only if \(k \) is even [FU].

6. The classifying space \(BG_1(S^4) \)

We now consider the special case

\[X = S^4, \quad k = 1. \]

Set \(C_1 = C(S^4, BS^3)_1 \approx BG_1(S^4) \). Theorem 2.1 implies that

\[H^*(C_1; \mathbb{Z})/\text{torsion} \subset H^*(C_1; \mathbb{Q}) = \mathbb{Q}[p] \]

contains classes \(\tilde{p}_i \) such that:

\[1 + \tilde{p}_1 + \tilde{p}_2 + \cdots = \exp \left(\sum_{i=1}^{\infty} \frac{p^i}{2i(2i+1)} \right) = 1 + \frac{1}{6} p + \frac{23}{360} p^2 + \frac{1493}{45360} p^3 + \cdots \]

We introduce the following notation. If \(\ell \) is a prime, set \(m = \frac{1}{2}(\ell - 1) \) if \(\ell \) is odd, and \(m = 1 \) if \(\ell = 2 \). For \(n \in \mathbb{N} \), set \(\mu_\ell(n) = \nu_\ell([\ell/m] \cdot n !) \), where \(\nu_\ell : \mathbb{Q}^* \to \mathbb{Z} \) is \(\ell \)-adic valuation, and \([x]\) means the greatest integer \(\leq x \). The main result of this section is:

Proposition 6.1. — The subring of \(H^*(C_1; \mathbb{Z})/\text{torsion} \) generated by \(p \) and the \(\tilde{p}_i \) is generated in degree \(4n \) by \(p^n/\alpha_n \), where

\[\alpha_n = \prod_\ell \ell^{\mu_\ell(n)}. \]

Before giving the proof, we point out that it is tempting to conjecture that \(H^*(C_1; \mathbb{Z})/\text{torsion} \) is actually equal to this subring. Here is a proof for this conjecture in low degrees, and after inverting 2. From fibration (1), we have an exact sequence:

\[0 \to \mathbb{Z} \cdot p^n \to H^{4n}(C_1; \mathbb{Z}) \to Q^{4n} \to 0, \]
where Q^{4n} is torsion. Moreover, it follows easily from the spectral sequence that the exponent of Q^{4n} is less or equal than the product of the exponents of $H^i(\Omega^4 B; \mathbb{Z})$ for $1 \leq i \leq n$. Now let ℓ be an odd prime. An easy calculation using COROLLARY 3.3 shows that for $n < N(\ell)$, the exponent of the ℓ-primary part of Q^{4n} is less or equal than $\ell \mu_\ell(n)$. (Recall $N(3) = 536$, and $N(\ell) = \ell^2 - \frac{1}{2}(\ell + 3)$ if $\ell \geq 5$.) On the other hand, PROPOSITION 6.1 implies that p^n is divisible by $\ell \mu_\ell(n)$ in $H^{4n}(C_1; \mathbb{Z})$/torsion. Putting things together, one easily deduces the following corollary.

Corollary 6.2. — Let ℓ be an odd prime, and $n < N(\ell)$. Then $p^n \in H^{4n}(C_1; \mathbb{Z})$ is divisible by $\ell \mu_\ell(n)$, and $H^{4n}(C_1; \mathbb{Z}[\ell])$/torsion is generated by $p^n/\ell \mu_\ell(n)$.

Note that the smallest $N(\ell)$ is $N(5) = 21$. Since by PROPOSITION 5.1 $p^n \in H^{4n}(C_1; \mathbb{Z})$ is not divisible by 2, it follows:

Corollary 6.3. — For $n < 21$, $p^n \in H^{4n}(C_1; \mathbb{Z})$ is divisible precisely by $\prod_{\ell \geq 3} \ell \mu_\ell(n)$. Moreover, in degrees less than $4 \times 21 = 84$, $H^*(C_1; \mathbb{Z}[\frac{1}{2}])$/torsion coincides with the subring generated by p and the p_i.

We now prove PROPOSITION 6.1. Write $\tilde{p}_n = b_np^n \in H^{4n}(C_1; \mathbb{Q})$. We leave it to the reader to deduce PROPOSITION 6.1 from the following lemma, using the easily verified inequality $\mu_\ell(n_1) + \mu_\ell(n_2) \leq \mu_\ell(n_1 + n_2)$.

Lemma 6.4. — For $n \geq 1$, one has $\nu_\ell(b_n) \geq -\mu_\ell(n)$. Moreover, equality holds if $n \equiv 0 \pmod{m}$.

To prove **Lemma 6.4**, recall that by definition:

$$\exp\left(\sum_{i=1}^{\infty} \frac{p^i}{2i(2i + 1)}\right) = \sum_{n=0}^{\infty} b_np^n.$$

Differentiating this expression, we obtain:

$$b_{n+1} = \frac{1}{2(n+1)} \sum_{i=0}^{\infty} \frac{b_i}{2n - 2i + 3}.$$

Using the well known fact $\nu_\ell(x + y) = \min(\nu_\ell(x), \nu_\ell(y))$ whenever $\nu_\ell(x) \neq \nu_\ell(y)$, it is not hard to deduce $\nu_3(b_n) = -\nu_2((2n)!)$ and $\nu_3(b_n) = -\nu_2((3n)!)$ by induction on n. This proves **Lemma 6.4** for $\ell \in \{2, 3\}$.

