GIORGIO BOLONDI

Arithmetically normal sheaves

<http://www.numdam.org/item?id=BSMF_1987__115__71_0>
ARITHMETICALLY NORMAL SHEAVES
BY
GIORGIO BOLONDI (*)

RÉSUMÉ. — Nous déterminons la borne supérieure pour la troisième classe de Chern d'un faisceau courbiline à cohomologie seminaturelle; nous déterminons aussi toutes les triplets de classes de Chern pour lesquelles il y a deux différentes cohomologies seminaturelles. Nous faisons ceci en introduisant la notion de faisceau arithmétiquement normal.

ABSTRACT. — We find the upper bound for the third Chern class of a curvilinear sheaf with seminatural cohomology, and we determine all the triples of Chern classes for which there exist two different kinds of seminatural cohomology. This is done by introducing the notion of arithmetically normal sheaf.

1. Introduction and preliminaries

In this paper we study the cohomology of rank two reflexive sheaves on \mathbb{P}^3, with a particular attention for a simple kind of cohomology called "seminatural cohomology" [HH1], which is the most natural "minimal cohomology".

A sheaf F is said to be "reflexive" if the natural map $F \to F^{**}$ is an isomorphism; there are several interesting reasons for studying such sheaves, explained for instance in [HA1], where their principal properties are exposed. In particular, reflexive sheaves can give informations about new curves, they "arise naturally from vector bundles of higher rank", and

(*) Texte reçu le 14 décembre 1985, revue le 12 mai 1986
G. BOLONDI, Dipartimento di Matematica, Universita di Trento, Italy
The author prepared this work under the direction and with the constant help of A. Hirschowitz, during a stage in Nice supported by the Italian C N R
they arise naturally also "in the study of rank-two vector bundle on \mathbb{P}^3" (see the "reduction-step"-construction of [HA1] and [HA2]).

Since these sheaves are interesting mainly when their sections are smooth curves, Hartshorne and Hirschowitz introduced the notion of "curvilinear sheaf", that is a sheaf such that a suitable twist has smooth sections.

Our problems can be shortly formulated in this way: given a triple of integers (c_1, c_2, c_3), find, if it exists, a stable reflexive sheaf on \mathbb{P}^3 having seminatural cohomology and Chern classes (c_1, c_2, c_3). In particular, for fixed (c_1, c_2), determine $M [(c_1, c_2)] = \max$ of the set of all c_3 such that there exists a sheaf with seminatural cohomology and Chern classes (c_1, c_2, c_3). These problems are closely related to those ones studied in [HH1].

We introduce the notion of arithmetically normal sheaf: a rank-two curvilinear reflexive sheaf \mathcal{F} on \mathbb{P}^3 is said to be arithmetically normal if $h^1(\mathbb{P}^3, \mathcal{F}(t)) = 0 \forall t$. Suitable twists of an arithmetically normal sheaf have sections that are arithmetically normal curves. The main reason for introducing this notion is the following one: we can define a piecewise linear function $m [(c_1, c_2)]$ (whose asymptotical behaviour is $(4/3)c_3^{3/2}$) such that if \mathcal{F} has seminatural cohomology, then it is arithmetically normal if and only if $m (c_1 (\mathcal{F}), c_2 (\mathcal{F})) \leq c_3 (\mathcal{F})$.

In this way we can study the problem of determining the largest possible c_3 for sheaves with seminatural cohomology by using the results of Gruson and Peskine about the numerical characters of the arithmetically normal curves.

We define another piecewise linear function $M (c_1, c_2)$ (with $M (c_1, c_2) \sim (4/3)c_3^{1/2}$ and $M - m \sim c_3^{1/2}$) such that if \mathcal{F} has seminatural cohomology then $c_3 (\mathcal{F}) \leq M (c_1 (\mathcal{F}), c_2 (\mathcal{F}))$. Moreover, we determine all the existing arithmetically normal sheaves with seminatural cohomology; in particular we see that if $c_3 \in [m (c_1, c_2), M (c_1, c_2)]$, then there exists an arithmetically normal sheaf with seminatural cohomology and Chern classes (c_1, c_2, c_3). So, $c_3 = M (c_1, c_2)$ is the answer to the question of determining the largest possible third Chern class of a curvilinear sheaf with seminatural cohomology.

As another consequence, we get all the triples of Chern classes (c_1, c_2, c_3) for which there are two different kinds of seminatural cohomology. This gives us examples of reducible spaces of moduli of curvilinear sheaves with seminatural cohomology.
Our results suggest to state the following conjecture: given a triple
\((c_1, c_2, c_3)\) with \(c_3 \leq M(c_1, c_2)\), \(c_1 = 0, -1\), \((c_1, c_2, c_3) \neq (-1, 2, 0)\) or
\((-1, 4, 0)\) (see [HH1]), \(c_3 = c_1 c_2 \mod 2\), there exists a stable curvilinear
sheaf of rank-two on \(\mathbb{P}^3\) with seminatural cohomology and Chern classes
\((c_1, c_2, c_3)\).

Remark that existence results [in a different range of \((c_2, c_3)\)] for sheaves
with seminatural cohomology have been proved by Hartshorne and
Hirschowitz, and will appear in a forthcoming paper. In another paper
we prove our conjecture for \(c_2 \leq 10\), and we construct sheaves with semina-
tural cohomology and exactly one group \(H^1(\mathbb{P}^3, \mathcal{F}(s))\) different from
zero.

\(\mathbb{P}^3\) always means \(\mathbb{P}^3_k\), where \(k\) is an algebraically closed field of charac-
teristic zero. We always use normalized sheaves (that is with
\(c_1 = 0, -1\)). We often write \(H^1(\mathcal{F}(n))\) and \(h^1(\mathcal{F}(n))\) instead of
\(H^1(\mathbb{P}^3, \mathcal{F}(n))\) and \(h^1(\mathbb{P}^3, \mathcal{F}(n))\).

Our general references about reflexive sheaves will be [HA1] and [HA2]
(in particular for the well-known correspondance sheaves-curves).

Definition 1.1. — Let \(\mathcal{F}\) be a rank-two reflexive sheaf on \(\mathbb{P}^3\). Then \(\mathcal{F}\) is said to be curvilinear if it has the following property: If \(\mathcal{F}(s)\) is
globally generated, then the zero set of a general section of \(\mathcal{F}(s)\) is a
smooth curve.

Definition 1.2. — Let \(\mathcal{F}\) be a rank-two torsion free sheaf on \(\mathbb{P}^3\) with
\(c_1 = 0, -1\). \(\mathcal{F}\) has seminatural cohomology if for every \(n \geq -2 - [c_1(\mathcal{F})/2]\)
([] means the integral part) at most one group \(H^1(\mathcal{F}(n))\) is different
from zero.

Remarks 1.3. — If \(\mathcal{F}\) has seminatural cohomology, then the zero set
of a section of \(\mathcal{F}(p)\) is of maximal rank (see [BE]).

The condition \(n \geq -2 - [c_1(\mathcal{F})/2]\) is necessary in order to get a good
definition; indeed, if for every integer \(n\) at most one of the groups
\(H^1(\mathcal{F}(n))\) is different from zero, then necessarily \(\mathcal{F}\) is locally free [HH1],
and the problem is completely solved in [HH1].

