MICHEL ZINSMEISTER

A distortion theorem for quasiconformal mappings

<http://www.numdam.org/item?id=BSMF_1986__114__123_0>
A DISTORTION THEOREM
FOR QUASICONFORMAL MAPPINGS

BY

MICHIEL ZINSMEISTER (*)

Résumé. — Un théorème de distorsion pour les applications quasiconformes. Nous
généralisons aux applications quasiconformes dans la boule unité de \(\mathbb{R}^n \) un théorème de
Pommerenke relatif aux transformations conformes du disque unité du plan.

Abstract. — A distortion theorem for quasiconformal mappings. We extend to
quasiconformal mappings in the unit ball of \(\mathbb{R}^n \) a theorem of Pommerenke concerning conformal
mappings in the unit disk of the plane.

1. Introduction

(a) The purpose of this paper is to extend to quasi-conformal mappings
the following distortion theorem for conformal mappings in the unit disk
\(B^2 \) of \(\mathbb{R}^2 \), a theorem due to Pommerenke. In this statement, \(I(z) \) is, for
\(z \in B^2 \), the interval of \(B^2 \) centered at \(z/|z| \) of length \(2\pi (1 - |z|) \).

Théorème [9]. — There is a universal constant \(C > 0 \) such that if
\(f : B^2 \to \mathbb{R}^2 \) is a conformal mapping, then, for every \(z \in B^2 \), there exists a
non euclidean segment \(\gamma \) from \(z \) to \(I(z) \) such that

\[
\text{Length} (f(\gamma)) \leq C \text{ distance} (f(z), \partial f(B^2)).
\]

Before giving the precise results, we set some preliminary notations and
results.

For \(x \in \mathbb{R}^n, n \geq 2 \), let \(|x| \) be the euclidean norm of \(x \). For \(r > 0 \),

\[
B^n(x, r) = \{ y \in \mathbb{R}^n; |y - x| < r \}.
\]

\(B^n = B^n(0, 1) \) and \(S^{n-1} = \partial B^n \).

(*) Texte reçu le 14 mars 1985.

M. ZINSMEISTER. Mathématiques. Université de Rouen, 76130 Mont St-Aignan Cedex.
If $E \subset \mathbb{R}^n$ and $x \in \mathbb{R}^n$, $d(x, E)$ is the distance from x to E. If $E \subset \mathbb{R}^n$ is measurable, we note $m(E)$ its Lebesgue measure; σ stands for Lebesgue measure on S^{n-1} and $\sigma_{n-1} = \sigma(S^{n-1})$. For a real $n \times n$ matrix A, let

$$|A| = \sup_{x \in S^{n-1}} |Ax|.$$

If $\Omega \subset \mathbb{R}^n$ is open and $f : \Omega \to \mathbb{R}^n$ is in the Sobolev space $W^{1}_{n, \text{loc}}(\Omega)$, $Df(x)$ will denote the Jacobian matrix of f, defined almost everywhere, and $J(x, f) = \det Df(x)$.

For $K \geq 1$, a continuous one-to-one mapping $f : \Omega \to \mathbb{R}^n$ is said to be K-quasiconformal if $f \in W^{1}_{n, \text{loc}}(\Omega)$ and if

$$|Df(x)|^n \leq K J(x, f) \quad \text{a.e. on } \Omega.$$

For $x \in S^{n-1}$, we define the cone with vertex x as

$$\Gamma(x) = \{ y \in \mathbb{B}^n; |y-x| < 3(1 - |y|) \}.$$

If $F : \mathbb{B}^n \to \mathbb{R}^n$ is any function, the non-tangential maximal function of F is defined as

$$\forall x \in S^{n-1}, \quad F^*(x) = \sup_{y \in \Gamma(x)} |F(y)|.$$

If $z \in \mathbb{B}^n$, we define the « cap » $S(z)$ as

$$S(z) = \{ x \in S^{n-1}; \ z \in \Gamma(x) \} = S^{n-1} \cap B^n(z, 3(1 - |z|)).$$

Let M be the group of Möbius self-maps of \mathbb{B}^n. If $z \in \mathbb{B}^n$, $z \neq 0$, we define

$$T_z(x) = \frac{(1 - |z|^2)(x-z) - |x-z|^2 z}{|z|^2 |x - (z/|z|^2)|^2},$$

then $T_z \in M$ and $T_z(z) = 0$.

