JOHN M. IRWIN
K. BENABDALLAH

On N-high subgroups of abelian groups

Bulletin de la S. M. F., tome 96 (1968), p. 337-346

<http://www.numdam.org/item?id=BSMF_1968__96__337_0>
ON N-HIGH SUBGROUPS OF ABELIAN GROUPS

BY

JOHN M. IRWIN AND KHALID BENABDALLAH.

1. Introduction.

This paper is based on a curious property of N-high subgroups when N is a subgroup of G the subgroup of elements of infinite height of a group G. Let G be a group, N a subgroup of G, we say that a subgroup H of G is N-high if H is maximal with respect to the property $H \cap N = \emptyset$. Our first result (theorem 2.4) is that given a group G and N a subgroup of G', then $G = \langle H, K \rangle$ whenever H is an N-high subgroup of G and K is a pure subgroup of G containing N. A close look at the proof of this result shows that the assumption that K is pure can be replaced by the weaker one that $N \subseteq K'$. An immediate consequence is the classical theorem that divisible subgroups of a group are absolute summands of the group.

N-high subgroups where $N \subseteq G'$ were first introduced and studied by IRWIN and WALKER in [3]. These authors proved that N-high subgroups are pure and that the factor groups they induce are divisible. It turns out (theorem 2.5) that H is an N-high subgroup of a group G, where $N \subseteq G'$ if and only if H is pure, $H \cap N = \emptyset$, $G = \langle H, K \rangle$ for all K pure containing N and G/H is divisible. We use this property of N-high subgroups where $N \subseteq G'$, to generalize and simplify many results in [4]. In particular, we obtain a criterion for a pure subgroup of a group G containing $N \subseteq G'$ to be a summand of G (theorem 3.1).

In the fourth part, we define the concept of quasi-essential and strongly quasi-essential subsocles of a p-group (definition 4.1) and proceed to characterize those quasi-essential subsocles which are also centers of purity (theorem 4.4) and those which are strongly quasi-essential (theorem 4.8).

We use standard notation from [1]. The symbol Z^+ denotes the set of positive integers. If G is a p-group, R a subgroup of G and $g \in R$,
the symbol $h_n(g)$ denotes the height of the element g in the subgroup R. All groups considered are Abelian.

2. A characterization of N-high subgroups of a group G, with $N \triangleleft G$.

We need the following lemmas.

Lemma 2.1. Let G be a p-group, N subgroup of G, and K a pure subgroup of G containing N. Then for any N-high subgroup H of G, $G = \langle H, K \rangle$.

Proof. Clearly $\langle H, K \rangle \supset H[p] \oplus N[p] = G[p]$. By induction suppose $\langle H, K \rangle \supset G[p^n]$. Let $g \in G$, $o(g) = p^{n+1}$, if $g \notin H$, $\langle g, H \rangle \cap N \neq o$ thus there exists $h \in H$, $g' \in N$, and $m < n + 1$, such that

\[p^m g + h = g' \neq o \]

since K is pure, $g' \in K'$, thus there exists $k \in K$, such that $g' = p^m k$, or $h = p^m (g - k)$. If $h \neq o$, by purity of H (see [3], theorem 5) there exists $h' \in H$, such that $p^m h' = h$, therefore $p^m (g - k - h') = o$. This implies $g - k - h' \in \langle H, K \rangle$, and $g \in \langle H, K \rangle$, thus $\langle H, K \rangle \supset G[p^{n+1}]$. By induction

\[G = \langle H, K \rangle. \]

Lemma 2.2. Let G be a torsion group, N a subgroup of G, and K a pure subgroup of G containing N. Then for any N-high subgroup H of G, $G = \langle H, K \rangle$.

Proof. Let $G = \sum G_p$, $H = \sum H_p$, $K = \sum K_p$ and $N = \sum N_p$ then for each prime p, H_p is N_p-high in G_p (see [2], lemma 11) and since K_p is pure containing N_p lemma 2.1 holds and $G_p = \langle H_p, K_p \rangle$. Therefore

\[G = \sum \langle H_p, K_p \rangle = \langle H, K \rangle. \]

Lemma 2.3. Let G be a group, N a subgroup of G, and H an N-high subgroup of G. Then H_t is N_t-high in G_t.