It is known that if \(\mathcal{F}\) has seminatural cohomology, then it is stable,
except in four cases [BOL].

We need the properties of the spectrum of a reflexive sheaf. We collect
here the results needed later, whose proofs are in [HA1] and [HA2].
PROPOSITION 1.4. — (A) Let \mathcal{F} be a rank-two reflexive sheaf on \mathbb{P}^3 with $c_1=0$ or -1 and $H^0(\mathcal{F}(-1))=0$. Then \mathcal{F} has a spectrum, denoted $\text{Spec}(\mathcal{F})$, that is an unique set of integers $(k_i), 0 \leq i \leq c_2(\mathcal{F})$, with the following properties:

$$h^1(\mathbb{P}^3, \mathcal{F}(t)) = h^0(\mathbb{P}^1, \bigoplus_i \mathcal{O}_{\mathbb{P}^1}(k_i+t+1)) \quad \text{for} \quad t \leq -1$$

and

$$h^2(\mathbb{P}^3, \mathcal{F}(t)) = h^1(\mathbb{P}^1, \bigoplus_i \mathcal{O}_{\mathbb{P}^1}(k_i+t+1)) \quad \text{for} \quad t \geq -3 - c_1.$$

(B) $c_3(\mathcal{F}) = -2 \sum_i k_i + c_1 c_2.$

(C) If there is a $k < -1$ in the spectrum, then $-1, -2, \ldots k$ also occur in the spectrum if $c_1=0$, and $-2, -3, \ldots k$ also occur if $c_1=-1$. If \mathcal{F}

TABLEAU

Existence and uniqueness of arithmetically normal sheaves with seminatural cohomology and $c_1=0$.

TOME 115 - 1987 - N 1
is stable and \(c_1 = 0 \), then either 0 occurs or \(-1\) occurs at least twice; if \(c_1 = -1 \), then \(-1\) also occurs.

(D) Let \(\mathcal{F} \) be stable, and let \(K = \max \{ -k_i \} \). If \(c_1 = 0 \) and there is a \(k_0 \) with \(-K < k_0 < -1\) which occurs just once in the spectrum, then each \(k_i \) with \(-K \leq k_i \leq k_0 \) occurs exactly once in the spectrum. If \(c_1 = -1 \) and there is a \(k_0 \) with \(-K < k_0 < -2\) which occurs just once in the spectrum, then each \(k_i \) with \(-K \leq k_i \leq k_0 \) occurs exactly once in the spectrum.

2. Arithmetically normal curves and arithmetically normal sheaves

We want to determine the largest possible \(c_3 \) for a sheaf with seminatural cohomology, thus bounding the range of Chern classes of these sheaves. So, we want to study the behaviour of this kind of cohomology if \(c_3 > c_2 \); in particular we are interested in the range where \(\chi(\mathcal{F}(n)) > 0 \) for every \(n > -2 - c_1 \). So, we use arithmetically normal curves, and our basic results are Gruson-Peskine's ones.

Definition 2.1. A rank-two reflexive sheaf \(\mathcal{F} \) on \(\mathbb{P}^3 \) is said to be arithmetically normal if it is curvilinear and \(H^1(\mathbb{P}^3, \mathcal{F}(n)) = 0 \) for every \(n \geq -2 - c_1 \). So, we use arithmetically normal sheaf, and our basic results are Gruson-Peskine's ones.

Remark 2.2. For a suitable twist, the sections of an arithmetically normal sheaf are arithmetically normal curves.

Definition 2.3 (see [GP], def. 2.4). Let \(Y \subset \mathbb{P}^1 \) be a projectively Cohen-Macaulay two-codimensional subvariety, contained in an hypersurface of degree \(s \) and not contained in any hypersurface of degree \(s \). A sufficiently general projection of \(Y \) on the hyperplane at the infinity gives an exact sequence

\[
0 \to \bigoplus_{i=0}^{s-1} \mathcal{O}_{\mathbb{P}^1}(-n_i) \to \bigoplus_{i=0}^{s-1} \mathcal{O}_{\mathbb{P}^1}(-i) \to \mathcal{O}_{Y} \to 0
\]

with \(n_0 \geq n_1 \geq \ldots \geq n_{s-1} \geq s \).

The sequence \((n_0, n_1, \ldots, n_{s-1})\) is called the numerical character of \(Y \).

It is easy to see that if \(Y \) is integral this sequence is without gaps. Moreover, there is an important theorem:

Theorem 2.4 [GP]. Let \((n_i)_{0 \leq i \leq s-1}\) be a decreasing sequence of integers such that \(n_i \leq n_{i+1} + 1 \) \((i \leq s-2)\) and \(s \leq n_{s-1} \). Then there exists an arithmetically normal curve in \(\mathbb{P}^3 \) with numerical character \((n_i)_{0 \leq i \leq s-1}\).
Now, if \(\mathcal{F} \) is a reflexive sheaf with seminatural cohomology and \(c_3 \) is large compared with \(c_2, \chi(\mathcal{F}(p)) \geq 0 \) for every \(p \geq -2 \). So, if we take a section of \(\mathcal{F}(n), n \geq 0 \), whose zero set \(Y \) is twocodimensional, we get an exact sequence

\[
0 \to \mathcal{O}_\mathbb{P}^3(-n) \to \mathcal{F} \to \mathcal{I}_Y(n) \to 0 \quad \text{if } c_1 = 0,
\]
or

\[
0 \to \mathcal{O}_\mathbb{P}^3(-n) \to \mathcal{F} \to \mathcal{I}_Y(n-1) \to 0 \quad \text{if } c_1 = -1,
\]

where \(Y \) is a twocodimensional Cohen-Macaulay subscheme with \(h^1(\mathcal{I}_Y(p)) = 0 \ \forall \ p \). This follows from the fact that \(h^1(\mathcal{F}(-1)) = 0 \) implies that \(\text{Spec} \ \mathcal{F} \) contains only negative integers, and so \(h^1(\mathcal{F}(p)) = 0 \ \forall \ p \leq -1 \). Since by hypothesis \(h^1(\mathcal{F}(p)) = 0 \ \forall \ p \geq -2 \), we have \(h^1(\mathcal{I}_Y(p)) = 0 \ \forall \ p \).

The following proposition tells us the numerical character of a suitable section of a sheaf with seminatural cohomology.

Proposition 2.5. — Let \(\mathcal{F} \) be a rank-two reflexive sheaf on \(\mathbb{P}^3 \) with seminatural cohomology and Chern classes \((0, c_2, c_3) \) such that \(\chi(\mathcal{F}(t)) \geq 0 \ \forall \ t \geq -2 \). Let \(p = \max \{ t \mid h^0(\mathcal{F}(t)) = 0 \} \), let \(f \) be a general section of \(\mathcal{F}(p+3) \), and let \(Y \) be the zero set of \(F \). Then

\[
s_2 = 0 \quad \text{for } \ t \neq 2p + 4, 2p + 5, 2p + 6,
\]

where \(s_2 \) is the number of elements equal to \(i \) in the numerical character of \(Y \).

Remark 2.6. — It is also possible to compute the numerical characters of the sections of the further twists of \(\mathcal{F} \), and thus to obtain the relation between the numerical characters of two curves which are sections of two different twists of the same reflexive sheaf.