We will need the following elementary results, the proof of which we omit:

1. $S(z) = S^{n-1}$ if $|z| < 1/2$.
2. $T_z(S(z))$ always contains an hemisphere,
3. If $x, y \in S(z),$

$$|x - y| \leq (9(1 - |z|))^{-1} |T_z(x) - T_z(y)| \leq 2(1 - |z|)^{-1} |x - y|.$$

4. $\forall z \in \mathbb{B}^n, \quad B^n(0, 1/7) \subset T_z\left(B^n \left(z, \frac{1}{4} (1 - |z|) \right) \right) \subset B^n(0, 1/2).$
(b) The main result will be the following.

Theorem 1. — For $K \geq 1$ there exists a constant $C(K, n) > 0$ such that if $f : B^n \to \mathbb{R}^n$ is K-quasiconformal, then, for any $z \in B^n$, there exists a non-euclidean segment γ joining z to $S(z)$ such that

$$\text{Length}(f(\gamma)) \leq C(K, n) d(f(z), \partial f(B^n)).$$

Adapting an idea of B. Davis and J. Lewis [2], we will show in a moment that Theorem 1 is a corollary of the following, of independent interest:

Theorem 2. — For $f : B^n \to \mathbb{R}^n$ k-quasiconformal, define, for $x \in S^{n-1}$, $L_f(x) = \text{Length}([f([0, x])])$ where $[0, x]$ is the radius $\{tx; 0 \leq t \leq 1\}$. Then there exist $C(n, K) > 0$ and $p(n, K) > 0$ such that

$$\left(\int_{S^{n-1}} L_f(x)^p \, d\sigma(x)\right)^{1/p} \leq C(K, n) d(f(0), \partial f(B^n)).$$

Assuming Theorem 2 is true, let us prove Theorem 1. So let $f : B^n \to \mathbb{R}^n$ be a K-quasiconformal mapping and $z \in B^n$; put $g = f \circ T^{-1}_z$. Applying Theorem 2 to g, we see that for every $M > 0$,

$$\sigma(\{x \in S^{n-1}; L_g(x) > M d(f(z), \partial f(B^n))\}) \leq \left(\frac{C(K, n)}{M}\right)^p.$$

Now choose M large enough so that $(C/M)^p \leq (\sigma_{n-1})/4$. By (2) there exists then $x \in T^*(S(z))$ such that

$$L_g(x) \leq M d(f(z), \partial f(B^n)),$$

and this proves (5) with $\gamma = T^{-1}_z([0, x])$.

The main tools in proving Theorem 2 will be Theorem 3, due to P. Jones, which we discuss in Part 2, and an estimate for the nontangential maximal function f^*, which is proved in part 3.

This paper was written during a stay at the University of Michigan. I would like to thank Professor F. Gehring for his invitation and the constant help he gave me during my stay. I also would like to thank Professor T. Iwaniec for many helpful conversations.
2. Let f be as in Theorem 2. Performing a preliminary translation, we may assume that f does not vanish in B^n and that

$$|f(0)| = d(f(0), \partial f(B^n)).$$

We will say that a function $g : B^n \to \mathbb{R}^n - \{0\}$ satisfies Harnack property if there exists a constant $C(g) > 0$, called the Harnack constant of g, such that:

$$(8) \forall x \in B^n, \forall y, z \in B^n \left(x, \frac{1}{4}(1 - |x|) \right), \quad |g(y)| \leq C(g)|g(z)|.$$

Lemma 1. If $f : B^n \to \mathbb{R}^n - \{0\}$ is K-quasiconformal, then f satisfies Harnack property with a constant depending only on K and n.

Proof. By the special distortion theorem for quasiconformal mappings [4], there exists $C(K, n) > 0$ such that

$$\forall x \in B^n, \forall y, z \in B^n \left(x, \frac{1}{4}(1 - |x|) \right), \quad \frac{|f(y) - f(z)|}{d(f(z), \partial f(B^n))} \leq C(K, n),$$

and Lemma 1 follows, for $d(f(z), \partial f(B^n)) \leq |f(z)|$ since f does not vanish in B^n.

Now let $f : B^n \to \mathbb{R}^n - \{0\}$ be K-quasiconformal. For almost every $x \in S^{n-1}$, we may write

$$L_f(x) \leq \int_0^1 |Df(tx)|^p dt \leq V_f(x) + 2^{n-1} f^*(x) H_f(x),$$

where

$$V_f(x) = \int_0^{1/2} |Df(tx)| dt$$

and

$$H_f(x) = \int_0^1 \frac{|Df(tx)|}{f(tx)} t^{n-1} dt.$$

Lemma 2:

$$V_f \in L^1(S^{n-1}) \quad \text{with} \quad \|V_f\|_1 \leq C(K, n)|f(0)|.$$
Proof:

\[\|V_f\|_1 = \int_{B^* (0, 1/2)} \frac{|Df (y)|}{|y|^{n-1}} \, dm (y). \]