Proof. Clearly $H_t \cap N_t = o$, let $g \in G_t$, $o(g) = b, g \notin H$ then $\langle g, H \rangle \cap N \neq o$, thus there exists $h \in H, n \in N$, and a positive integer a such that $ag + h = n \neq o$. Clearly $a \neq b$. Now $baq + bh = bn$, thus $bh = bn = o$, and $h \in H_t, n \in N_t$, therefore $\langle g, H_t \rangle \cap N_t \neq o$. This implies that H_t is N_t-high in G_t.

Theorem 2.4. Let G be a group, N a subgroup of G, and K a pure subgroup of G containing N. Then for any N-high subgroup H of $G,

\[G = \langle H, K \rangle. \]
Proof. — Suppose $g \in G$, $g \notin H$, then $\langle g, H \rangle \cap N \neq \emptyset$, thus there exists $h \in H$, $n \in N$ and a positive integer a, such that

$$ag + h = n \neq 0.$$

By an argument similar to the one used in lemma 2.1, there exists $h' \in H$ and $k \in K$ such that $a(g + h' - k) = 0$. Thus $g + h' - k \in G$. But, by lemmas 2.3 and 2.2, we know that $G = \langle H, K \rangle$, therefore $g \in \langle H, K \rangle$ and $G = \langle H, K \rangle$.

A classical theorem follows immediately from theorem 2.4.

Corollary. — If D is a divisible subgroup of a group G, then D is an absolute summand of G.

Proof. — Let $D = N$ in theorem 2.4, since D is divisible it is pure in G. Thus $G = D \oplus H$, for any D-high subgroup H of G.

Theorem 2.5. — Let G be a group, N a subgroup of G and H a subgroup of G disjoint from N. Then H is N-high in G if and only if H is pure, G/H is divisible and $G = \langle H, K \rangle$ for any pure subgroup K of G containing N.

Proof. — The necessity follows from theorem 2.4. Suppose then that H satisfies the conditions of the theorem. Since $H \cap N = \emptyset$ there exists an N-high subgroup H' of G containing H. Since H' is pure in G, H'/H is pure in G/H which is divisible, therefore H'/H is divisible and $G/H = (H'/H) \oplus (R/H)$ where R can be chosen to contain N. Since H is pure in G and R/H is pure in G/H, R is pure in G, and since $R \supseteq N$,

$$R = \langle R, H \rangle = G.$$

Therefore

$$H = R \cap H' = G \cap H' = H'$$

and H is N-high in G.

3. Some applications.

We first obtain a criterion for pure subgroups of a group G to be summands of G.

Theorem 3.1. — Let G be a group, K a pure subgroup of G containing a subgroup N of G. Then K is a direct summand of G if and only if there exists an N-high subgroup H of G such that $H \cap K$ is a direct summand of H.

Proof. — Suppose $G = K \oplus L$, let M be any N-high subgroup of K, then it is easy to see that $H = L \oplus M$ is N-high in G and $H \cap K = M$ is a summand of H.

Suppose now that there exists an N-high subgroup H of G such that $H = (H \cap K) \oplus R$, by theorem 2.4:

$$G = \langle H, K \rangle = \langle (H \cap K) \oplus R, K \rangle = \langle R, K \rangle$$

and since $R \cap K = o$, $G = R \oplus K$.

The following corollary contains theorem 2 in [4].

Corollary. — A reduced group G splits over its maximal torsion subgroup G_t if and only if some N-high subgroup of G splits, where $N \subset G' \cap G$.

Proof. — If G is reduced and $G = G_i \oplus L$ then $G' \subset G_i$ and since G_i is pure theorem 3.1 implies there exists an N-high subgroup such that $H \cap G_i = H_i$ is a summand of H. Now if H is N-high and $H = H_i \oplus L$ since $N \subset G_i \cap G'$ by theorem 3.1, G_i is a summand of G.

For what follows we need the following lemmas.

Lemma 3.2. — Let G be a group, H a subgroup of G then if $K|H_i$ is an (H/H_i)-high subgroup of $G|H_i$, then K is pure in G and $K|G_i$.

