GOPAL PRASAD

Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits

<http://www.numdam.org/item?id=BSMF_1982__110__197_0>
Let k be a field with a non-trivial non-archimedean valuation v. We shall assume that the valuation v has a (up to equivalence) unique extension to any finite field extension of k, or, equivalently, k is henselian for v (i.e. the Hensel's lemma holds in k with respect to v). We fix an algebraic closure \mathcal{K} of k and shall denote the unique valuation on it, which extends the given valuation on k, again by v. Let K be the separable closure of k in \mathcal{K}; the extended valuation on K is obviously invariant under the Galois group $\text{Gal}(K/k)$.

Let V be a finite dimensional k-vector space. Let G be a connected reductive k-subgroup of $\text{SL}(V)$. For any extension L of k contained in \mathcal{K}, let $G(L)$ be the group of L-rational points of G endowed with the Hausdorff topology and the bornology induced by the valuation on L. Let $G(k)^+$ be the normal subgroup of $G(k)$ generated by the k-rational points of the unipotent radicals of parabolic k-subgroups of G.

G is said to be isotropic over k if G contains a non-trivial k-split torus, and k-anisotropic (or anisotropic over k) otherwise.

The object of this note is to give a simple proof of the following theorem proved first by F. Bruhat and J. Tits in case k is a discretely valuated complete field with perfect residue field and then in general by G. Rousseau in his thesis (Orsay, 1977).
THEOREM (BTR). — $G(k)$ is bounded if and only if G is anisotropic over k.

Remark. — Thus in case k is a non-discrete locally compact field, $G(k)$ is compact if and only if G is anisotropic over k.

We shall also give a simple proof of the following (unpublished) theorem of J. Tits:

THEOREM (T). — Let G be semi-simple and almost k-simple. Then any proper open subgroup of $G(k)^+$ is bounded.

Acknowledgment. — The proof, given below, of Theorem (BTR) is based on a suggestion of G. A. Margulis that it should be possible to use the following lemma (Lemma 1) to prove Theorem (BTR). I had originally used the lemma to give a simple proof of Theorem (T). The comments of J. Tits on an earlier version have lead to further simplifications in the proofs of both the theorems. I thank Margulis and Tits heartily.

LEMMA 1. — Let H be a subgroup of $G(k)$ which is dense in G in the Zariski topology. Assume that H is unbounded. Then there is an element h of H which has an eigenvalue α with $v(\alpha) < 0$.

Proof. — Let:

$$V = V_0 \supset V_1 \supset \ldots \supset V_r \supset V_{r+1} = \{0\},$$

be a flag of G-invariant vector subspaces (not necessarily defined over k) such that for $0 \leq i \leq r$, the natural representation ρ_i of G on $W_i = V_i / V_{i+1}$ is absolutely irreducible. Let $\rho(= \bigoplus \rho_i)$ be the natural representation of G on $\bigoplus W_i$; ρ is defined over a finite galois extension of k. The kernel of ρ is obviously a unipotent normal subgroup of G, and as G is reductive, we conclude that ρ is faithful. Now, as H is a unbounded subgroup of $G(k)$, $\rho(H(k))$ is unbounded, and hence there is a non-negative integer $a, a \leq r$, such that $\rho_a(H(k))$ is unbounded.

Now assume, if possible, that the eigenvalues of all the elements of H lie in the local ring of the valuation on K. Then, the trace form of ρ_a, restricted to H, also takes values in the local ring of the valuation (this ring is bounded!). But since W_a is an absolutely irreducible G-module, and since H is dense in G in the Zariski topology, $\rho_a(H)$ spans $\text{End}(W_a)$. So, in view the non-degeneracy of the trace form, we conclude that $\rho_a(H)$ is bounded (see Tits [5], Lemma 2.2). This is a contradiction, which proves the lemma.
Proof of Theorem (BTR). — If T is a one-dimensional k-split torus, then $T(k)$ is isomorphic to k^* and hence it is unbounded. This implies that if G is isotropic over k, then $G(k)$ is unbounded. We shall now assume that $G(k)$ is unbounded and prove the converse.