By Gehring's inequality [5], there exists \(p = p (K, n) > n \) and \(C (K, n) > 0 \) such that

\[(9) \left(\int_{B^* (0, 1/2)} |Df (y)|^p \, dm (y) \right)^{1/p} \leq C (K, n) \left(\int_{B^* (0, 1/2)} J (x, f) \, dm (x) \right)^{1/n} \]

\[= C (K, n) m \left[f (B^* (0, 1/2)) \right]^{1/n} \leq C (K, n) |f (0)|, \]

the last inequality being a consequence of Lemma 1. We now apply Hölder's inequality to the expression of \(\|V_f\|_1 \), to obtain

\[\|V_f\|_1 \leq \left(\int_{B^* (0, 1/2)} |Df (y)|^p \, dm (y) \right)^{1/p} \]

\[\times \left(\int_{B^* (0, 1/2)} |y|^{-(n-1)p/(p-1)} \, dm (y) \right)^{(p-1)/p} \]

\[\leq C (K, n) |f (0)|, \]

by (9) and the fact that \((n-1)p/(p-1) < n \).

An estimate for \(H_f \) is given by the following theorem, due to P. Jones:

Theorem 3 [8]:

\[H_f \in L^1 (S^{n-1}) \quad \text{with} \quad \|H_f\|_1 \leq C (K, n). \]

As P. Jones has observed, Theorem 3 implies that

\[\sup_{T \in M} \|H_f \circ T\|_1 \leq C (K, n) \quad \iff \quad (10) \sup_{T \in M} \int_{B^*} \frac{|Df (x)|}{|f (x)|} \, |DT (x)|^{n-1} \, dm (x) \leq C (K, n), \]

and (10) exactly says that \(|Df| \, |f| \, dm \) is a Carleson measure in \(B^* [3] \). Since \(|\nabla f| \leq |Df| \), the same is true for \(|\nabla u| \, dm \), where \(u = \log |f| \). Writing

\[\|u\|_* = \sup_{T \in M} \int_{B^*} |\nabla u (x)| \, |DT (x)|^{n-1} \, dm (x), \]
we can now invoke the following theorem, due to Varopoulos:

Theorem 4 [10]. - Let \(u \in W^{1}_{1, \text{loc}}(B^n) \) be a real-valued function having radical limit \(\tilde{u}(x) \) a.e. on \(S^{n-1} \). If \(|\nabla u| \, dm \) is a Carleson measure in \(B^n \), then \(\tilde{u} \in \text{BMO}(S^{n-1}) \) with \(\|\tilde{u}\|_{\text{BMO}} \leq C(n)\|u\|_{*} \).

(Varopoulos proves Theorem 4 for \(n=2 \) only, but his argument is easily seen to extend to the general case.)

From Theorems 3 and 4, it follows that if \(f : B^n \rightarrow \mathbb{R}^n - \{0\} \) is \(\lambda \)-quasiconformal, then

\[
\| \text{Log} |f(x)| \|_{\text{BMO}(S^{n-1})} \leq C(K, n),
\]

for \(0 \leq r \leq 1 \). If we now apply the John and Nirenberg inequality [7] and Lemma 1, we get

Lemma 3. - If \(f : B^n \rightarrow \mathbb{R}^n - \{0\} \) is \(K \)-quasiconformal there exist \(C(K, n) > 0 \) and \(p = p(K, n) > 0 \) such that

\[
\sup_{0 < r \leq 1} \int_{S^{n-1}} |f(rx)|^p \, d\sigma(x) \leq C(K, n) |f(0)|^p.
\]

In the case \(n=2 \) and \(f \) conformal, (11) implies that \(f \) is in the Hardy space \(H^p(B^2) \), so that \(f^* \in L^p(S^{n-1}) \), and Theorem 2 follows in this particular case. In the general case, we need an extra argument, provided by the next section.

3. Non-tangential maximal function

Proposition 1. - Let \(f : B^n \rightarrow \mathbb{R}^n - \{0\} \in W^{1}_{1, \text{loc}}(B^n) \), and \(u = \text{Log} |f| \). If \(|\nabla u| \, dm \) is a Carleson measure and if \(f \) satisfies Harnack property (8) then, for every \(p > 0 \),

\[
\int_{S^{n-1}} f^*(x)^p \, d\sigma(x) \leq C_p \int_{S^{n-1}} |f(x)|^p \, d\sigma(x),
\]

where \(C_p \) depends only on \(n, p, \|u\|_{*} \) and \(C(f) \).

