GOPAL PRASAD

Non-vanishing on the first cohomology

<http://www.numdam.org/item?id=BSMF_1977__105__415_0>
NON-VANISHING
OF THE FIRST COHOMOLOGY

BY

GOPAL PRASAD

[Tata Institute, Bombay]

RESUMÉ. — On démontre que, pour les réseaux Γ du type fini dans les groupes semi simples sur les corps locaux de caractéristique positive, $H^1(\Gamma, \text{Ad})$ ne s'annule pas; ceci est bien différent de ce que passe dans le cas de caractéristique zéro.

ABSTRACT. — It is shown here that, for any finitely generated lattice Γ in certain semi simple groups over local fields of positive characteristics, $H^1(\Gamma, \text{Ad})$ is non-vanishing; this is in sharp contrast with the situation in characteristic zero.

Let K be a local field (i.e. a non-discrete locally compact field), and let G be a connected semi simple algebraic group defined over K. Let $G = G(K)$, and let $r = K-\text{rank } G$. The topology on K induces a locally compact Hausdorff topology on G; in the sequel, we assume G endowed with this topology. G is then a K-analytic group. Let Γ be a lattice in G i.e., a discrete subgroup of G such that G/Γ carries a finite G-invariant Borel measure. We assume that Γ is irreducible, i.e. no subgroup of Γ of finite index is a direct product of two infinite normal subgroups.

In case $K = \mathbb{R}$ and G is not locally isomorphic to either $SL(2, \mathbb{R})$ or $SL(2, \mathbb{C})$, it is known that $H^1(\Gamma, \text{Ad}) = 0$; where, as usual, Ad denotes the adjoint representation of G on its Lie algebra (see Weil [9], [10] for uniform lattices; for non-uniform lattices in groups of R-rank > 1, this vanishing theorem follows from the results of Raghunathan [8], combined with the results of Margulis [4] on arithmeticity; for non-uniform lattices in groups of R-rank 1, it is contained in Garland-Raghunathan [2]).

It is also known, in view of a recent result of Margulis ([5], theorem 8), that in case K is non-archimedean but of characteristic zero, $H^1(\Gamma, \text{Ad}) = 0$ when $r > 1$.

BULLETIN DE LA SOCIÉTÉ MATHEMATIQUE DE FRANCE
The object of this note is to show that when K is of positive characteristic, then it is not in general true that $H^1(\Gamma, \text{Ad}) = 0$.

We shall in fact prove the following theorem.

Theorem. — Let F be a finite field, and let K be the local field $F((t))$. Let G be a connected semi simple algebraic group, with trivial center, defined over F. Let $G = G(K)$, let Γ be a finitely generated lattice in G. Then $H^1(\Gamma, \text{Ad}) \neq 0$.

Remark. — If G has no K-rank 1 factors, then according to a well-known theorem of D.A. Kazhdan (see [1]), every lattice in G is finitely generated.

For the proof of the theorem, we need to recall a result of Weil [10].

We introduce some notation and a definition.

Let Λ be a finitely generated abstract group. We shall let $\mathcal{A}(\Lambda, G)$ denote the space of all homomorphisms of Λ in G with the topology of pointwise convergence. There is a natural action of G on $\mathcal{A}(\Lambda, G)$ induced by the inner automorphism.

Now assume that Λ is a finitely generated subgroup of G, and let $\iota : \Lambda \rightarrow G$ be the natural inclusion. Then Λ is said to be locally (or infinitisimally) rigid if the orbit of ι under G is open in $\mathcal{A}(\Lambda, G)$. According to a result of Weil [10], vanishing of $H^1(\Lambda, \text{Ad})$ implies local rigidity of Λ.

Proof of the theorem. — In view of the above result of Weil, to prove that $H^1(\Gamma, \text{Ad}) \neq 0$, it suffices to show that Γ is not infinitisimally rigid.

For $i > 1$, $t \mapsto t + t^i$ extends uniquely to give a continuous automorphism a_i of $F((t))/F$. It is evident that, for any fixed $x \in F((t))$, the sequence $\{ a_i(x) \}$ converges to x.

Now since G is defined over F, a_i induces a continuous automorphism α_i of G. Therefore, for all i, α_i, ι is an embedding of Γ in G; where $\iota : \Gamma \rightarrow G$ is the natural inclusion of Γ in G. It is also obvious that the sequence $\{ \alpha_i, \iota \}$ converges to ι in $\mathcal{A}(\Gamma, G)$. We shall show that none of the α_i, ι lie in the G-orbit of ι. This will prove that Γ is not locally rigid and hence $H^1(\Gamma, \text{Ad}) \neq 0$.

If possible, assume that, for some i, $\alpha_i, \iota = \text{Int} \ g_i, \iota$. Then $(\text{Int} \ g_i^{-1}, \alpha_i), \iota = \iota$, and the main theorem of Prasad [6] implies that $\text{Int} \ g_i^{-1}, \alpha_i$ is the identity automorphism of G. Hence, $\alpha_i = \text{Int} \ g_i$.

We now fix a 1-dimensional torus $T (\subset G)$ which is defined and split over the finite field F (existence of such a torus follows from Lang's theorem [3]). Let $T = T(K)$. Then since T is defined over F, $\alpha_i(T) = T$. Moreover,
for any rational character χ on T and all $t \in T$,

$$\chi(\alpha_t(t)) = a_t(\chi(t)).$$

Since $\alpha_t = \text{Int} g_t$ and $\alpha_t(T) = T$, it follows that g_t normalizes T and hence also T. Therefore, for any rational character χ on T:

$$\chi(\alpha_t(t)) = \chi(g_t g_t^{-1}) = \chi^d(t),$$

where $d = +1$ or -1. Hence,

$$a_t(\chi(t)) = \chi^d(t), \quad \text{where} \quad d = +1 \quad \text{or} \quad -1.\tag{\ast}$$

Now take χ to be one of the generators of the group of rational characters on T. Then it follows from (\ast) that, for all $k \in K$, either

$$a_t(k) = k \quad \text{or} \quad a_t(k) = k^{-1}.$$

But it is obvious from the definition of a_t that this is not the case. Hence, none of the α_t, t lie in the G-orbit of t. This proves that $H^1(\Gamma, Ad) \neq 0$.

Remark. — As the above proof shows, Γ is not locally rigid. However, in case K-rank $G > 1$ and Γ is an irreducible uniform lattice, it is strongly rigid (see Prasad [7], § 8).

REFERENCES

Gopal Prasad,
School of Mathematics,
Tata Institute of Fundamental Research
Homi Bhabha Road,
Bombay 400 005,
Inde.

(Texte reçu le 18 février 1977)