Proof. — Suppose $n g \in K$ where $g \in G$. Let $o \neq h = ag + k \in \langle K, g \rangle \cap H$ then $nag + nk = nh \in K \cap H = H_i$, therefore $h \in H_i$, thus $\langle K, g \rangle \cap H=H_i$, which implies $\langle K, g \rangle = K$, therefore $g \in K$ and thus K is pure in G. Now if $g \in G$, then letting $n = o(g)$ in the above argument we see that $K \supset G_i$.

Lemma 3.3. — Let G be a group, N a subgroup of G', H an N-high subgroup of G and K a pure subgroup of G containing $\langle N, G' \rangle$ and such that $K \cap H = H_i$. Then for any N-high subgroup H' we have $K \cap H' = H_i$.

Proof. — Such K do exist (lemma 3.2). Clearly $K \cap H' \supset H_i$. Let $h' \in K \cap H'$ and suppose $h' \notin H$ then there exists $h \in H, g \in N$ and a positive integer a such that $ah' + h = g \neq o$, thus $h \in K \cap H = H_i$, let $b = o(h)$, then

$$bah' = bah' + bh = bg \in H' \cap N = o$$

thus $bah' = o$ and consequently $h' \in H_i$. Therefore $K \cap H' = H_i$.

Corollary 1 ([4], lemma). — If G is a group, N a subgroup of G' and H is an N-high subgroup of G, then $H|H_i$ is a summand of $G|H_i$.

Proof. — Let $K|H_i$ be $H_i|H_i$-high in $G|H_i$. Choose $K \supset N$. Then, since K is pure in G (lemma 3.2), it follows from theorem 2.4 that $G = \langle K, H \rangle$. Therefore $G|H_i = (H|H_i) \oplus (K|H_i)$.

Corollary 2 ([4], theorem 4). — Let H and H' be two N-high subgroups of a reduced group G where N is a subgroup of G'. Then $H|H_i \simeq H'|H_i$ and $G|H_i \simeq G|H_i$.

Proof. — From corollary 1, \(G/H_t = (H/H_t) \oplus (K/H_t) \). From lemma 3.3, \(K \cap H' = H_t \), therefore \(G/H_t = (H'/H_t) \oplus (K/H_t) \). The result follows from this and the fact that \(G/H \simeq G/H' \) (see [3]).

Corollary 3 ([4], theorem 1). — Let \(G \) be a reduced group, \(N \) a subgroup of \(G \) and \(H \) an \(N \)-high subgroup of \(G \) then if \(H = H_t \oplus L \), we have \(G = K \oplus L \) where \(K/G_t \) is the divisible part of \(G/G_t \).

Proof. — \(G/H_t = H/H_t \oplus K/H_t \) from corollary 1.

Now \(K/H_t \) is divisible since \(K/H_t \cong G/H_t \), and \(H/H_t \cong L \) is reduced. Thus \(K/G_t \) is the divisible part of \(G/H_t \). Now \(K \cap H = H_t \) implies \(K \cap L = 0 \) and \(\langle K, H \rangle = G \) implies \(\langle K, L \rangle = G \), therefore

\[G = K \oplus L. \]

It is natural to ask, what kind of subgroups of a group \(G \) have properties similar to subgroups of \(G \). We consider first \(p \)-groups. It is trivial to verify that two subgroups of a \(p \)-group are disjoint if and only if their socles are. Thus it suffices to consider subgroups of the socle of a \(p \)-group which we will call subsocles.

Definition 4.1. — Let \(G \) be a \(p \)-group, a subsocle \(S \) of \(G \) is said to be quasi-essential (q.e.) if \(G = \langle H, K \rangle \) whenever \(H \) is an \(S \)-high subgroup of \(G \) and \(K \) a pure subgroup of \(G \) containing \(S \). \(S \) is said to be strongly quasi-essential (s.q.e.) if every subgroup of \(S \) is q.e.

We now proceed to characterize those quasi-essential subsocles of \(G \) a \(p \)-group \(G \) which are also centers of purity (see [7] and [6]).