Proof. — First of all, we prove that \(p \geq -1 \). In fact, \(\mathcal{F} \) has seminatural cohomology, so \([\text{BOL}] \).

(a) it is stable, and then \(h^0(\mathcal{F}) = 0 \) (and \(p \geq 0 \),

\[2p + 4, 2p + 5, 2p + 6,\]

\[s_2 = 0 \quad \text{for } \ t \neq 2p + 4, 2p + 5, 2p + 6,\]

\[s_2 = 0 \quad \text{for } \ t \neq 2p + 4, 2p + 5, 2p + 6,\]
(b) \(h^0(\mathcal{F}(-1)) = 0 \) if it is an exception to stability, and \(p \geq -1 \). By duality, \(h^2(\mathcal{F}(t)) = 0 \) if \(t \geq -3 \). Then \(\mathcal{F}(p+3) \) is globally generated (thanks to Castelnuovo-Mumford’s lemma).

Let \(f \in H^0(\mathcal{F}(p+3)) \) be a general section; its zero set \(Y \) is a Cohen-Macaulay curve, generically locally complete intersection, with \(h^1(\mathcal{I}_Y(t)) = 0 \) \(\forall t \). In fact, since \(\chi(\mathcal{F}(t)) \geq 0 \) \(\forall t \geq -1 \), we have \(h^1(\mathcal{F}(t)) = 0 \) \(\forall t \), and we have an exact sequence

\[
0 \to \mathcal{C}_{p+3}(-p-3) \to \mathcal{F} \to \mathcal{I}_Y(p+3) \to 0
\]

with

\[
\deg Y = c_2 + (p + 3)^2
\]

\[
p^s(Y) = \frac{1}{2}[c_3 - (4 - 2(p + 3))(c_2 + (p + 3)^2) + 2].
\]

Moreover,

\[
h^0(\mathcal{F}(p+1)) \neq 0 \Rightarrow h^0(\mathcal{I}_Y(2p+4)) \neq 0
\]

\[
h^0(\mathcal{F}(p)) = 0 \Rightarrow h^0(\mathcal{I}_Y(2p+3)) = 0.
\]

So, \(s = 2p+4 \), where \(s \) is, following \([GP]\), the minimal degree of a surface containing \(Y \).

Moreover,

\[
H^0(\mathcal{F}(p+1)) \neq 0 \Rightarrow H^2(\mathcal{I}_Y(2p+4)) = 0 \Rightarrow H^1(\mathcal{C}_Y(2p+4)) = 0.
\]

But we have an exact sequence

\[
(*) \quad 0 \to H^1(\mathcal{C}_Y(2p+4)) \to \bigoplus_{i=0}^{2p+3} H^2(\mathcal{C}_{p^2}(2p+4-n)) \to \bigoplus_{i=0}^{2p+3} H^2(\mathcal{C}_{p^2}(2p+4-n)).
\]

Hence \(H^2(\mathcal{C}_{p^2}(2p+4-n)) = 0 \) \(\forall i \), and then \(2p+4-n_i \geq -2 \), that is \(n_i \leq 2p+6 \) \(\forall i \). Thus \(s = 0 \) for \(t > 2p+6 \).

Since \(h^0(\mathcal{F}(p)) = 0 \) and \(\chi(\mathcal{F}(p)) \geq 0 \), we have

\[
\chi(\mathcal{F}(p)) = h^2(\mathcal{F}(p)) = h^2(\mathcal{I}_Y(2p+3)) = h^1(\mathcal{C}_Y(2p+3)).
\]

As before, the sequence \((*)\) gives

\[
h^1(\mathcal{C}_Y(2p+3)) = \sum h^2(\mathcal{C}_{p^2}(2p+3-n_i)) = s_{2p+6}.
\]
In the same way we get
\[\chi(F(p-1)) = h^2(F(p-1)) = h^2(\mathcal{F}_y(2p+2)) - 1 \]
\[= h^1(\mathcal{C}_y(2p+2)) - 1 = 3s_{2p+6} + s_{2p+5} - 1, \]
and hence
\[s_{2p+5} = \chi(F(p-1)) - 3\chi(F(p)) + 1. \]
\[\chi(F(p-2)) = h^2(F(p-2)) = h^2(\mathcal{F}_y(2p+1)) - 4 \]
\[= h^1(\mathcal{C}_y(2p+1)) - 4 = 6s_{2p+6} + 3s_{2p+5} + s_{2p+4} - 4, \]
and hence
\[s_{2p+4} = \chi(F(p-2)) - 3\chi(F(p-1)) + 3\chi(F(p)) + 1. \]

An analogous result holds if \(c_1 = -1 \).

Proposition 2.7. — Let \(F \) be a rank two reflexive sheaf on \(\mathbb{P}^3 \) with seminatural cohomology and Chern classes \((-1, c_2, c_3)\) such that \(\chi(F(t)) \geq 0 \) \(\forall t \geq -1 \). Let \(p = \max \{ t | h^0(F(t)) = 0 \} \), let \(f \) be a general section of \(F(p+3) \), and let \(Y \) be the zero set of \(f \). Then the numerical character of \(Y \) is given by

\[s_{2p+5} = \chi(F(p)) \]
\[s_{2p+4} = \chi(F(p-1)) - 3\chi(F(p)) + 1 \]
\[s_{2p+3} = \chi(F(p-2)) - 3(\chi(F(p-1)) - \chi(F(p))) + 1 \]
\[s_p = 0 \quad \text{otherwise.} \]

Proof. — The proof is exactly as in 2.5; we only have to consider the sequence

\[0 \rightarrow \mathcal{O}_{\mathbb{P}^3}(-p-3) \rightarrow F \rightarrow \mathcal{F}_y(p+2) \rightarrow 0. \]

Lemma 2.8. — Let \(F \) be a coherent sheaf with \(c_1 = 0 \), and let \((t+1)(t+2) < c_2 < (t+2)(t+3) \). Then \(\chi(F(t)) = \min \{ \chi(F(p)) | p \geq -2 \} \).

Proof. — Let

\[f(x) = \frac{1}{2}c_3 - (x+2)c_2 + \frac{1}{2}(x+1)(x+2)(x+3), \quad x \in \mathbb{R}. \]
Then \(f'(x) = x^2 + 4x + (11/3) - c_2 \), and \(f''(x) = 0 \) if \(x = -2 \pm (c_2 + 1/3)^{1/2} \).
So the relative maximum of \(f(x) \) is obtained for some \(x < -2 \). In order to prove our lemma, it is sufficient to prove that \(\chi(\mathcal{F}(t)) \leq \chi(\mathcal{F}(t-1)) \) and \(\chi(\mathcal{F}(t)) \leq \chi(\mathcal{F}(t+1)) \). But it is now easy to check that
\[
\chi(\mathcal{F}(t-1)) - \chi(\mathcal{F}(t)) = c_2 - (t+1)(t+2) \geq 0
\]
and
\[
\chi(\mathcal{F}(t+1)) - \chi(\mathcal{F}(t)) = (t+2)(t+3) - c_2 > 0.
\]

Lemma 2.9. - Let \(\mathcal{F} \) be a coherent sheaf with \(c_1 = -1 \), and let \((t+1)^2 \leq c_2 < (t+2)^2\). Then \(\chi(\mathcal{F}(t)) = \min \{ \chi(\mathcal{F}(p)) \mid p \geq -1 \} \).