In the general case, we proceed as follows. We have the following expression:

$$b_n = \sum_{k} \sum_{n_1 + 2n_2 + \cdots + kn_k = n} \frac{1}{\prod_{i=1}^{k} n_i!(2i(2i + 1))^{n_i}}.$$
Let E_n denote the set of sequences (n_1, n_2, \ldots) such that $n_1+2n_2+\cdots \leq n$. Define $f : E_n \to \mathbb{Z}$ by the formula:

$$f(n_1, n_2, \ldots) = \nu_{\ell} \left(\prod_i n_i !(2i (2i + 1))^{n_i} \right).$$

Note that E_n contains the sequence $(n_1^{(0)}, n_2^{(0)}, \ldots)$ defined by $n_i^{(0)} = [n/m]$, $n_i^{(0)} = 0$ for $i \neq m$. Moreover,

$$f(n_1^{(0)}, n_2^{(0)}, \ldots) = \nu_{\ell} ([n/m]!) + [n/m] = \mu_{\ell}(n).$$

Clearly, it follows from the expression for the b_n given above that the following LEMMA 6.5 implies LEMMA 6.4.

LEMMA 6.5. — For all sequences $(n_1, n_2, \ldots) \in E_n$, one has the inequality $f(n_1, n_2, \ldots) \leq \mu_{\ell}(n)$. Moreover, if $n \equiv 0 \pmod{m}$, then equality holds if and only if:

$$(n_1, n_2, \ldots) = (n_1^{(0)}, n_2^{(0)}, \ldots).$$

We now prove LEMMA 6.5. Consider $(n_1, n_2, \ldots) \in E_n$. Set $h_i = [in_i/m]$.

SUBLEMMA 1. — If $n_i \geq 0$, then $\nu_{\ell}(n_i !) < h_i$ unless $h_i = 0$.

Indeed, $\nu_{\ell}(n_i !) \leq \frac{n_i - 1}{2m} < \frac{n_i}{2m} \leq \frac{mh_i + m - 1}{2m} < \frac{h_i + 1}{2} \leq h_i$.

SUBLEMMA 2. — If $n_i > 0$ and $i > m$, then $n_i \nu_{\ell}(2i(2i + 1)) < h_i$.

Since $h_i = [in_i/m] \geq n_i > 0$, this is obvious unless $i \equiv 0 \pmod{\ell}$ or $2i + 1 \equiv 0 \pmod{\ell}$. First, suppose $i \equiv 0 \pmod{\ell}$. Then we have

$$n_i \nu_{\ell}(2i(2i + 1)) = n_i \nu_{\ell}(i) \leq n_i \log_{\ell}(i) \leq \frac{mh_i + m - 1}{i} \log_{\ell}(i),$$

hence it suffices to show $((mh + m - 1)/i) \log_{\ell}(i) < h_i$, which is equivalent to

$$(*) \quad i^{mh_i + m - 1} < \ell^{th_i}.$$

We will show this inequality by induction on h_i, keeping i fixed. Observe that we may suppose $h_i \geq 2$. Indeed, since $i \geq \ell$, we have

$$1 \leq n_i \leq \frac{mh_i + m - 1}{i} \leq \frac{mh_i + m - 1}{\ell},$$
which is impossible if \(h_i \leq 1 \).

Letting \(h_i = 2 \) in (*), we obtain :

\[
\ell^{m-1} < \ell^2i.
\]

Observe that once we know (**), it follows \(i^m \leq \ell^{(3m-1)/2} < \ell^i \), which implies the induction. Thus, it only remains to show (**), which is equivalent to :

\[
i < \ell^{2i/(3m-1)} = \ell^{4i/(3\ell-5)}.
\]

Now this is obvious if \(i = \ell \), moreover, differentiating with respect to \(i \) yields :

\[
1 < \frac{4}{3\ell - 5} \log(\ell) \ell^{4i/(3\ell-5)} = \frac{4\ell}{3\ell - 5} \log(\ell) \ell^{(4i-3\ell+5)/(3\ell-5)}
\]

which is true for \(i \geq \ell \). This implies (**), hence SUBLEMMA 2 in the case \(i \equiv 0 \) (\(\ell \)).

The case \(2i + 1 \equiv 0 \) (\(\ell \)) is similar and left to the reader.

Sublemma 3. \(\sum_{i \geq 1} h_i \leq [n/m] \), \(\sum_{i \geq m} n_i \leq [n/m] \).

This is obvious since \(n = \sum_{i \geq 1} in_i \).