Theorem 4.2. — Let \(G \) be a \(p \)-group, \(S \) a center of purity, \(S \subset G[p] \). If \(S \) is not quasi-essential in \(G \) then there exists \(n \in \mathbb{Z} \), \(g \in G[p] \), \(g \notin S \) and \(s \in S \) such that

\[h(s) = h(g) = n \quad \text{and} \quad h(s + g) = n + 1. \]

Proof. — Set \(P_n = (p^n G)[p] \), \(P_n = G'[p] \) and \(P_{n+1} = 0 \) then it is known (see [6]) that \(S \) is a center of purity if and only if

\[P_n \ni S \ni P_{n+2} \quad \text{for some} \quad n \in \{ 1, 2, \ldots, \infty, \infty + 1 \}. \]

From lemma 2.1, we see that if \(n = \infty \), i.e. \(S \subset G^1 \), \(S \) is q.e. Thus if \(S \) is not q.e. there exists \(n \in \mathbb{Z}^+ \), such that

\[P_n \ni S \ni P_{n+2}. \]

Also \(S \) is not q.e. implies that there exist a pure subgroup \(K \) of \(G \) containing \(S \) and an \(S \)-high subgroup \(H \), of \(G \) such that \(\langle H, K \rangle \neq G \). Let
\(\langle H, K \rangle = R. \) Since \(R \triangleright G[p] \) and \(R \not\subseteq G, R \) is not pure in \(G \) (see [5], lemma 12). Therefore there exists an element \(x \in R[p] \) such that \(h(x) > h_R(x). \) \(H \) and \(K \) being both pure in \(G \) implies that \(x \in H \) and \(x \notin K \) Therefore there exists \(g \in H[p] \) and \(s \in S \) such that \(x = g + s, \ g \neq 0 \neq s. \) It is easy to verify that

\[
h_R(g) = h_H(g) = h(g) \quad \text{and} \quad h_R(s) = h_K(s) = h(s),
\]

therefore

\[
h(g) = h(s) \leq h_R(g + s) < h(g + s).
\]

Now \(s \in S \) implies \(h(s) \geq p^n, g \notin S \) implies \(h(g) \leq n + 1 \) and since \(S \supset P_{n+1} \) we conclude that \(h(s) = h(g) = n \) and \(h(g + s) = n + 1 \) as stated.

Corollary 1. — Let \(G \) be a \(p \)-group, \(S \) a subsocle of \(G \) such that

\[
P_n \triangleright S \triangleright P_{n+1}
\]

then \(S \) is quasi-essential.

Proof. — \(S \) is a center of purity, thus theorem 4.2 applies and clearly there exists no pair \(g \in G[p], g \notin S \) and \(s \in S \) that satisfy the conditions of the theorem. Thus \(S \) is q. e.

Corollary 2. — Let \(G \) be a \(p \)-group, \(S \) subsocle of \(G \) such that \(S \) supports an absolute summand \(A \) of \(G \) then \(S \) is quasi-essential.

Proof. — \(S \) is a center of purity, thus theorem 4.2 holds and again if \(g \notin S \) and \(s \in S \) and \(h(g) = h(s) \) then, since \(g \) can be embedded in a complementary summand of \(A \) in \(G, h(g + s) = h(g) = h(s). \) Therefore the condition of the theorem cannot be satisfied and \(S \) must be q. e.

Corollary 3. — Let \(G \) be a \(p \)-group, \(K \) a pure subgroup of \(G \) containing \(P_n \) for some \(n \in \mathbb{Z}^+ \), then \(K \) is a direct summand containing \(p^n G. \)

Proof. — Since \(P_n \) is q. e., \(G = \langle K, H \rangle, \) where \(H \) is a \(P_n \)-high subgroup of \(G. \) Now \(H \) is bounded, in fact \(p^n H = 0, \) and \(G/H \cong H/H \cap K, \) therefore \(K \) is a direct summand of \(G \) and \(p^n G \subseteq K. \)

In fact, it turns out that the conditions on \(S \) in corollary 1 and 2 as well as the condition that \(S \) be quasi-essential and a center of purity, are equivalent provided \(S \notin G'. \) To prove this, we need the following lemma.