Proof. - Now \(\chi(\mathcal{F}(p)) - \chi(\mathcal{F}(p-1)) = (p+1)^2 - c_2 \), and the proof is the same as for 2.8.

Proposition 2.10. - Let \(\mathcal{F} \) be a rank-two curvilinear sheaf on \(\mathbb{P}^3 \) with seminatural cohomology and Chern classes \((0, c_2, c_3)\),
\((r+1)(r+2)^2 < c_2 < (r+2)(r+3)\).

Then the following conditions are equivalent:

(a) \(\chi(\mathcal{F}(n)) \geq 0, \forall n \geq -2 \);
(b) \(c_3 \geq (2r+4)c_2 - (2/3)(r+1)(r+2)(r+3) \);
(c) \(\mathcal{F} \) is arithmetically normal.

Proof. - (a) \(\iff \) (b). Thanks to lemma 2.8, \(\chi(\mathcal{F}(n)) \geq 0, \forall n \geq -2 \), if and only if \(\chi(\mathcal{F}(t)) \geq 0 \); but this is equivalent to (b) thanks to Riemann-Roch. (a) \(\iff \) (c). If \(\mathcal{F} \) is arithmetically normal, then it has no \(h^1 \); therefore the Euler characteristic of \(\mathcal{F}(n), n \geq -2 \), is always equal to \(h^0(\mathcal{F}(n)) \) or \(h^2(\mathcal{F}(n)) \) (there is no \(h^3 \) thanks to Serre duality), that is it is non negative. Conversely, if \(\mathcal{F} \) has seminatural cohomology and \(\chi(\mathcal{F}(n)) \geq 0, \forall n \geq -2 \), then \(h^1(\mathcal{F}(n)) = 0, \forall n \geq -2 \); but this implies that the spectrum of \(\mathcal{F} \) is strictly negative; therefore \(h^1(\mathcal{F}(n)) = 0, \forall n \).

Proposition 2.11. - Let \(\mathcal{F} \) be a rank-two curvilinear sheaf on \(\mathbb{P}^3 \) with seminatural cohomology and Chern classes \((-1, c_2, c_3)\),
\((t+1)^2 \leq c_2 < (t+2)^2\).

Then the following conditions are equivalent:

(a) \(\chi(\mathcal{F}(n)) \geq 0, \forall n \geq -1 \);
(b) \(c_3 \geq (2t+3)c_2 - (1/3)(t+1)(t+2)(2t+3) \);
(c) \(\mathcal{F} \) is arithmetically normal.
Proof. — Almost as above.

Remark 2.12. — Remark that propositions 2.5 and 2.7 impose strong conditions on an arithmetically normal curve Y which is a section of a sheaf with seminatural cohomology. In particular we must have $e(Y) < s(Y)$, where $e(Y) = \max \{ t \mid H^1(Y, \mathcal{O}_Y(t)) \neq 0 \}$ and

$$s(Y) = \min \{ t \mid H^0(P^3, \mathcal{O}_Y(t)) \neq 0 \}.$$

Notation 2.13. — If $(t+1)(t+2) \leq c_2 < (t+2)(t+3)$, we put

$$m(0, c_2) = (2t+4)c_2 - (2/3)(t+1)(t+2)(t+3);$$

if $(t+1)^2 \leq c_2 < (t+2)^2$, we put

$$m(-1, c_2) = (2t+3)c_2 - (1/3)(t+1)(t+2)(2t+3).$$

Remark 2.14. — The asymptotical behaviour of m is $(4/3)c_2^2$.

3. Non existence of sheaves with seminatural cohomology and large c_3

Now we want to give bounds for the Chern classes of a reflexive sheaf, in order to determine the existence of the non-existence of a sheaf with those classes and seminatural cohomology. When we express c_3 in terms of c_2, the bounds that we find are not defined by polynomials, but by “piecewise linear” functions, whose asymptotical behaviour is easy to compute. The edges of these piecewise linear curves are usually in the points corresponding to the values $c_2 = t^2 + t$ (if $c_1 = 0$) or $c_2 = t^2$ (if $c_1 = -1$), where t is a nonnegative integer.

Proposition 3.1. — Let \mathcal{F} be a rank-two curvilinear reflexive sheaf on P^3 with Chern classes $(0, c_2, c_3)$, and let $(t+1)(t+2) \leq c_2 < (t+2)(t+3)$ $(t \geq 1)$. If \mathcal{F} has seminatural cohomology, then either (a) $h^0(\mathcal{F}(t)) = 0$, and $c_3 \leq (2t+5)c_2 - (1/3)(t+1)(t+2)(2t+9)$; or (b) $h^0(\mathcal{F}(t)) \neq 0$, and either

$$(2t+4)c_2 - (2/3)(t^2 + 6t + 1) - 2 \leq c_3 \leq (2t+3)c_2 - (1/3)t(t+1)(2t+7),$$

or $c_2 = t^2 + 5t + 3$, $c_3 = (2t+4)c_2 - (1/3)(t+1)(2t+7) + 1$.

Proof. — (a) Let us suppose $c_3 > (2t+5)c_2 - (1/3)(t+1)(2t+9)$ First of all, we prove that $\chi(\mathcal{F}(n)) > 0$, $\forall n > -2$. Since
it is enough to check this for \(\chi(\mathcal{F}(t)) \); that is to check that

\[c_3 > (2t + 4)c_2 - (2/3)(t + 1)(t + 2)(t + 3). \]

But

\[c_3 > (2t + 5)c_2 - (1/3)(t + 1)(t + 2)(2t + 9), \]

and

\[(2t + 5)c_2 - (1/3)(t + 1)(t + 2)(2t + 9) - (2t + 4)c_2 + \\
 + (2/3)(t + 1)(t + 2)(t + 3) = c_2 - (t + 1)(t + 2) \geq 0. \]

So the cohomology of \(\mathcal{F} \) is

<table>
<thead>
<tr>
<th></th>
<th>(-2)</th>
<th>(-1)</th>
<th>(t - 1)</th>
<th>(t)</th>
<th>(t + 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h^0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(h^1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(h^2)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>0</td>
</tr>
<tr>
<td>(h^3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

since

\[
\chi(\mathcal{F}(t)) > 0 \quad \Rightarrow \quad h^2(\mathcal{F}(t)) \neq 0,
\]

and

\[
\chi(\mathcal{F}(t + 1)) > \chi(\mathcal{F}(t)) \quad \Rightarrow \quad h^2(\mathcal{F}(t + 1)) = 0 \quad \Rightarrow \quad h^0(\mathcal{F}(t + 1)) \neq 0.
\]

Take a general section of \(\mathcal{F}(t + 3) \) (which is globally generated); its zero set \(Y \) is a smooth curve with \(h^1(\mathcal{F}(-t - 3)) = 0 \) [since \(h^1(\mathcal{F}(-t - 3)) = 0 \)]; therefore \(Y \) is connected. With the notations of prop. 2.5, \(t = p \) and

\[
s_{2t + 6} = \chi(\mathcal{F}(t)) > 0.
\]

