R. HARTSHORNE

A property of A-sequences

<http://www.numdam.org/item?id=BSMF_1966__94__61_0>
A PROPERTY OF A-SEQUENCES

BY

ROBIN HARTSHORNE (*)

Let A be a noetherian local ring with maximal ideal m, containing a field k (not necessarily its residue field). Recall ([1]; [7]) that an A-sequence is a finite set x_1, \ldots, x_r of elements of A, contained in the maximal ideal m, such that x_i is not a zero-divisor in A, and for each $i = 2, \ldots, r$, x_i is not a zero-divisor in $A/(x_1, \ldots, x_{i-1})$. We will show that for many purposes, the elements of an A-sequence behave just like the variables in a polynomial ring over a field. In particular, the sum, product, intersection and quotient of ideals generated by monomials in a given A-sequence are just what one would expect (see Corollary 1 below for a precise statement).

Proposition 1. — Let A be a noetherian local ring containing a field k, and let x_1, \ldots, x_r be an A-sequence. Then the natural map

$$
\varphi : \ T = k[X_1, \ldots, X_r] \rightarrow A
$$

of k-algebras, which sends X_i into x_i for each i, is injective, and A is flat as a T-module.

Proof. — We show φ is injective by induction on r, the case $r = 0$ being trivial. Let $r > 0$ be given. Then x_1, \ldots, x_r is an (A/A)-sequence, so by the induction hypothesis, we may assume that

$$
\overline{\varphi} : \ k[X_1, \ldots, X_r] \rightarrow A/x_1A
$$

is injective. Now let $t \in T$ be given and write

$$
t = \sum_{n=0}^{\infty} X_1^n f_n(X_2, \ldots, X_r),
$$

(*) Junior Fellow, Harvard University.
where each $f_s(X_1, \ldots, X_r) \in k[X_1, \ldots, X_r]$. Suppose that $\varphi(t) = 0$. If $t \neq 0$, let f_s be the first of the f_n which is non-zero. Then

$$\varphi(t) = x_1^i \left(\sum_{n=0}^\infty x_1^{n-s} f_n(x_2, \ldots, x_r) \right).$$

Since x_1 is a non-zero-divisor in A, we have

$$\sum_{n=0}^\infty x_1^{n-s} f_n(x_2, \ldots, x_r) = 0.$$

Reducing modulo x_1, we find $f_s(x_2, \ldots, x_r) = 0$ in $A/x_1 A$. Now since $\overline{\varphi}$ is injective by the induction hypothesis, $f_s(X_1, \ldots, X_r) = 0$, which is a contradiction. Hence $t = 0$ and φ is injective.

Now to show A is flat over T, we use the local criterion of flatness ([3], chap. III, § 5, no 2, theorem 1, (iii)) applied to the ring T, the ideal $J = (x_1, \ldots, x_r)$, and the T-module A. We must verify the four following statements:

(a) T is noetherian (well-known).

(b) A is separated for the J-adic topology, i.e. $\bigcap J^n A = 0$. This is true since JA is contained in the radical m of A, and $\bigcap m^n = 0$ by Krull’s theorem ([3], chap. III, § 3, no 2).

(c) A/JA is flat over $k = T/J$. This is true since anything is flat over a field.

(d) $\operatorname{Tor}^T_i (T/J, A) = 0$. To calculate this Tor, we use the Koszul complex $K.(X_1, \ldots, X_r; T)$ ([4], EGA, III, 1.1) which is a resolution of T/J since X_1, \ldots, X_r is a T-sequence. $\operatorname{Tor}_i (T/J, A)$ is the ith homology group of the complex

$$K.(X_1, \ldots, X_r; T) \otimes_T A = K.(x_1, \ldots, x_r; A).$$

But since x_1, \ldots, x_r is an A-sequence, this homology is zero in degrees $i > 0$ ([4], EGA, III, 1.1.4). In particular $\operatorname{Tor}^T_1 (T/J, A) = 0$, which completes the proof of the proposition.

Corollary 1. — With the notations of the proposition, let a and b be any two ideals in T. For any ideal c in T, denote by $c A$ its extension to A. Then

(i) $(a + b) A = a A + b A$;

(ii) $(a . b) A = (a A) . (b A)$;

(iii) $(a \cap b) A = (a A) \cap (b A)$;

(iv) $(a : b) A = (a A) : (b A)$.

(Recall that for any two ideals a, b in a ring R, $a : b = \{ x \in R \mid x.b \subseteq a \}$.)
A PROPERTY OF A-SEQUENCES. 63

Proof. — (i) and (ii) are trivially true for any ring extension and are repeated here for convenience. (iii) and (iv) are true for any flat ring extension. (iii) is proved in ([3], chap. I, § 2, n° 6, Prop. 6).

To prove (iv), let y_1, \ldots, y_r be a set of generators for b. Then

$$a : b = \bigcap (a : (y_i)),$$

and so using (iii) we are reduced to the case where b is generated by a single element y. Now $a : (y)$ is characterized by the exact sequence of T-modules

$$0 \to a : (y) \to T \to T/a,$$

where the last map is multiplication by y. Tensoring with A we have an exact sequence of A-modules

$$0 \to (a : (y)) A \to A \to A/aA$$

from which we deduce that $(a : (y)) A = aA : yA$ (Note that for any ideal b in T, the natural map $b \otimes_T A \to bA$ is an isomorphism, since A is flat over T, so we identify the two).