Lemma 4.3. — Let \(G \) be a \(p \)-group, \(H \) a pure subgroup of \(G \) such that \(G/H \) is pure-complete. Let \(S \) be a subsocle of \(G \) such that \(H[p] \subset S. \) Then \(S \) supports a pure subgroup \(K \) of \(G \) containing \(H. \)

Proof. — Since \(G/H \) is a pure-complete group, by definition, every subsocle of \(G/H \) supports a pure subgroup of \(G/H. \) Now \(\langle S, H \rangle/H \) is
clearly a subsocle of G/H, therefore there exists K/H a pure subgroup of G/H such that
\[(K/H)[p] = \langle S, H \rangle /H.\]
Since H is pure in G, K is pure in G (see [5], lemma 2). Clearly $K[p] \supset S,$ let $k \in K[p]$, then $k + H \in (K/H)[p] = \langle S, H \rangle /H$, thus there exists $s \in S$ and $h \in H$ such that $k - s = h$, but $ph = p(k - s) = 0$, and since $S \supset H[p]$, we conclude that $k \in S$. Therefore $K[p] = S$.

Corollary. — Let G be a p-group, S a subsocle containing P^n (see theorem 4.2) for some $n \in \mathbb{Z}^+$, then S supports a pure subgroup of G containing $P^n G$.

Proof. — Let G_n be as in [1], p. 98. Then G_n is pure in G, $G_n[p] = P_n$ and G/G_n is bounded and therefore pure complete. Thus lemma 4.3 holds, and S supports a pure subgroup of G containing G_n.

Theorem 4.4. — Let G be a p-group, S subsocle of G not contained in G' then the following are equivalent:

(i) S is both a center of purity and a quasi-essential subsocle of G;

(ii) S supports an absolute direct summand of G;

(iii) There exists $n \in \mathbb{Z}^+$ such that $P_n \supset S \supset P_{n+1}$.

Proof. — (i) implies (ii). Suppose S satisfies (i), then since S is a center of purity $S \supset P_m$ for some $m \in \mathbb{Z}^+$ and by the corollary to lemma 4.3, S supports a pure subgroup K of G. Since S is also quasi-essential K is an absolute summand of G.

(ii) implies (i). Suppose S supports an absolute summand K. Then S is clearly a center of purity and by corollary 2 to theorem 4.2, S is q. e.

(i) implies (iii). Suppose S satisfies (i), then S supports an absolute summand K of G. Since S is a center of purity, we know there exists $m \in \mathbb{Z}^+ \ni P_m \supset S \supset P_{m+2}$. Suppose $P_{m+1} \not\subset S$, we will show, by contradiction, that $S \supset P_{m+1}$. Indeed, suppose not, i.e. there is $x \in G[p]$ such that $x \not\in S$ and $h(x) = m + 1$. Now $P_{m+1} \not\subset S$ implies there exists $s \in S$, $h(s) = m$, otherwise $P_m \subset S \subset P_{m+1}$, and we would be done. Let $y = x - s$ then $h(y) = m$, $y \in S$ and $h(y + s) = m + 1$.

Since $y \not\in S$ there is an S-high subgroup H of G such that $y \in H$. But, $G = K \oplus H$ and $h(y) = h(s)$ imply that $h(y + s) = h(y) = h(s)$ which is a contradiction. Therefore $S \supset P_{m+1}$.

(iii) implies (i). If S satisfies (iii) it is a center of purity (see theorem 4.2, proof) and by corollary 1 to theorem 4.2 it is also q. e.

At this point we have completely characterized those quasi-essential subsocles of a p-group which are also centers of purity. An immediate consequence is the following.
COROLLARY. — Let G be a p-group, A a pure subgroup of G, then A is an absolute direct summand of G if and only if A is divisible or $P_n \triangleright A[p] \triangleright P_{n+1}$ for some $n \in \mathbb{Z}^+$. The strongly quasi-essential subsocles have also a simple characterization which can be obtained from the previous result. We need the following lemmas.

Lemma 4.5. — Let G be a group; A, B, C three subgroups of G then
\[\langle A \cap B, C \cap B \rangle = \langle A \cap B, C \rangle \cap B = \langle A, C \cap B \rangle \subseteq B. \]

Lemma 4.6. — Let G be a group, N a subgroup of M a subgroup of G, if a subgroup H is N-high in G then $H \cap M$ is N-high in M. Conversely if H' is an N-high subgroup of M then $H' = H \cap M$ for any N-high subgroup H of G containing H'.