Moreover,

\[
s_{2t + 2} = \chi(\mathcal{F}(t - 1)) - 3\chi(\mathcal{F}(t)) + 1 \\
 = (2t + 5)c_2 - (1/3)(t + 1)(t + 2)(2t + 9) + 1 - c_3 \leq 0
\]

by hypothesis. Since it must be non negative, we get \(s_{2t + 2} = 0 \). But this implies \(s_{2t + 4} = 0 \) too, since \(s_{2t + 6} > 0 \) and the numerical character must be
without gaps (Y is integral). But

\[
s_{2r+4} = \chi(F(t-2)) - 3(\chi(F(t-1)) - \chi(F(t))) + 1
\]

\[
= \frac{1}{2} c_3 - (t+3) c_2 + \frac{1}{(t+1)(t^2 + 8t + 18)} + 1.
\]

We claim that this is strictly positive. In fact,

\[
c_3 > (2t+5) c_2 - \frac{1}{3}(t+1)(t+2)(2t+9)
\]

\[
\geq (2t+6) c_2 - \frac{1}{2}(t+1)(t^2 + 8t + 18) - 2,
\]

since

\[
(2t+5) c_2 - \frac{1}{3}(t+1)(t+2)(2t+9) - (2t+6) c_2
\]

\[
+ \frac{2}{3}(t+1)(t^2 + 8t + 18) + 2 = t^2 + 7t + 8 - c_2 > 0.
\]

This is a contradiction.

(b) Since $0 < h^0(F(t)) = \chi(F(t))$, we have

\[
\frac{1}{2} c_3 \geq (t+2) c_2 - \frac{1}{3}(t+1)(t+2)(t+3) + 1,
\]

that is $c_3 \geq (2t+4) c_2 - (2/3) t(t^2 + 6t + 11) - 2$.

So the cohomology of F is

<table>
<thead>
<tr>
<th></th>
<th>-2</th>
<th>-1</th>
<th>\ldots</th>
<th>$t-1$</th>
<th>t</th>
<th>$t+1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>h^0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>h^1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>h^2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td>*</td>
<td>0</td>
</tr>
<tr>
<td>h^3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Let us suppose $c_3 > (2t+3) c_2 - (1/3) t(t+1)(2t+7)$.

Take a section of $F(t+2)$ whose zero set is a smooth curve Y. With the notations of proposition 2.5, $p = t-1$.

Since $\chi(F(t-1)) \geq \chi(F(t)) > 0$, we have $s_{2r+4} > 0$.

Here $c_3 > (2t+3) c_2 - (1/3) t(t+1)(2t+7)$ implies $s_{2r+3} \leq 0$, and then actually $s_{2r+3} = 0$ and $c_3 = (2t+3) c_2 - (1/3) t(t+1)(2t+7) + 1$. So we must have $s_{2r+2} = 0$, that is

\[
0 = \chi(F(t-3)) - 3(\chi(F(t-2)) - \chi(F(t-1))) + 1 = \]
This leads to an equality

\[(2t+3)c_2 - (1/3)t(t+1)(2t+7) + 1 = (2t+4)c_2 - (2/3)t(t^2 + 6t + 11) - 2\]

which gives

\[c_2 = t^2 + 5t + 3\]
\[c_3 = (2t+3)c_2 - (1/3)t(t+1)(2t+7) + 1.\]

This completes the proof.

We have a similar result if \(c_1 = -1\).

Definition 3.3. Let \(r \geq 1\) be an integer and \(c_2\) an integer such that \((t+3)^2 - 1 \leq c_2 < (t+4)^2 - 1\). We put

\[M(0, c_2) = (2t+5)c_2 - (1/3)t(t+1)(2t+9).\]

Let now \(c_2\) be an integer such that \(t^2 + 3t + (3/2) \leq c_2 < t^2 + 5t + (11/2)\). We put

\[M(-1, c_2) = (2t+4)c_2 - (1/3)(t+1)(2t+9).\]

Proposition 3.4. Let \(t \geq 1\) be an integer and \(c_2\) an integer such that \((t+1)(t+2) \leq c_2 < (t+2)(t+3)\). Then

\[M(0, c_2) = \max \left\{ \frac{1}{2}c_3 - (t+2)c_2 + (1/3)t(t^2 + 6t + 11) + 1 \right\},\]

where

\[\frac{1}{2}c_3 - (t+2)c_2 + (1/3)t(t^2 + 6t + 11) + 1 \geq (2t+5)c_2 - (1/3)t(t+1)(2t+9),\]

or

\[\frac{1}{2}c_3 - (t+2)c_2 + (1/3)t(t^2 + 6t + 11) + 1 \geq (2t+3)c_2 - (1/3)t(t+1)(2t+7).\]
Proof. — It is enough to check that
\[(2t + 3)c_2 - (1/3)(t + 1)(t + 2)(2t + 9) -(2t + 5)c_2 + (1/3)(t + 1)(t + 2)(2t + 9) = 2(t^2 + 4t + 3 - c_2).
\]

Proposition 3.5. — Let \(t \geq 1 \) be an integer and \(c_2 \) an integer such that \((t+1)^2 \leq c_2 < (t+2)^2\). Then
\[
M(-1, c_2) = \max \left\{ \frac{(2t + 4)c_2 - (1/3)(t + 1)(2t^2 + 10t + 9)}{(2t + 2)c_2 - (1/3)(t^2 + 6t + 1)} \right\}
\]

So we can summarize 3.1 and 3.2 with the following

Corollary 3.6. — Let \(\mathcal{F} \) be a normalized rank-two curvilinear reflexive sheaf on \(\mathbb{P}^3 \) with seminatural cohomology. Then
\[
c_3(\mathcal{F}) \leq M(c_1(\mathcal{F}), c_2(\mathcal{F})).
\]

Remark 3.7. — The asymptotical behaviour of this bound is \(c_3 \sim (4/3)c_2^{3/2} \).

4. Existence of reflexive sheaves with seminatural cohomology

In this chapter we construct arithmetically normal sheaves with seminatural cohomology, that is we work in the range where \(\chi(\mathcal{F}(n)) \geq 0, \forall n \geq -2 \). We reverse the construction of propositions 3.1 and 3.2 using the fact that every numerical character without gaps is effective for some smooth curve \(Y \).

The first result of this kind is the following one:

Proposition 4.1. — Let \((t + 1)(t + 2) \leq c_2 < (t + 2)(t + 3), \) with \(t \geq 1, \) and let
\[
(2t + 4)c_2 - (2/3)t(t^2 + 6t + 11) - 2 \leq c_3 \leq (2t + 3)c_2 - (1/3)t(t + 1)(2t + 7),
\]
or let \(c_2 = t^2 + 5t + 3, \) \(c_3 = (2t + 3)c_2 - (1/3)t(t + 1)(2t + 7) + 1, \) \(c_3 \) even. Then there exists an arithmetically normal sheaf \(\mathcal{F} \) with seminatural cohomology and Chern classes \((0, c_2, c_3)\), with \(h^0(\mathcal{F}(t)) \neq 0 \).