It is well known that $G(k)$ is dense in G in the Zariski topology ([1], 18.3), hence, according to the preceding lemma, there is an element $g \in G(k)$ which has an eigenvalue α with $v(\alpha) \neq 0$. Now, in case k is of positive characteristic, after replacing g by a suitable power, we shall assume that g is semi-simple. In case k is of characteristic zero, let $g = u.s = s.u$ be the Jordan decomposition of g, with u (resp. s) unipotent (resp. semi-simple). Then $u, s \in G(k)$, and the eigenvalues of g are the same as that of s. Thus we may (and we shall), after replacing g by s, again assume that g is semi-simple.

Now there is a maximal torus S in G defined over k, such that $g \in S(k)$. (See Borel-Tits [2], Proposition 10.3 and Theorem 2.14 a; note that according to Theorem 11.10 of [1], g is contained in a maximal torus of G.) Since any absolutely irreducible representation of a torus is 1-dimensional, there is a character χ of S, χ defined over a finite galois extension \mathfrak{R} of k, such that $\chi(g) = \alpha$. Let $m = [\mathfrak{R} : k]$. Then:

$$v((\sum_{7 \in \text{Gal}(\mathfrak{R}/k)} \gamma \chi)(g)) = m v(\chi(g)) = m v(\alpha) \neq 0.$$

Thus the character $\sum_{7 \in \text{Gal}(\mathfrak{R}/k)} \gamma \chi$ is non-trivial. On the other hand, it is obviously defined over k. Thus S admits a non-trivial character defined over k, and hence it contains a non-trivial k-split torus. This proves that in case $G(k)$ is unbounded, G is isotropic over k.

We shall now assume that G is semi-simple and almost k-simple.

Notation. — For $g \in G(k)$, let \mathcal{P}_g be the subset of $G(K)$ consisting of those x in $G(K)$ for which the sequence $\{g^i x g^{-i}\}_{i \geq 0}$ is contained in a bounded subset of $G(K)$, and let \mathcal{U}_g be the subset consisting of those x in $G(K)$ for which the sequence $\{g^i x g^{-i}\}_{i \geq 0}$ converges to the identity. It is obvious that \mathcal{P}_g is a subgroup of $G(K)$, and \mathcal{U}_g is a normal subgroup of \mathcal{P}_g.

We let \mathcal{P}_g^{-1} denote \mathcal{P}_g^{-1} and \mathcal{U}_g^{-1} denote \mathcal{U}_g^{-1}.

In the sequel we shall denote the adjoint representation of an algebraic group on its Lie algebra by Ad.

BULLETIN DE LA SOCIÉTÉ MATHEMATIQUE DE FRANCE
LEMMA 2. — Let \(t \) be an element of \(G(k) \) such that \(\text{Ad} \ t \) has an eigenvalue \(a \) with \(\nu(a) \neq 0 \). Then:

(i) \(\mathcal{P}_t \) is the group of \(K \)-rational points of a proper parabolic \(k \)-subgroup \(P_t \) of \(G \) and \(\mathcal{U}_t \) is the group of \(K \)-rational points of the unipotent radical \(U_t \) of \(P_t \);

(ii) \(P_t^- (:= P_{r_t}) \) is opposed to \(P_r \).

Proof. — Since for any integer \(n > 0 \), \(\mathcal{P}_r^+ = \mathcal{P}_t \) and \(\mathcal{U}_r = \mathcal{U}_t \), in case \(k \) is of positive characteristic, after replacing \(t \) by a suitable (positive) power of \(t \), we shall assume that \(t \) is semi-simple. In case \(k \) is of characteristic zero, let \(t = u.s = s.u \) be the Jordan decomposition of \(t \) with \(u \) (resp. \(s \)) unipotent (resp. semi-simple). Then \(s, u \in G(k) \) and the eigenvalues of \(\text{Ad} t \) are the same as that of \(\text{Ad} s \). Since the cyclic group generated by a unipotent element is bounded, we see easily that \(\mathcal{P}_t^+ = \mathcal{P}_s^+ \) and \(\mathcal{U}_t = \mathcal{U}_s^+ \). Thus we may (and we shall) assume, after replacing \(t \) by \(s \), that \(t \) is semi-simple.