Applying these sublemmas, we have :

\[
f(n_1, n_2, \ldots) = \sum_{i \geq 1} (\nu_\ell(n_1!) + n_i \nu_\ell(2i(2i + 1))) \leq \sum_{i \geq m} \nu_\ell(n_i!) + \sum_i h_i
\]

\[
\leq \nu_\ell([n/m]!) + [n/m] = \mu_\ell(n) = f(n_1(0), n_2(0), \ldots).
\]

This implies the first part of LEMMA 6.5. Now suppose we have equality here. Then it follows from sublemmas 1 and 2 that \(n_i = 0 \) for all \(i > m \), and \(h_i = 0 \) for all \(i < m \). But this implies :

\[
f(n_1, n_2, \ldots) = n_m + \nu_\ell(n_m!),
\]

hence \(n_m = [n/m] \). If \(n \equiv 0 \) (\(m \)), then this is impossible unless :

\[
(n_1, n_2, \ldots) = (n_1(0), n_2(0), \ldots).
\]

This completes the proof of LEMMA 6.5.
7. The classifying space of the based gauge group

For \(\varphi \in \pi_2(L) = \pi_3(M(L,2)) \), define \(F_\varphi : C_\bullet(M(L,2), BS^3) \to \Omega^3 BS^3 \) by \(F_\varphi(f) = f \circ \varphi \). Clearly, the map:

\[
F : \Gamma_2(L) \to [C_\bullet(M(L,2), BS^3), \Omega^3 BS^3], \quad \varphi \mapsto F_\varphi
\]

is a homomorphism of abelian groups. (Here, the notation \([A,B]\) means based homotopy classes of based maps \(A \to B \).) The main result of this section is the following theorem.

Theorem 7.1. — \(\ker F = 12 \Gamma_2(L) \).

We apply this as follows. It is not hard to see that, up to homotopy, \(C_\bullet(X, BS^3) \) is the total space of the fibration induced by \(F_\varphi \) from the path fibration over \(\Omega^3 BS^3 \). Thus Theorem 7.1 implies that for any prime \(\ell \geq 5 \), we have an \(\ell \)-equivalence:

\[
C_\bullet(X, BS^3) \sim_{(\ell)} C_\bullet(M(L,2), BS^3) \times \Omega^4 BS^3.
\]

Moreover, this is still true for \(\ell = 3 \), or \(\ell = 2 \), if we suppose \(\varphi \equiv 0 \pmod{3} \), or \(\varphi \equiv 0 \pmod{4} \), respectively. On the other hand, if \(\varphi \equiv 0 \pmod{3} \), then \(C_\bullet(X, BS^3(3)) \) is not a product, as follows from Theorem 2.1. Similarly, if \(\varphi \equiv 0 \pmod{4} \), then \(C_\bullet(X, BS^3(2)) \) is not a product (see also Remark 7.8).

Since \(H * (C_\bullet(M(L,2), BS^3); Z) \) is the divided power algebra \(\Gamma(L) \), we deduce:

Corollary 7.2. — Let \(\alpha \in L \) be indivisible. If

\[
\mu(\alpha)^n \in H^{2n}(C(X, BS^3)_k; \mathbb{Z}[\frac{1}{2}])
\]

is divisible by \(N \), then \(N \) divides \(n! \). Moreover, if \(\varphi \equiv 0 \pmod{3} \), then this is true with coefficients in \(\mathbb{Z}[\frac{1}{2}] \).

Note that if \(\varphi \) is even (as a bilinear form), then Corollary 5.3 together with Corollary 1 of [Ml] imply that \(\mu(\alpha)^n \in H^{2n}(C(X, BS^3)_k; \mathbb{Z}(2)) \) is divisible exactly by \(n! \).

We now prove Theorem 7.1. We start with two lemmas whose proof is left to the reader.

Lemma 7.3. — The suspension \(\Sigma C_\bullet(M(L,2), BS^3) \) has the homotopy type of a bouquet of spheres.

Lemma 7.4. — There is a natural filtration (induced by a Postnikov decomposition of \(BS^3 \)):

\[
[C_\bullet(M(L,2), BS^3), \Omega^3 BS^3] = \mathcal{F}_0 \supset \mathcal{F}_1 \supset \mathcal{F}_2 \supset \cdots,
\]
where $\mathcal{F}_{n-1}/\mathcal{F}_n \cong \Gamma_n(L) \otimes \pi_{2n+2}(S^3)$.

Using this filtration, the map F defines natural linear maps:

$$
\theta_1 : \Gamma_2(L) \longrightarrow \mathcal{F}_0/\mathcal{F}_1 \cong \Gamma_1(L) \otimes \pi_4(S^3) = L \otimes \mathbb{Z}/2,
$$

$$
\theta_2 : \ker(\theta_1) \rightarrow \mathcal{F}_1/\mathcal{F}_2 \cong \Gamma_2(L) \otimes \pi_6(S^3),
$$

where $\theta_i(\varphi) = F\varphi \mod \mathcal{F}_i$. It is not hard to see that θ_1 corresponds to the suspension $\Gamma_2(L) = \pi_3(M(L,2)) \xrightarrow{\Sigma} \pi_4(\Sigma M(L,2)) = L \otimes \mathbb{Z}/2$. Alternatively, θ_1 is given by the formula $\theta_1(\gamma_2(x)) = \bar{x}$, $(x \in L)$. Thus, $\ker(\theta_1)$ consists exactly of the even forms.