Proof. — Let H be N-high in G then for all $x \notin H$, we have
\[\langle H, x \rangle \cap N \neq \emptyset. \]
Suppose $m \in M$, $m \notin H$, then
\[\langle H \cap M, m \rangle \cap N = \langle H, m \rangle \cap M \cap N = \langle H, m \rangle \cap N \neq \emptyset. \]
and since $(H \cap M) \cap N = \emptyset$, $H \cap M$ is N-high in M.

Let H' be an N-high subgroup of M, and let H be any N-high subgroup of G then $H \cap M \triangleright H'$ and $(H \cap M) \cap N = \emptyset$. The maximality of H' implies $H \cap M = H'$.

Lemma 4.7. — Let G be a p-group, S a quasi-essential subsocle of G. Let K be a pure subgroup of G containing S. Then S is quasi-essential in K.

Proof. — Let M be a pure subgroup of K containing S and let H be an S-high subgroup of K. Let H' be an S-high subgroup of G containing H then, since S is q.e. and M is also pure in G we have $\langle M, H' \rangle = G$, thus by lemma 4.5 and 4.6,
\[K = \langle M, H' \rangle \cap K = \langle M \cap K, H' \rangle \cap K = \langle M \cap K, H' \cap K \rangle = \langle M, H \rangle, \]
and S is q.e. in K as stated.

Theorem 4.8. — Let G be a p-group, S a subsocle of G then S is strongly quasi-essential if and only if either $S \subseteq G'$ or there exists $n \in \mathbb{Z}^+$, such that $p^n G = o$ and $(p^{n-1} G)[p] \triangleright S$.

Proof. — If $S \subseteq G'$, S is s.q.e. follows from lemma 2.1. If there exists $n \in \mathbb{Z}^+$ such that $p^{n-1} G[p] \triangleright S \triangleright p^n G = o$ then S is s.q.e. as a
consequence of corollary 1 to theorem 4.2. Suppose now that S is s. q. e. and $S \not\leq G$ then there exists $s \in S$ such that $h(s) < \infty$. By corollary 24.2 in [1], S can be embedded in a finite pure subgroup K such that $K[p] = \langle s \rangle$. Since S is s. q. e., K is an absolute summand of G. Thus by theorem 4.4, there exists $m \in \mathbb{Z}^+$, such that $(p^m G)[p] \leq \langle s \rangle \leq (p^{m-1} G)[p]$ but $\langle s \rangle$ is a cyclic group of order p, therefore G is a bounded group. This implies that S supports a pure subgroup M of G, and since S is q. e., M is an absolute summand of G. From lemma 4.7, we see that every subsocle of M is q. e. in M, and thus every summand of M is an absolute summand.

By problem 11 (b), p. 93 in [1], $M = \sum C(p^n)$ for some $n \in \mathbb{Z}^+$ and $S = M[p] \leq (p^{n-1} G)[p]$. Clearly $M[p] \leq (p^n G)[p]$, therefore $(p^n G)[p] \leq S \leq (p^{n-1} G)[p]$, and since M is pure $P^n G \leq M$. Thus $p^n G = (p^n G) \cap M = p^n M = 0$,

and the proof is complete.

The following characterization follows immediately from theorem 4.8.

Theorem 4.9. — Let G be a p-group, every subsocle of G is quasi-essential if and only if G is divisible or G is a direct sum of cyclic groups of same order.

We have not been able to decide whether a quasi-essential subsocle is necessarily a center of purity or not. But in the next theorem, we have a case where quasi-essential subsocles are centers of purity.

Theorem 4.10. — Let G be a p-group, if G is pure-complete then every quasi-essential subsocle of G is a center of purity.

Proof. — Let S be q. e. Since G is pure-complete, S supports a pure subgroup K of G. This K is an absolute summand and therefore the result follows from corollary 2 to theorem 4.2

BIBLIOGRAPHY.

(Manuscrit reçu le 19 février 1968.)

John M. Irwin,
Department of Mathematics,
College of liberal Arts,
Wayne State University,
Détroit, Mich. 48202 (États-Unis).

Khalid Benabdallah,
Département de Mathématiques
Université de Montréal
Montréal, Que. (Canada).