Now there is a maximal torus \(T \) of \(G \), defined over \(K \), such that \(t \in T(K) \). Since \(K \) is separably closed, any \(T \)-torus splits over \(K \). Let \(\mathfrak{g} = \sum_{\alpha \in \Phi} \mathfrak{g}_\alpha \) be the root space decomposition of the Lie algebra \(\mathfrak{g} \) of \(G \) with respect to \(T \); where \(t \) is the Lie algebra of \(T \) and \(\Phi \) is the set of roots. According to BOURBAKI [4], Chapitre VI, paragraph 1, Proposition 22, there is an ordering on \(\Phi \) such that the subset \(\{ \varphi \mid \varphi \in \Phi, \nu(\varphi(t)) > 0 \} \) is contained in the set \(\Phi^+ \) of roots positive with respect to this ordering; let \(\Delta \subset \Phi \) be the set of simple roots.

For a subset \(\Theta \) of \(\Delta \), let \(T_{\Theta} \) be the identity component of \(\cap_{\alpha \in \Theta} \text{Ker} \theta \) and let \(M_{\Theta} \) be the centralizer of \(T_{\Theta} \) in \(G \). Let \(\mathfrak{u}_{\Theta} = \sum_{\alpha \in \Theta} \mathfrak{g}_\alpha \) (resp. \(\mathfrak{u}_{\Theta}^- = \sum_{\alpha \in \Theta} \mathfrak{g}_\alpha^- \)), and \(U_{\Theta} \) (resp. \(U_{\Theta}^- \)) be the connected unipotent \(K \)-subgroup of \(G \), normalized by \(T \), and with Lie algebra \(\mathfrak{u}_{\Theta} \) (resp. \(\mathfrak{u}_{\Theta}^- \)). Let \(P_{\Theta} = M_{\Theta} U_{\Theta} \) and \(P_{\Theta}^- = M_{\Theta} U_{\Theta}^- \). Then \(P_{\Theta} \) and \(P_{\Theta}^- \) are opposed parabolic \(K \)-subgroups of \(G \), and if \(\Theta \neq \Delta \), these subgroups are proper. Moreover, \(U_{\Theta} \) (resp. \(U_{\Theta}^- \)) is the unipotent radical of \(P_{\Theta} \) (resp. \(P_{\Theta}^- \)).

Now let \(\Pi = \{ \delta \in \Delta \mid \nu(\delta(t)) = 0 \} \). Then since \(\text{Ad} t \) has an eigenvalue \(\alpha \) with \(\nu(\alpha) \neq 0 \), \(\Pi \) is a proper subset of \(\Delta \). It is obvious that \(P_{\Pi}^- (K) \subset \mathcal{P}_t \), \(P_{\Pi}^- (K) \subset \mathcal{P}_r \) and \(U_{\Pi}^- (K) \subset \mathcal{U}_t \). Since \(\mathcal{P}_t \) contains \(P_{\Pi}^- (K) \) it equals \(P_{\Pi}^- (K) \) for a subset \(\Theta \) of \(\Delta \), containing \(\Pi \). But since the action of \(\text{Ad} t \) on \(\mathfrak{u}_{\Pi}^- (K) \) is "expanding", we conclude at once that \(\Theta = \Pi \) and hence, \(P_{\Pi}^- (K) = \mathcal{P}_t \). A similar argument shows that \(P_{\Pi}^- (K) = \mathcal{P}_r^- \). We set \(P_r = P_{\Pi}^- \) and \(P_r^- = P_{\Pi}^- \).