The following two lemmas will imply Theorem 7.1.

Lemma 7.5. Let $w = [i_1, i_2] \in \pi_3(S^2 \vee S^2) = \Gamma_2(\mathbb{Z} \oplus \mathbb{Z})$ be the Whitehead product of the obvious inclusions i_1, i_2. If we localize at a prime $\ell \geq 5$, then Fw becomes null-homotopic.

Lemma 7.6. Let $h \in \pi_3(S^2) = \Gamma_2(\mathbb{Z})$ be a generator. Then $\theta_2(2h)$ is the double of a generator of $\Gamma_2(\mathbb{Z}) \otimes \pi_6(S^3) \cong \mathbb{Z}/12$.

Granting these lemmas, here is a proof of the theorem.

First, we show $12\Gamma_2(L) \subset \ker F$. Suppose $\varphi \in 12\Gamma_2(L)$. It follows from Lemma 7.3 that the abelian group $[\mathcal{C}_*(M(L,2), BS^3), \Omega^3 BS^3]$ is (non-naturally) isomorphic to $\prod_{j \in J} \pi_{n_j}(S^3)$ for some integers n_j. It clearly suffices to show that the image of $F\varphi$ in each of the $\pi_{n_j}(S^3)$ is zero. Now it is well known [S] that the ℓ-primary part of $\pi_i(S^3)$ ($i \geq 4$) has exponent ℓ, for ℓ an odd prime, and exponent 4, for $\ell = 2$. Thus, the 2- and 3-primary parts of $F\varphi$ are zero. To study the ℓ-primary part for $\ell \geq 5$, we may as well localise at ℓ. The image of $w = [i_1, i_2]$ in $\pi_3(S^2)$ under the obvious sum map $S^2 \vee S^2 \to S^2$ is $2h$, where h is a generator of $\pi_3(S^2)$. Thus, Lemma 7.5 implies that F_{2h} is null-homotopic (after localization at ℓ). But F_{2h} is homotopic to $2 \circ F_h$, where 2 means the self-map of $\Omega^3 BS^3_{(2)}$ induced by multiplication by 2 on S^3. Since this map is a homotopy equivalence, it follows that F_h is null-homotopic. By naturality, this implies that (the ℓ-primary part of) $F\varphi$ is null-homotopic for any $\varphi \in \Gamma_2(L)$. This shows $12\Gamma_2(L) \subset \ker F$.

Next, we show $\ker F \subset 12\Gamma_2(L)$. By naturality, Lemma 7.6 implies that there is a generator $\epsilon \in \pi_6(S^3)$ such that $\theta_2(2\varphi) = 2\varphi \otimes \epsilon \in \Gamma_2(L) \otimes \pi_6(S^3)$ for any $\varphi \in \Gamma_2(L)$. Now, suppose we have $\varphi \in \ker F$. Then $2\varphi \in \ker F$, whence $2\varphi \otimes \epsilon = \theta_2(2\varphi) = 0$. Thus φ must be divisible by 6. In particular, we have $\varphi = 2\varphi'$, thus we can repeat the argument to find $\varphi \otimes \epsilon = \theta_2(\varphi) = 0$. Thus φ must be divisible by 12.
It remains to prove Lemmas 7.5 and 7.6.

Proof of Lemma 7.5. — Set $G = S^3_{(t)}$. We must show that

$$F_w : C_*(S^2 \vee S^2, BG) = \Omega^2 BG \times \Omega^2 BG \to \Omega^3 BG$$

is null-homotopic.

Recall that the join $X*Y$ of two spaces X, Y is defined as the quotient of the product $X \times I \times Y$ by the identifications $(x,0,y) = (x',0,y)$, $(x,1,y) = (x,1,y')$. Think of S^3 as $S^1 \ast S^1$. Think of S^2 as $S^1 \wedge S^1$. For $t \in I = [0,1]$, let $[t]$ be its image in $S^1 = I/(0 = 1)$. Then the map $w : S^3 = S^1 \ast S^1 \to S^2 \vee S^2$, defined by:

$$w(x,t,y) = \begin{cases} i_1([2t] \wedge x) & \text{if } t \leq \frac{1}{2}, \\ i_2([2 - 2t] \wedge y) & \text{if } t \geq \frac{1}{2}, \end{cases}$$

represents the Whitehead product $[i_1,i_2]$.