Proof. — First observe that...
\[(2t+3)c_2 - (1/3)t(t+1)(2t+7) - (2t+4)c_2 + (2/3)t(t^2 + 6t + 11) + 2 = t^2 + 5t + 2 - c_2.\]

So, if \(c_2 \leq (t+2)(t+3) - 4\), there exist values of \(c_3\) between

\[(2t+4)c_2 + (2/3)t(t^2 + 6t + 11) - 2\]

and

\[(2t+3)c_2 - (1/3)t(t+1)(2t+7).\]

Now,

\[(2t+4)c_2 - (2/3)t(t^2 + 6t + 11) - 2 > (2t+4)c_2 - (2/3)(t+1)(t+2)(t+3);\]

so \(c_3 > (2t+4)c_2 - (2/3)(t+1)(t+2)(t+3)\), and this is equivalent to say that \(\chi(\mathcal{F}(t)) > 0\). Moreover,

\[
\chi(\mathcal{F}(t-2)) - 3\chi(\mathcal{F}(t-1)) = (2t+3)c_2 - c_3 - (1/3)t(t+1)(2t+7) \geq 0 \iff (2t+3)c_2 - (1/3)t(t+1)(2t+7) \geq c_3;
\]

and

\[
\chi(\mathcal{F}(t-3)) + 1 - 3\chi(\mathcal{F}(t-2)) + 3\chi(\mathcal{F}(t-1)) = \frac{1}{2}c_3 - (t+2)c_2 + (1/3)t(t^2 + 6t + 11) + 1 \geq 0 \iff c_3 \geq (2t+4)c_2 - (2/3)t(t^2 + 6t + 11) - 2.
\]

Let us consider now a smooth arithmetically normal curve \(Y\) with numerical character

\[
\frac{2t+4}{s_{2t+4} \text{ times}}, \ldots, \frac{2t+4}{s_{2t+4} \text{ times}}, \frac{2t+3}{s_{2t+3} \text{ times}}, \ldots, \frac{2t+3}{s_{2t+3} \text{ times}}, \frac{2t+2}{s_{2t+2} \text{ times}}, \ldots, \frac{2t+2}{s_{2t+2} \text{ times}}
\]

where

\[
s_{2t+4} = \chi(\mathcal{F}(t-1)),
\]

\[
s_{2t+3} = \chi(\mathcal{F}(t-2)) - 3\chi(\mathcal{F}(t-1)) + 1
\]

\[
s_{2t+2} = \chi(\mathcal{F}(t-3)) + 1 - 3(\chi(\mathcal{F}(t-2)) - \chi(\mathcal{F}(t-1))).
\]

We have seen that

BULLETIN DE LA SOCIETE MATHematique DE FRANCE
\[s_{2t+4} \geq 0 \quad \text{(since } \chi(\mathcal{F}(t-1)) \geq \chi(\mathcal{F}(t)) \text{ as usual)} \]
\[s_{2t+3} \geq 1 \]
\[s_{2t+2} \geq 0. \]

Moreover, \(s_{2t+4} + s_{2t+3} + s_{2t+2} = 2t + 2. \)

So this character is without gaps and \(s = 2t + 2 \) (with the notations of [GP]).

By means of easy but tedious computations we get the degree and the genus of the curve \(Y \).

\[\text{Deg}(Y) = s_{2t+4}(2t+4) + s_{2t+3}(2t+3) \]
\[+ s_{2t+2}(2t+2) - \sum_{i=0}^{2t+1} i = c_2 + (t+2)^2. \]

\[g(Y) = 1 + \frac{1}{2} \left[\sum_{i=0}^{s_{2t+4}-1} (2t+4-i)(2t+4+i-3) \right. \]
\[+ \left. \sum_{i=2t+4}^{s_{2t+3}-1} (2t+3-i)(2t+3+i-3) \right. \]
\[+ \sum_{i=s_{2t+4}+s_{2t+3}}^{s_{2t+1}} (2t+2-i)(2t+2+i-3) \]
\[= 1 + t^3 + 4t^2 + 4tc_2 + \frac{1}{2} c_3. \]

We want to consider an exact sequence

\[0 \to \mathcal{C}_{p^2}(-t-2) \to \mathcal{F} \to \mathcal{F}(t+2) \to 0. \]

This is possible if we can find a section \(f \) of \(\omega_Y(-2t) \) which generates the sheaf \(\omega_Y(-2t) \) except at finitely many points. But \(Y \) is smooth and connected; so it is enough to find a non trivial section. By Serre, \(h^0(\omega_Y(-2t)) = h^1(\mathcal{C}_Y(2t)) \), and \(h^1(\mathcal{C}_Y(2t)) \neq 0 \) since \(s_{2t+3} \neq 0 \) and there is an exact sequence

\[0 \to H^1(\mathcal{C}_Y(2t)) \to \bigoplus_{n=0}^{2t+1} H^2(\mathcal{C}_{p^2}(2t-n)) \to 0. \]

It is easy to see that the Chern classes of \(F \) are

\[c_1(\mathcal{F}) = 0 \]
\[c_2(\mathcal{F}) = \text{deg } Y - (t+2)^2 = c_2 \]
\[c_3(\mathcal{F}) = 2g(Y) - 2t \deg Y - 2 = c_3. \]

At last, \(\mathcal{F} \) has seminatural cohomology. In fact, \(Y \) is arithmetically normal, and so...
since

\[h^0(\mathcal{F}(p)) = 0 \quad \text{if} \quad p \leq t - 1 \]

By Serre duality, this implies \(h^3(\mathcal{F}(p)) = 0 \) at least for \(p \geq -2 \).

Moreover, \(h^2(\mathcal{F}(p)) = 0 \) for \(p \geq t \), since

\[0 \to H^2(\mathcal{F}(p)) \to H^2(\mathcal{F}(p + t + 2)) \]

is exact, and \(h^2(\mathcal{F}(p + t + 2)) = h^1(\mathcal{F}(p + t + 2)) = 0 \), \(\forall p \geq t \). Therefore the cohomology of \(\mathcal{F} \) is given by the diagram

<table>
<thead>
<tr>
<th></th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>\ldots</th>
<th>t-2</th>
<th>t-1</th>
<th>t</th>
<th>t+1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h^0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>0</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>(h^1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(h^2)</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>\ldots</td>
<td>*</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(h^3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

If \(f \) has only simple zeroes, \(\mathcal{F} \) is curvilinear. But thanks to [GP], p. 41, \(Y \) can be chosen such that \(\omega_Y(-e(Y)) \) has a section without multiple points. In our case, \(e(Y) = 2t + 1 \) if \(\chi(\mathcal{F}(t - 1)) > 0 \), and \(e(Y) = 2t \) otherwise.

If \(c_2 = t^2 + 5t + 3 \), \(c_3 = (2t + 4)c_2 - (1/3)t(t + 1)(2t + 7) + 1 \), take a smooth arithmetically normal curve \(Y \) with numerical character \(s_{2t-4} = \chi(\mathcal{F}(t - 1)) \).

Proposition 4.2. - Let \((t + 1)^2 \leq c_2 < (t + 2) \), and let

\((2t + 3)c_2 - (1/3)t(2t^2 + 9t + 13) \leq c_3 \leq (2t + 2)c_2 - (1/3)t(2t^2 + 6t + 1) \).

or let \(c_2 = t^2 + 4t + 1 \) and \(c_3 = (2t + 2)c_2 - (1/3)t(2t^2 + 6t + 1) + 1 \). Then there exists an arithmetically normal sheaf with seminatural cohomology. Chern classes \((-1, c_2, c_3) \) and \(h^0(\mathcal{F}(t)) \neq 0 \).