To prove the second assertion of (i) we need to show that \(U_{\Pi}^- (K) = \mathcal{U}_t \). For this purpose we observe that \(U_{\Pi}^- (K) \subset \mathcal{U}_t \), and since
\[\mathcal{P}_\tau = P_\Pi(K) = M_\Pi(K) \cdot U_\Pi(K); \]
\[\mathcal{U}_\tau = (M_\Pi(K) \cap \mathcal{U}_\tau) \cdot U_\Pi(K); \]
also \(\mathcal{U}_\tau \), and hence \(M_\Pi(K) \cap \mathcal{U}_\tau \), are normalized by \(T(K) \). We now note that the Lie algebra of \(M_\Pi \) is \(t + \sum_{\mathfrak{g}_1} \mathfrak{g}_1^* \), and \(\nu(\varphi(t)) = 0 \) for \(\varphi \in (\Pi) \). From these observations it is evident that \(M_\Pi(K) \cap \mathcal{U}_\tau \) is trivial, and hence, \(\mathcal{U}_\tau = U_\Pi(K) \).

Now to complete the proof of the lemma it only remains to show that both \(P_\sigma \) and \(P_\sigma^- \) are defined over \(k \). But this is obvious, from the Galois criteria, in view of the fact that \(\mathcal{P}_\tau \) and \(\mathcal{P}_\tau^- \) are stable under \(\Gamma = \text{Gal}(K/k) \) since \(t \) is a \(k \)-rational element, and \(\mathcal{P}_\tau(=P_\Pi(K)) \) is dense in \(P_\Pi \), whereas \(\mathcal{P}_\tau^- (=P_\Pi(K)) \) is dense in \(P_\Pi^- \) in the Zariski topology.

Lemma 3. — Let \(t \in G(k) \) be such that \(\text{Ad} \ t \) has an eigenvalue \(\alpha \) with \(\nu(\alpha) \neq 0 \). Then \(\mathcal{U}_\tau(k) (\mathcal{U}_\tau \cap G(k)) \) and \(\mathcal{U}_\tau^-(k) (\mathcal{U}_\tau^- \cap G(k)) \) together generate \(G(k)^+ \).

Proof. — According to the preceding lemma, \(\mathcal{U}_\tau(k) \) and \(\mathcal{U}_\tau^-(k) \) are the groups of \(k \)-rational points of the unipotent radicals of two opposed proper parabolic \(k \)-subgroups of \(G \). Hence, according to Borel-Tits [3], Proposition 6.2, \(\mathcal{U}_\tau(k) \) and \(\mathcal{U}_\tau^-(k) \) together generate \(G(k)^+ \).

Proof of Theorem (T). — Let \(\mathcal{G} \) be the adjoint group of \(G \) and \(\pi: G \to \mathcal{G} \) be the natural (central) isogeny. Then since \(\pi \) is a finite morphism, the induced map \(G(k) \to \mathcal{G}(k) \) is a proper map, i.e., the inverse image of a bounded subset of \(\mathcal{G}(k) \) is bounded.

Now let \(H \) be an unbounded open subgroup of \(G(k)^+ \). Then, clearly, \(H \) is dense in \(G \) in the Zariski topology and hence, \(\pi(H) \) is an unbounded Zariski-dense subgroup of \(\mathcal{G}(k) \). Now Lemma 1 (applied to \(\pi(H) \) (\(\subset \mathcal{G}(k) \)) implies that there is an element \(h \) of \(H \) such that \(\text{Ad} \ h \) has an eigenvalue \(\alpha \) with \(\nu(\alpha) \neq 0 \).

Let \(\mathcal{U}_h(k) = \mathcal{U}_h \cap G(k) \) and \(\mathcal{U}_h^-(k) = \mathcal{U}_h^- \cap G(k) \). Then as \(H \) is open in \(G(k)^+ \), \(H \cap \mathcal{U}_h(k) \) is an open subgroup of \(\mathcal{U}_h(k) \), and obviously
\[\bigcup_{n>0} h^n(H \cap \mathcal{U}_h^-(k)) h^{-n} = \mathcal{U}_h^-(k). \]
Thus \(H \) contains both \(\mathcal{U}_h(k) \) and \(\mathcal{U}_h^-(k) \). But according to Lemma 3, \(\mathcal{U}_h(k) \) and \(\mathcal{U}_h^-(k) \) together generate \(G(k)^+ \). Therefore, \(H = G(k)^+ \). This proves the theorem.
REFERENCES