Similarly, define $\bar{w} : G \ast G \to \Sigma G = S^1 \wedge G$ by the formula:

$$\bar{w}(a,t,b) = \begin{cases} [2t] \wedge a & \text{if } t \leq \frac{1}{2}, \\ [2 - 2t] \wedge b & \text{if } t \geq \frac{1}{2}. \end{cases}$$

Let $s : G \to \Omega \Sigma G$ be the canonical map, sending $x \in G$ to the loop $t \mapsto t \wedge x$. Let $i : \Sigma G \to BG$ be the map classifying the principal G-bundle whose clutching function is the identity $G \to G$. Then it is well known that the composition

$$G \xrightarrow{s} \Omega \Sigma G \xrightarrow{\Omega i} \Omega BG$$

is a homotopy equivalence.

The key observation is that the following diagram is homotopy commutative:

$$\begin{array}{ccc}
\Omega G \times \Omega G & \xrightarrow{\Omega s \times \Omega s} & \Omega^2 \Sigma G \times \Omega^2 \Sigma G \\
\downarrow* & & \downarrow\Omega^2 i \times \Omega^2 i \\
\Omega^3(G \ast G) & \xrightarrow{\Omega^3 \bar{w}} & \Omega^3 \Sigma G \\
\downarrow F_w & & \downarrow \Omega^3 i \\
\Omega^3 BG & & \Omega^3 BG
\end{array}$$
Here, the map \(\ast \) is the join, that is \(\ast(f, g) = f \ast g \), where \(f \ast g(x, t, y) = (f(x), t, g(y)) \). Now \(i \circ \tilde{w} \in [G \ast G, BG] \approx \pi_7(BS^3) \). But this group is zero, since \(\pi_7(BS^3) = \pi_6(S^3) = \mathbb{Z}/12 \), and \(\ell \geq 5 \). This implies that \(F_{\tilde{w}} \) is null-homotopic, since \((\Omega) \circ s \) is a homotopy equivalence. This proves Lemma 7.5.

Proof of Lemma 7.6: recall that the image of \(w = [i_1, i_2] \) in \(\pi_3(S^2) \) under the obvious sum map \(S^2 \vee S^2 \to S^2 \) is \(2h \). Thus, diagram (3) gives a homotopy commutative diagram:

\[
\begin{array}{ccc}
\Omega S^3 & \xrightarrow{\Delta} & \Omega S^3 \times \Omega S^3 \\
\downarrow \sim & & \downarrow \Omega^3(i \circ \tilde{w}) \\
\Omega^2 BS^3 & \xrightarrow{F_{2h}} & \Omega^3 BS^3.
\end{array}
\]

Here, \(\Delta \) is the diagonal map, and \(\ast \) is the join. As in Lemma 7.4, we have a filtration:

\[
[\Omega S^3, \Omega^3 S^7] = \mathcal{F}_0 \supseteq \mathcal{F}_1 \supseteq \mathcal{F}_2 \supseteq \cdots,
\]

where \(\mathcal{F}_n / \mathcal{F}_n^- \approx \Gamma_n(\mathbb{Z}) \otimes \pi_{2n+3}(S^7) \). Since \(\mathcal{F}_0 / \mathcal{F}_1 = 0 \), the map \(\ast \circ \Delta \) defines an element

\[
\eta \in \mathcal{F}_1 / \mathcal{F}_2 \approx \pi_7(S^7).
\]

Moreover, identifying \(\pi_6(S^3) = \pi_7(BS^3) \), we have by naturality:

\[
\theta_2(2h) = (i \circ \tilde{w})_\ast(\eta).
\]

As is well known \([T]\), \(i \circ \tilde{w} \) is a generator of \(\pi_7(BS^3) \). Thus, identifying \(\pi_7(S^7) = \mathbb{Z} \), we are reduced to prove the following:

Claim: \(\eta = \pm 2 \).

To prove the claim, let \(A : \Sigma^3 \Omega S^3 \to S^7 \) be the the map adjoint to \(\ast \circ \Delta \). Note that the induced map \(H_7(A; \mathbb{Z}) \) is of the form \(\mathbb{Z} \to \mathbb{Z} \), and it is not hard to see that this is actually multiplication by \(\eta \).

I owe P. Vogel the following argument. Represent a generator of \(H_4(\Omega S^3; \mathbb{Z}) \approx \mathbb{Z} \) by a map \(g : M^4 \to \Omega S^3 \), where \(M^4 \) is a closed oriented 4-manifold. Call \(F \) the composition

\[
F : S^3 \times M \to \Sigma^3 M \xrightarrow{\Sigma^3 g} \Sigma^3 \Omega S^3 \xrightarrow{A} S^7.
\]
Clearly \(\eta \) is equal to \(d^0(F) \), where \(d^0(F) \) means the degree of \(F \) as a map between smooth compact oriented manifolds. Now let \(f \) be the map \(S^1 \times M \rightarrow \Sigma M \rightarrow S^3 \) adjoint to \(g \). Identifying \(S^3 = S^1 * S^1 \), \(S^7 = S^3 * S^3 \), we see that \(F \) is given by the formula

\[
F((a, t, b), x) = (f(a, x), t, f(b, x)).
\]

We may suppose \(f \) is smooth. Then \(F \) is also smooth, and has a regular value of the form \((z, t_0, z') \in S^3 * S^3\), where \(0 < t_0 < 1 \). Thus

\[
d^0(F) = \#\left\{((a, t_0, b), x) \mid f(a, x) = z, \ f(b, x) = z'\right\}
= \pm d^0(\tilde{F}),
\]

where \(\tilde{F} : S^1 \times S^1 \times M \rightarrow S^3 \times S^3 \) is given by \(\tilde{F}(a, b, x) = (f(a, x), f(b, x)) \).