We first notice that this statement makes sense, since \(|f(x)| \) has radial limits a.e. on \(S^{n-1} \), for \(|\nabla u| \, dm \) is a Carleson measure.

Before going into the proof of Proposition 1, let us see why it implies Theorem 2. So let \(f : B^n \rightarrow \mathbb{R}^n - \{0\} \) be \(K \)-quasiconformal with
\[|f(0)| = \text{dist} \left(f(0), f(B^n) \right). \] By the results in Part 2 we can apply Proposition 1 to \(f(x) \) and, by Lemma 3, we get
\[\|f^*\|_{p} \leq C(K, n) |f(0)|, \]
for some \(p \) depending only on \(K \) and \(n \). Recalling now that
\[L_f(x) \leq V_f(x) + 2^{n-1} f^*(x) H_f(x), \]
Lemma 2, Theorem 3 and (12) imply that \(L_f \in L^{p+1, p+1}(S^{n-1}) \) with
\[\|L_f\|_{p+1} \leq C(K, n) |f(0)|, \]
and Theorem 2 is proved.

To prove Proposition 1, we need 3 lemmas:

Lemma 4. — If \(f \) is as in Proposition 1 and \(N > C(f)^2 \),
\[\sigma\left(\left\{ x \in S^{n-1}; |f(x)| \leq \frac{|f(0)|}{N} \right\} \right) \leq \frac{7^n \|u\|_*}{\log N}. \]

Proof: Put
\[F_N = \left\{ x \in S^{n-1}; |f(x)| < \frac{|f(0)|}{N} \right\} \]
and
\[G(x) = \int_0^1 |\nabla u(tx)| t^{n-1} \, dt. \]
If \(x \in F_N \),
\[G(x) \geq 7^{1-n} \int_{1/7}^1 |\nabla u(tx)| \, dt \]
\[\geq 7^{1-n} \left| \int_{1/7}^1 \frac{1}{t} \frac{\partial}{\partial t} \left(|f(tx)| \right) \, dt \right| \]
\[= 7^{1-n} \left| \log \frac{|f(x)|}{|f(x/7)|} \right|. \]

By Harnack property, \(|f(0)| \leq C(f) |f(x/7)| \); so, if \(x \in F_N \) and \(N > C(f)^2 \),
\[G(x) \geq 7^{1-n} \left| \log \frac{N}{C(f)} \right| \geq 7^{-n} \log N, \]

BULLETIN DE LA SOCIÉTÉ MATHEMATIQUE DE FRANCE
and from this it follows that
\[\sigma(F_N) \leq \frac{7^n \|G\|}{\log N} \leq \frac{7^n \|u\|_\ast}{\log N}. \]

Lemma 5. There is an universal constant \(\alpha > 0 \) such that if \(f \) is as in Proposition 1 and \(z \in B^n \),
\[\sigma \left(\left\{ x \in S(z); \left| f(x) \right| \leq \frac{\left| f(z) \right|}{N} \right\} \right) \leq \frac{\alpha 7^n \|u\|_\ast}{\log N} \sigma(S(z)). \]

Proof. Define \(g(x) = f \circ T_x^{-1}(x) \). By (4), if \(x \in S^{n-1} \) then \(|g(0)| \leq C(f) |g(x/7)| \); also, by definition \(\|\log|g||\|_\ast = \|u\|_\ast \). By Lemma 4 we then have, for \(N \geq C(f)^2 \),
\[\sigma \left(\left\{ x \in S^{n-1}; g(x) \leq \frac{\left| f(z) \right|}{N} \right\} \right) \leq \frac{7^n \|u\|_\ast}{\log N}, \]
which implies
\[\sigma \left(T_z \left(\left\{ y \in S(z); \left| f(y) \right| \leq \frac{\left| f(z) \right|}{N} \right\} \right) \right) \leq \frac{7^n \|u\|_\ast}{\log N}, \]
and the result follows from (3).