Proof (sketch). - Take an arithmetically normal smooth curve with numerical character

\[
\begin{array}{cccccccc}
2t+3 & 2t+3 & 2t+2 & 2t+2 & 2t+1 & \ldots & 2t+1 \\
\frac{1}{2} & \times & \frac{1}{2} & \times & \frac{1}{3} & \times & \frac{1}{3} & \times \\
\end{array}
\]
where

\[s_{2t+3} = \chi(\mathcal{F}(t-1)) \]
\[s_{2t+2} = \chi(\mathcal{F}(t-2)) - 3 \chi(\mathcal{F}(t-1)) + 1 \]
\[s_{2t+1} = \chi(\mathcal{F}(t-3)) - 3 \chi(\mathcal{F}(t-2)) - \chi(\mathcal{F}(t-1)) + 1 \]

(here \(s = 2t + 1 \)), and consider the sequence

\[0 \to \mathcal{E}_p^3 (-t-2) \to \mathcal{F} \to \mathcal{F}_{(t+1)} \to 0. \]

Then \(\mathcal{F} \) has Chern classes \((-1, c_2, c_3)\) and its cohomology is given by the diagram

\[
\begin{array}{cccccccc}
-1 & 0 & 1 & \ldots & t-2 & t-1 & t & t+1 \\
\hline
h^0 & 0 & 0 & 0 & \ldots & 0 & 0 & * & * \\
\hline
h^1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
\hline
h^2 & * & * & * & \ldots & * & * & 0 & 0 \\
\hline
h^3 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
\end{array}
\]

In the same way we get another result:

Proposition 4.3. - Let \((t+1)(t+2) \leq c_2 \leq (t+2)(t+3)\), and let

\[(2t+4)c_2 - (2/3)(t+1)(t+2)(t+3) \leq c_3 \leq (2t+5)c_2 - (1/3)(t+1)(t+2)(2t+9),\]

\(c_3\) even. \(\text{Then there exists an arithmetically normal sheaf with seminatural cohomology, Chern classes}\ (0, c_2, c_3)\) and \(h^0(\mathcal{F}(t)) = 0\).

Proof. - First observe that

\[(2t+5)c_2 - (1/3)(t+1)(t+2)(2t+9) = (2t+4)c_2 - (2/3)(t+1)(t+2)(t+3) + (2/3)(t+1)(t+2)(t+3) = c_2 - (t+1)(t+2) \geq 0.\]

Moreover,

\[c_3 \geq (2t+4)c_2 - (2/3)(t+1)(t+2)(t+3) \iff \chi(\mathcal{F}(t)) \geq 0, \]

and

\[\chi(\mathcal{F}(t-1)) - 3 \chi(\mathcal{F}(t)) + 1 \geq 1 \]
\[-c_3 + (2t + 5)c_2 + \frac{1}{3}(t + 1)(t + 2)(2t + 9) \geq 0 \]
\[c_3 \leq (2t + 5)c_2 - \frac{1}{3}(t + 1)(t + 2)(2t + 9). \]

At last,
\[\chi(\mathcal{F}(t-2)) + 1 - 3(\chi(\mathcal{F}(t-1)) - \chi(\mathcal{F}(t))) = \frac{1}{2}c_3 - (t+3)c_2 + \frac{1}{3}(t^2 + 8t + 18) + 1, \]

and then
\[\chi(\mathcal{F}(t-2)) + 1 - 3(\chi(\mathcal{F}(t-1)) - \chi(\mathcal{F}(t))) \geq 0 \]
\[\Rightarrow c_3 \leq 2(t+3)c_2 - (2/3)(t+1)(t^2 + 8t + 18) - 2. \]

But
\[(2t+4)c_2 - (2/3)(t+1)(t+2)(t+3) > 2(t+3)c_2 - (2/3)(t+1)(t^2 + 8t + 18) - 2. \]

In fact,
\[(2t+4)c_2 - (2/3)(t+1)(t+2)(t+3) - (2t+6)c_2 + (2/3)(t+1)(t^2 + 8t + 18) - 2 = 2(t^2 + 5t + 6 - c_2) > 0 \]
since \(c_2 < t^2 + 5t + 6. \)

So we put
\[s_{2t+6} = \chi(\mathcal{F}(t)) \]
\[s_{2t+5} = \chi(\mathcal{F}(t-1)) - 3(\chi(\mathcal{F}(t))) + 1 \]
\[s_{2t+4} = \chi(\mathcal{F}(t-2)) + 1 - 3(\chi(\mathcal{F}(t-1)) - \chi(\mathcal{F}(t))) \]

and we choose a smooth arithmetically normal curve with numerical character (we have verified that it is without gaps)
\[\underbrace{2t+6, \ldots, 2t+6}_{s_{2t+6} \text{ times}}, \underbrace{2t+5, \ldots, 2t+5}_{s_{2t+5} \text{ times}}, \underbrace{2t+4, \ldots, 2t+4}_{s_{2t+4} \text{ times}} \]

As before,
\[s = s_{2t+6} + s_{2t+5} + s_{2t+4} = 2t+4. \]
We consider the exact sequence

$$0 \to \mathcal{O}_{\mathbb{P}^3}(-t-3) \to \mathcal{F} \to \mathcal{I}_Y(t+3) \to 0$$

(as before, this is possible) and we get a reflexive sheaf with Chern classes $(0, c_2, c_3)$, which is curvilinear if we suitably choose the section of the twist of ω_Y.

\mathcal{F} has seminatural cohomology:

$$h^1(\mathcal{F}(p)) = h^3(\mathcal{F}(p)) = 0, \quad \forall p \geq -2$$

$$H^0(\mathcal{F}(p)) = 0 \quad \text{if} \quad p \leq t$$

$$H^2(\mathcal{F}(p)) = 0 \quad \text{if} \quad p \geq t+1.$$

Therefore the cohomology of \mathcal{F} is given by the diagram

<table>
<thead>
<tr>
<th></th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>\ldots</th>
<th>$t-2$</th>
<th>$t-1$</th>
<th>t</th>
<th>$t+1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>h^0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>*</td>
</tr>
<tr>
<td>h^1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>h^2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>\ldots</td>
<td>*</td>
<td>*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>h^3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

If $c_1 = -1$ we have the following

Proposition 4.4. — Let $(t+1)^2 \leq c_2 < (t+2)^2$ and let

$$(2t+3)c_2 - (1/3)(t+1)(t+2)(2t+3) \leq c_3$$

$$\leq (2t+4)c_2 - (1/3)(t+1)(2t^2 + 10t + 9), \quad c_3 = c_2 \mod 2.$$

Then there exists an arithmetically normal sheaf with seminatural cohomology, Chern classes $(-1, c_2, c_3)$ and $h^0(\mathcal{F}(t)) = 0$.