Finally, we can calculate \(d^0(\tilde{F}) \) as follows. Let \(\sigma \in H^3(S^3; \mathbb{Z}) \) and \(\theta \in H^1(S^1; \mathbb{Z}) \) be the standard generators. Then \(f^*(\sigma) = \theta \otimes g^*(\alpha) \), with \(\alpha \) a generator of \(H^2(\Omega S^3; \mathbb{Z}) \). Hence \(\tilde{F}^*(\sigma \otimes \sigma) = \pm \theta \otimes \theta \otimes g^*(\alpha^2) \), and since \(\frac{1}{2} \alpha^2 \) generates \(H^4(\Omega S^3; \mathbb{Z}) \), we see \(d^0(\tilde{F}) = \pm 2 \).

This proves Lemma 7.6, and completes the proof of Theorem 7.1.

Corollary 7.7. — Let \(\varphi \in \Gamma_2(L) \). Then \(F_{\varphi} : \mathcal{C}_*(M(L, 2), BS^3) \rightarrow \Omega^3 BS^3 \) is homotopy linear if and only if \(F_{\varphi} \) is null-homotopic.

Proof. — Let \(i_1, i_2 : M(L, 2) \rightarrow M(L \oplus L, 2) \) be induced by the obvious inclusions \(L \rightarrow L \oplus L \). For \(\varphi \in \Gamma_2(L) \), define

\[
d(\varphi) = (i_1 + i_2) \circ \varphi - i_1 \circ \varphi - i_2 \circ \varphi \in \pi_3\left(M(L \oplus L, 2)\right) = \Gamma_2(L \oplus L).
\]

Then \(F_{\varphi} \) is homotopy linear if and only if

\[
F_{d(\varphi)} \in [\mathcal{C}_*(M(L \oplus L, 2), BS^3), \Omega^3 BS^3]
\]

is zero. But the linear map \(\Gamma_2(L) \rightarrow \Gamma_2(L \oplus L), \ \varphi \mapsto d(\varphi) \) is injective. This implies the corollary.

Remark 7.8. — Consider the fibration

\[
\Omega^4 \tilde{B} \rightarrow \mathcal{C}_*(X, BS^3)_k \rightarrow \mathcal{C}_*(M(L, 2), BS^3)
\]

obtained from fibration (1) by restricting to base point preserving maps. It is not hard to see that in the homology spectral sequence, the differential:

\[
d_{2,0}^2 : E_{2,0}^2 \approx H_2(\mathcal{C}_*(M(L, 2), BS^3); \mathbb{Z}) \approx L^*
\]

\[
\longrightarrow E_{0,1}^2 \approx H_1(\Omega_k^4 BS^3; \mathbb{Z}) \approx \pi_4(S^3) \approx \mathbb{Z}/2
\]

Bulletin de la Société Mathématique de France
corresponds to $\theta_1(\varphi)$ via the natural isomorphism

$$\text{Hom}(L^*, \mathbb{Z}/2) \cong L \otimes \mathbb{Z}/2.$$

Recall that $H_*(C_*(M(L, 2), BS^3); \mathbb{Z})$ is a polynomial algebra on 2-dimensional generators. Thus, if the homology spectral sequence were multiplicative, then the condition $\theta_1(\varphi) = 0$ would imply that the whole spectral sequence degenerates at the E^2-level. However, the only geometric condition to ensure multiplicativity of the spectral sequence we can think of is that F_φ be homotopy linear. Curiously enough, if $\theta_1(\varphi) = 0$, then the mod 2 spectral sequence does degenerate by Proposition 5.1, although F_φ, even localised at 2, need not be homotopy linear as follows from Corollary 7.7.

Appendix : proof of Proposition 4.3. — Write:

$$A_* = H_*(BO; F_2) = P(a_i; i \geq 1), \quad B_* = \text{Im}(j_*) = P(b_n; \varepsilon_0(n) \leq 1).$$

Here b_n is the image of the generator of degree n appearing in Proposition 3.1. Recall that the b_n are indecomposable, and their expression in terms of the a_i can be found in [K]. We will use the following notation. When $I = (i_1, i_2, \ldots, i_s)$ is a partition of n, then $a(I) = a_{i_1}a_{i_2}\cdots a_{i_s}$, $b(I) = b_{i_1}b_{i_2}\cdots b_{i_s}$, and $a(I)^*$ is the dual of $a(I)$ with respect to the basis of A_* given by the monomials in the a_i. We need the following lemma:

Lemma. — Let $I = (i_1, i_2, \ldots, i_s)$ be a partition of $2^\lambda m$, where $\lambda \geq 1$ and m is an odd integer. Suppose all $i_y = 0(m)$. Then $a(I)^*$ is indecomposable if and only if $I = (m, m, \ldots, m)$.