Lemma 6. There exist \(0 < C(n) < 1 \) and \(N(n, \|u\|_\ast, C(f)) \) such that the following inequality holds:
\[(13) \quad \forall \lambda > 0, \quad \sigma \left(\left\{ x \in S^{n-1}; f^\ast(x) > \lambda, \left| f(x) \right| \leq \frac{\lambda}{N} \right\} \right) \leq C(n) \sigma \left(\left\{ x \in S^{n-1}; f^\ast(x) \geq \lambda \right\} \right). \]

Proof. Let \(\delta(\lambda) = \{ z \in B^n; |f(z)| > \lambda \} \) and \(\Psi(\lambda) = \{ x \in S^{n-1}; f^\ast(x) > \lambda \}. \)

Then
\[\Psi(\lambda) = \bigcup_{z \in \delta(\lambda)} S(z). \]
By Vitali covering lemma, there exists $\alpha(n) \in (0, 1)$ and a sequence $\{z_j\} \subset \mathcal{S}(\lambda)$ such that the $S(z_j)$'s are mutually disjoint and
\[
\sum_{j \in N} \sigma(S(z_j)) \geq \alpha(n) \sigma(\mathcal{H}(\lambda)).
\]

Now let
\[
E_N = \left\{ x \in S^{n-1}; |f(x)| \leq \frac{\lambda}{N} \right\}.
\]

Then
\[
\sigma(E_N \cap \mathcal{H}(\lambda)) \leq \sum_{j \in N} \sigma(E_N \cap S(z_j)) + (1 - \alpha(n)) \sigma(\mathcal{H}(\lambda)).
\]

But
\[
E_N \cap S(z_j) \subset \left\{ x \in S(z_j); |f(x)| \leq \frac{|f(z_j)|}{N} \right\}
\]
and so
\[
\sigma(E_N \cap S(z_j)) \leq \frac{\alpha 7^n \|u\|_*}{\log N} \sigma(S(z_j)) \quad \text{if } N \geq C(f)^2,
\]
by Lemma 5. So, choosing N so large that
\[
\frac{\alpha 7^n \|u\|_*}{\log N} < \frac{\alpha(n)}{2},
\]
we get Lemma 6 with $C(n) = 1 - \alpha(n)/2$. We can now complete the proof of Proposition 1. For $\lambda > 0$, let
\[
\chi(\lambda) = \sigma(\{x \in S^{n-1}; f^*(x) > \lambda\})
\]
and
\[
\theta(\lambda) = \sigma(\{x \in S^{n-1}; |f(x)| > \lambda\}).
\]

By (13),
\[
\chi(\lambda) \leq C(n) \chi(\lambda) + \theta(\lambda/N) \quad \Rightarrow \quad \chi(\lambda) \leq \frac{1}{1 - C(n)} \theta(\lambda/N).
\]

Finally,
\[
\|f^*\|_p = p \int_0^\infty \lambda^{p-1} \chi(\lambda) d\lambda \leq \frac{p}{1 - C(n)} \int_0^\infty \lambda^{p-1} \theta \left(\frac{\lambda}{N}\right) d\lambda = \frac{N^p}{1 - C(n)} \|f\|_p^p,
\]
which proves Proposition 1.
Remark. — A mapping $f: B^n \to \mathbb{R}^n$ is said to be K-quasiregular if $f \in W^{1}_{\text{loc}}(B^n)$ and if

$$|Df(x)|^n \leq KJ(x, f) \quad \text{a.e. on } B^n.$$

The above methods imply the following:

Proposition 2. Let $f: B^n \to \mathbb{R}^n - \{0\}$ be a K-quasiregular mapping and $u = \log |f|$. If $|\nabla u| \, dm$ is a Carleson measure in B^n, there exists an exponent $p = p(n, K, \|u\|_{\infty}) > 0$ such that $L_f \in L^p(S^{n-1})$, where L_f has the same meaning as in Theorem 1.

Sketch of Proof. Using the same notations as in 2, one may write

$$L_f(x) \leq V_f(x) + 2^{n-1} K f^*(x) \tilde{H}_f(x),$$

where

$$\tilde{H}_f(x) = \int_0^1 |\nabla u(tx)| t^{n-1} \, dt.$$

From results in [1], Lemma 2 is valid for V_f; also, $\tilde{H}_f \in L^1$ by hypothesis. To prove Proposition 2, it suffices then to show that $f^* \in L^p$ for some $p > 0$. Using Proposition 1 and Theorem 4, this reduces to proving that f satisfies Harnack property. To do this, we use a recent result of Iwaniec and Nolder [6]: They proved that u is actually in $W^{1}_{q \overline{\text{loc}}} (B^n)$ for some $q(K, n) > n$ and that

$$\forall x \in B^n, \quad \left(\int_{B^n(x, 1/2 (1 - |x|))} |\nabla u(y)|^q \, dm(y) \right)^{1/q} \leq C(K, n) (1 - |x|)^n (1/2 - 1) \times \int_{B^n(x, 3/4 (1 - |x|))} |\nabla u(y)| \, dm(y),$$

and the result follows from the Sobolev embedding theorem and the fact that $|\nabla u| \, dm$ is a Carleson measure.
REFERENCES