Proof (sketch). — Take a smooth arithmetically normal curve with numerical character

$$\frac{2t+5}{s_{2t+5} \text{ times}}, \frac{2t+4}{s_{2t+4} \text{ times}}, \frac{2t+3}{s_{2t+3} \text{ times}}.$$

TOME 115 - 1987 - N 1
where

\[s_{2t+5} = \chi(\mathcal{F}(t)) \]
\[s_{2t+4} = \chi(\mathcal{F}(t-1)) - 3 \chi(\mathcal{F}(t)) + 1 \]
\[s_{2t+3} = \chi(\mathcal{F}(t-2)) - 3(\chi(\mathcal{F}(t-1)) - \chi(\mathcal{F}(t))) + 1 \]

and consider the sequence

\[0 \to \mathcal{I}_{p^3}(-t-3) \to \mathcal{F} \to \mathcal{I}_{r}(t+2) \to 0. \]

\(\mathcal{F} \) has Chern classes \((-1, c_2, c_3)\) and seminatural cohomology, given by

\[
\begin{array}{cccccc}
-1 & 0 & 1 & \ldots & t-1 & t \\

h^0 & 0 & 0 & 0 & \ldots & 0 & 0 & * & * \\
h^1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
h^2 & * & * & * & \ldots & * & * & 0 & 0 \\
h^3 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 0 \\
\end{array}
\]

We can summarize our results in the following

Corollary 4.5. — Let \(c_1 = 0, -1, \) and \(m(c_1, c_2) \leq c_3 \leq M(c_1, c_2) \), \(c_3 = c_1 c_2 \mod 2 \). Then there exists an arithmetically normal sheaf with Chern classes \((c_1, c_2, c_3)\) and seminatural cohomology.

Remark 4.6. — The interval \([m(0, c_2), M(0, c_2)]\) has a size, in the range \((t+1)(t+2) \leq c_2 < (t+2)(t+3)\), decreasing from \(2t+2\) to \(t+1\), and then increasing to \(2t+3\). The case \(c_1 = -1\) has a similar behaviour.

Remark 4.7. — We remark that there is here a difference between reflexive and locally free sheaves with (semi)-natural cohomology. In [HH1] Hartshorne and Hirschowitz proved that if a locally free sheaf \(\mathcal{E} \) has seminatural cohomology, then all the numbers \(h^{i}(\mathcal{E}(n)) \) are uniquely determined by the Chern classes of \(\mathcal{E} \).

On the contrary, we get the following results:

Theorem 4.8. — If \(\mathcal{F} \) and \(\mathcal{G} \) are curvilinear sheaves with seminatural cohomology, Chern classes \((0, c_2, c_3)\) and there exist \(t, t \geq -2 \) such that \(h^{i}(\mathcal{F}(t)) \neq h^{i}(\mathcal{G}(t)) \), then both are arithmetically normal. The same is true if \(c_1 = -1 \).
Proof. - If there exists \(n \geq -2 - c_1 \) such that \(\chi(\mathcal{F}(n)) \leq 0 \), then the dimensions of all the groups \(H^i(\mathcal{F}(p)) \) are uniquely determined, if \(F \) has seminatural cohomology.

In fact

\[
h^3(\mathcal{F}(p)) = 0, \quad \forall p \geq -2 - c_1 \quad \text{(by duality)};
\]

\[
h^1(\mathcal{F}(p)) = \chi(\mathcal{F}(p))
\]

in the interval of integers \([a, b]\) where \(\chi(\mathcal{F}(p)) \leq 0 \); (by seminatural cohomology);

\[
h^2(\mathcal{F}(p)) = \chi(\mathcal{F}(p)) \quad \text{if} \quad p < a
\]

\[
h^2(\mathcal{F}(p)) = 0 \quad \text{if} \quad p \geq a
\]

\[
h^0(\mathcal{F}(p)) = 0 \quad \text{if} \quad p \leq b
\]

\[
h^0(\mathcal{F}(p)) = \chi(\mathcal{F}(p)) \quad \text{if} \quad p > b.
\]

\(h^3(\mathcal{F}(p)) \) is a decreasing function of \(p \), if \(p \geq -2 \).

So \(\chi(\mathcal{F}(n)) = \chi(\mathcal{G}(n)) > 0 \), \(\forall n \geq -2 \), and \(\mathcal{F} \) and \(\mathcal{G} \) are arithmetically normal. The same proof holds if \(c_1 = -1 \).

Theorem 4.9. - Let \(t \geq 1 \), \(c_1 \), \(c_2 \), \(c_3 \) be integers, \(c_3 = c_1 c_2 \mod 2 \).

If \(c_1 = 0 \), \((t+1)(t+2) \leq c_2 < (t+2)(t+3)\), and

\[
(2t+4)c_2 - (2/3)t(t^2+6t+11) - 2 \leq c_3
\]

\[
\leq \min \left\{ (2t+5)c_2 - (1/3)(t+1)(t+2)(2t+9), (2t+3)c_2 - (1/3)(t+1)(2t+7) \right\}
\]

or if \(c_2 = t^2 + 5t + 3 \), \(c_3 = (2t+3)c_2 - (1/3)t(t+1)(2t+7) + 1 \), then there exist two different kinds of seminatural cohomology for reflexive sheaves with Chern classes \((0, c_2, c_3)\). As a consequence, the corresponding variety of moduli is reducible.

The same is true if \(c_1 = -1 \), \((t+1)^2 \leq c_2 < (t+2)\) and

\[
(2t+3)c_2 - (1/3)t(2t^2+9t+13) \leq c_3
\]

\[
\leq \min \left\{ (2t+4)c_2 - (1/3)(t+1)(2t^2+10t+9), (2t+2)c_2 - (1/3)t(2t^2+6t+1) \right\}
\]

or if \(c_2 = t^2 + 4t + 1 \), \(c_3 = (2t+2)c_2 - (1/3)t(2t^2+6t+1) + 1 \).
Proof. — The proof follows from 4.1, 4.2, 4.3 and 4.4.

Corollary 4.10. — These are the only cases for which this phenomenon of "double seminatural cohomology" can genuinely happen.

Proof. — The proof follows from 4.8, 3.1 and 3.2.

Remark 4.11. — We have given a bound, in term of c_2 and c_3, which is the best possible one, at least for c_3 large. But we have supposed \mathcal{F} curvilinear, since we must make sure that the zero set of a general section of $\mathcal{F}(s)$ is irreducible. We can find another bound, strictly larger, without any extra assumption. In fact, by using only the properties of the spectrum of a reflexive sheaf, we can prove the following

Proposition 4.11.1. — Let $t \geq 1$ be an integer, and let

$$(t + 1)(t + 2) - 1 \leq c_2 < (t + 2)(t + 3) - 1.$$

Let \mathcal{F} be a reflexive sheaf with Chern classes $(0, c_2, c_3)$ and seminatural cohomology. Then

$$c_3 < (2t + 4)c_2 - (2/3)t(t + 1)(t + 5) - 2.$$

Proposition 4.11.2. — Let $c_2 \geq 4$, and let $(t + 1)^2 - 1 \leq c_2 < (t + 2)^2 - 1$.

Let \mathcal{F} be a reflexive sheaf with Chern classes $(-1, c_2, c_3)$ and seminatural cohomology. Then

$$c_3 < (2t + 3)c_2 - (1/3)t(2t^2 + 9t + 1) - 2.$$

This will be done in a forthcoming paper.

REFERENCES