Proof. — Recall $H^*(BO; F_2) = P(w_i; i \geq 1)$, where w_i is the mod 2 reduction of the i^{th} symmetric polynomial σ_i in formal indeterminates t_1, t_2, \ldots. In terms of symmetric polynomials, the element $a(I)^*$ can be written

$$a(I)^* = s_{i_1, \ldots, i_s} = \sum t_{i_1}^{i_{i_1}} \cdots t_{i_s}^{i_{i_s}}$$

(cf. [MS] for this notation). We will also use the notation

$$s_m^{(i)} = s_{m, \ldots, m} = (a_m^i)^*.$$

Observe that $s_m^{(i)} = \sigma_i(t_1^m, t_2^m, \ldots)$. Finally, recall the Newton formula:

$$s_n - \sigma_1 s_{n-1} + \cdots + (-1)^{n-1} \sigma_{n-1} s_1 + (-1)^n n \sigma_n = 0.$$
Consider a partition of $2^\lambda m$ of the form $I = (j_1m, \ldots, j_r m)$. First, suppose $r < 2^\lambda$. Define an algebra homomorphism $\Phi : H^*(BO) \to \mathbb{F}_2$ by setting $\Phi(t_\nu) = 1$ for $1 \leq \nu \leq 2^\lambda$, $\Phi(t_\nu) = 0$ for $\nu > 2^\lambda$. Then $\Phi(w_j) = \binom{2^\lambda}{r}$, hence $\Phi(w_j) = 0$ for $j < 2^\lambda$, and $\Phi(w_{2^\lambda}) = 1$. Similarly, $\Phi(s_{j_1, \ldots, j_r}) = \binom{2^\lambda}{r} = 0$, since $r < 2^\lambda$. Hence s_{j_1, \ldots, j_r} is a polynomial in $w_1, \ldots, w_{2^\lambda - 1}$. This implies that $s_{j_1 m, \ldots, j_r m}$ is a polynomial in $s_m, s_m(2), \ldots, s_m(2^\lambda - 1)$. Thus $a(I)^* = s_{j_1 m, \ldots, j_r m}$ is decomposable.

Now suppose $r = 2^\lambda$, that is $a(I)^* = (a_m(2^\lambda))^* = s_m(2^\lambda)$. We must show that this is indecomposable. To see this, we work in the ring of symmetric polynomials with integral coefficients. By the Newton formula, $s_{2^\lambda m} + 2^\lambda s_m$ is decomposable. Applying the Newton formula with the formal variables t_i replaced by t_i^m shows that $s_{2^\lambda m} + 2^\lambda s_m$ is also decomposable. Hence $s_m(2^\lambda) \equiv m \sigma_{2^\lambda m}$ modulo decomposable elements. Since m is odd, the result follows.

This completes the proof of our lemma.

We now prove Proposition 4.3. For each n such that $\varepsilon_0(n) \geq 2$, we define $r_n \in \ker(j^*)$ as follows. Write $n = 2^\ell m$ where m is odd. Also, write $n = 2^\lambda \mu$ where $\mu = 4m$ if $\varepsilon_0(m) = 0$, $\mu = 2m$ if $\varepsilon_0(m) = 1$, and $\mu = m$ if $\varepsilon_0(m) \geq 2$. Set $r_n^{(0)} = (a_m(2^\lambda))^*$. Define inductively

$$r_n^{(i)} = r_n^{(i-1)} + \sum \langle r_n^{(i-1)}, b(I) \rangle a(I)^*$$

where the sum is over all partitions $I = (i_1, i_2, \ldots, i_s)$ of n such that $s \geq 2^\lambda - i$ and all $i_\nu \equiv 0 (\mu)$. Then set $r_n = r_n^{(2^\lambda)}$.

We now show $r_n \in \ker(j^*)$. It suffices to show that $\langle r_n, b(I) \rangle = 0$ for all possible monomials $b(I)$ of degree n. By the very definition of r_n, it is clear that we only have to consider those monomials $b(I)$ where the partition $I = (i_1, i_2, \ldots, i_s)$ is such that all $i_\nu \equiv 0 (\mu)$. Call these partitions admissible, and call s the length of such a partition. Observe that since $\varepsilon_0(\mu) \geq 2$, there is no generator b_μ. Hence there is no admissible partition of length 2^λ. It then follows from the definition of $r_n^{(1)}$ that $\langle r_n^{(1)}, b(I) \rangle = 0$ for all admissible partitions of length $\geq 2^\lambda - 1$. Similarly, since $\langle a(I)^*, b(I') \rangle = 0$ whenever the length of I' is greater than the length of I, we see by induction on i that $\langle r_n^{(i)}, b(I) \rangle = 0$ for all admissible partitions of length $\geq 2^\lambda - i$. This shows $r_n \in \ker(j^*)$.