Corollary 2 (Theorem of Rees). — *Let A be a noetherian local ring containing a field, and let I be an ideal generated by an A-sequence x_1, \ldots, x_r. Then the images $\bar{x}_1, \ldots, \bar{x}_r$ of the x_i in the graded ring

$$\text{gr}_x(A) = \sum_{n=0}^{\infty} J^n/J^{n+1}$$

are algebraically independent, so that $\text{gr}_x(A)$ is isomorphic to the polynomial ring $A/J[x_1, \ldots, x_r]$.*

Proof (see also [7], Appendix 6, theorem 3). — It is sufficient to show that for each n, J^n/J^{n+1} is a free A/J-module, with the images of the monomials in x_1, \ldots, x_r of degree n for basis. It is clear that these monomials generate J^n/J^{n+1}. To show they are linearly independent, let z be a monomial of degree n in x_1, \ldots, x_r, and let J' be the ideal generated by all the other monomials of degree n and by J^{n+1}. Then we must show that $J' : z = J$, which follows from Corollary 1.

Corollary 3. — *Let A be a noetherian local ring containing a field k, and let x_1, \ldots, x_r be an A-sequence. Then any ideal of A generated by polynomials in the x_i, with coefficients in k, is of finite homological dimension over A.*

Proof. — Using the notations of the proposition, any such ideal can be written as αA, where α is an ideal in the polynomial ring $T = k[x_1, \ldots, x_r]$. Over T, α has a finite projective resolution ([7, chap. VII, § 13, theorem 43])

$$0 \to L_n \to \ldots \to L_1 \to L_0 \to \alpha \to 0.$$
Tensoring with A gives an exact sequence

$$0 \rightarrow L_n \otimes A \rightarrow \ldots \rightarrow L_1 \otimes A \rightarrow L_0 \otimes A \rightarrow aA \rightarrow 0$$

which is a finite projective resolution of aA.

Remark. — A refinement of the proof of proposition 1 due to D. Quillen allows one to dispense with the hypothesis that A contains a field, provided that one is interested only in ideals of A generated by monic monomials in the x_i. In particular this is sufficient for the result of Corollary 2, and of Proposition 2 below.

As an application we give the following:

Proposition 2. — Let A be a noetherian local ring containing a field. Let I be a radical ideal in A (i.e. an ideal which is a finite intersection of prime ideals), and let J be any ideal generated by an A-sequence whose radical is I. Then, to within isomorphism, the A/I-module

$$M = \text{Hom}_A(A/I, A/J)$$

is independent of J.

Example. — An interesting case (already known [2]) is that of a local Cohen-Macaulay ring A, with $I = \mathfrak{m}$ the maximal ideal. Then there are ideals J generated by an A-sequence with radical \mathfrak{m}, so that M is defined. Its dimension as an A/\mathfrak{m}-vector space is an invariant of A, which is equal to 1 if and only if A is a Gorenstein ring. (See [2], where if n is the dimension of M, then A is called a MCn-ring. This number is also the "vordere Loewysche Invariante" of A/J in [6], p. 28, and is the number e of the exercises in [5], § 4, p. 67.)

Proof of Proposition. — Let J be generated by the A-sequence x_1, \ldots, x_r. Then r is the height of I, and so is independent of J. We consider the rth local cohomology group (see [5] for definition and methods of calculation)

$$H = H^r(A) = \varprojlim \text{Ext}^r(A/J^{[n]}, A),$$

where $J^{[n]} = (x_1^n, \ldots, x_r^n)$. Using the Koszul complex $K. (x_1^n, \ldots, x_r^n; A)$ to calculate the Ext^r, we find an isomorphism

$$\varphi_n : \text{Ext}^r(A/J^{[n]}, A) \cong A/J^{[n]}$$

which transforms the maps of the direct system into the maps

$$f_n : A/J^{[n]} \rightarrow A/J^{[n+1]}$$

which are defined by multiplication by $x_1 \cdots x_r$.

I claim that the maps f_n are all injective. Indeed, it is sufficient to see that

$$J^{[n+1]} : (x_1 \cdots x_r) = J^{[n]}.$$
This follows from Corollary 1 and the fact that the analogous relation holds in a polynomial ring. Therefore we can write H as an increasing union

$$H = \bigcup_{n=1}^{\infty} E_n,$$

where E_n is the isomorphic image of $A/J^{(n)}$ in H. Furthermore, I claim that for each n, E_n is the set of elements of H annihilated by $J^{(n)}$. Indeed, we have only to observe that for each n, $k > 0$,

$$J^{(n+k)} : J^{(n)} = (x_1 \cdots x_r)^k$$

which follows from Corollary 1 and the analogous formula in a polynomial ring. Now since $J \subseteq I$, anything in H annihilated by I is annihilated by J. Hence

$$M = \text{Hom}_A(A/I, A/I) = \text{Hom}_A(A/I, E_n) = \text{Hom}_A(A/I, H).$$

But by definition, H depends only on the radical of J [5], so we are done.

BIBLIOGRAPHY.

(Manuscrit reçu le 8 décembre 1965.)

R. Hartshorne,
Mathematics Department,
2, Divinity Avenue,
Cambridge, Mass. 02138 (États-Unis).