Next we show that the r_n verify the indecomposability properties claimed in Proposition 4.3. First suppose $\varepsilon_0(m) \geq 2$. Then $\mu = m$ is
odd, and the above lemma implies that \(r_n \) is indecomposable. Second, suppose \(\varepsilon_0(m) = 1 \). Then \(\mu = 2m \), hence \(r_n \) admits a unique square root \(x_{n/2} \). (Indeed, \(r_n \) is a sum of terms of the form \(s_{j_1, \ldots, j_r} \), and we have \(s_{j_1, \ldots, j_r} = (s_{j_1, \ldots, j_r})^2 \). Moreover, the lemma implies that \(x_{n/2} \) is indecomposable. Similarly, if \(\varepsilon_0(m) = 0 \), then \(\mu = 4m \), and \(r_n \) is the fourth power of an indecomposable element \(x_{n/4} \).

This completes the proof of part (i) of Proposition 4.3. For part (ii), suppose given a system of elements \(r_n \in \ker(j^*) \) with the above indecomposability properties. For \(n = 2^\ell m \) where \(m \) is odd, define \(x_n = r_n \) if \(\varepsilon_0(m) \geq 2 \), \(x_n = (r_{2n})^{1/2} \) if \(\varepsilon_0(m) = 1 \), and \(x_n = (r_{4n})^{1/4} \) if \(\varepsilon_0(m) = 0 \). Since all \(x_n \) are indecomposable, we have \(H^*(BO; F_2) = P(x_n; n \geq 1) \). This shows that no \(r_n \) is in the ideal generated by the \(r_i \) with \(i < n \). Using this, an easy calculation shows that that the Poincaré series of \(\ker(j^*) \) coincides with the Poincaré series of the ideal freely generated by the \(r_n \). This proves part (ii) of Proposition 4.3.

Remarks:

1) If \(\varepsilon_0(m) = 0 \), then \(r_n \) is a fourth power, and we may replace \(r_n \) by \(w_n^{4/4} \).

2) If \(\varepsilon_0(m) \leq 1 \), then \(r_n = r_n^{(0)} = (a_\mu^{2^\lambda})^* \). This is obvious if \(\varepsilon_0(m) = 0 \), since in this case \(\mu \equiv 0 \pmod{4} \), and there are no generators \(b_n \) in degrees divisible by 4. If \(\varepsilon_0(m) = 1 \), the argument is as follows. We must show \(\langle (a_\mu^{2^\lambda})^*, b(I) \rangle = 0 \) for all possible monomials \(b(I) \) of degree \(n = 2^{\ell} m = 2^{\ell - 1} \mu \). Suppose \(I = (j_1, \ldots, j_r) \) is a partition of \(n \) such that there is a monomial \(b(I) \). Then \(\sum j_\nu = n \), and all \(\varepsilon_0(j_\nu) \leq 1 \). If \(\langle (a_\mu^{2^\lambda})^*, b(I) \rangle = 1 \), then all \(j_\nu \) must be divisible by \(\mu = 2m \). But we will show that this is impossible. Indeed, suppose that all \(j_\nu \) are divisible by \(\mu = 2m \). Set \(k_\nu = \frac{1}{2} j_\nu \). Then \(\sum k_\nu = \frac{1}{2} n = 2^\lambda m \). Moreover, we have \(\varepsilon_0(k_\nu) = 0 \), hence we can write \(k_\nu = 2^{\ell_0} - 1 \). Let \(\ell_0 \) denote the order of \(2 \) in \((\mathbb{Z}/m)^*\). Since each \(k_\nu \) is divisible by \(m \), each \(\ell_\nu \) is divisible by \(\ell_0 \). This implies that each \(k_\nu \) is divisible by \(2^{\ell_0 - 1} \), hence so is \(\sum k_\nu = \frac{1}{2} n = 2^\lambda m \). It follows that \(m \) is divisible by \(2^{\ell_0 - 1} \). On the other hand, \(m \) divides \(2^{\ell_0 - 1} \) by definition. Thus \(m = 2^{\ell_0 - 1} \). But this implies \(\varepsilon_0(m) = 0 \), thus contradicting our hypothesis.

3) It turns out that the smallest \(n \) such that \(r_n \neq (a_\mu^{2^\lambda})^* \), is \(n = 144 \). In this case, the algorithm yields \(r_{144} = (a_0^{16})^* + (a_2^{27}a_{63})^* \).
Acknowledgements. — The author wishes to thank his advisor, Professor Pierre Vogel, for many helpful discussions.

BIBLIOGRAPHY

