P. Hill
C. Megibben

Minimal pure subgroups in primary groups

<http://www.numdam.org/item?id=BSMF_1964__92__251_0>
Throughout all groups are assumed to be primary abelian groups, and all topological references are to the \(p \)-adic topology. By a subsocle of a group we mean a subgroup of the socle. Thus \(S \) is a subsocle of \(G \) if \(S \) is a subgroup of \(G \) and if \(px = 0 \) for all \(x \) in \(S \). Let \(H \) be a subgroup of \(G \). If among the pure subgroups of \(G \) which contain \(H \) there exists a minimal one, we say that \(H \) is contained in, or is imbedded in, a minimal pure subgroup in \(G \). B. Charles studied minimal pure subgroups in [1]; he asserted that each of the conditions

1. \(H \) is a subsocle of \(G \)

and

2. There is a pure subgroup of \(G \) contained in \(H \) which is dense in \(H \)

is sufficient for the existence of a minimal pure subgroup for \(H \) in \(G \) provided \(G \) is without elements of infinite height. Head showed in [4] that condition (2) is not sufficient, and one of the authors showed in [6] that neither is condition (1).

In this paper we characterize the groups \(G \) in which each subgroup is imbedded in a minimal pure subgroup. The characterization is:

\(G \) is the sum of a divisible and a bounded group. We give a short proof of a theorem of Irwin and Walker [5] and give a solution to a new generalization of Fuchs' Problem 4. Some results are also given concerning minimal pure subgroups for subsocles.

It was shown in [3] that most groups have neat dense subgroups which do not contain basic subgroups. The following theorem shows, however, that if a neat subgroup has a dense subsocle, then it must contain a basic subgroup.
THEOREM 1. — Let S be a dense subsocle of G, $S = G[p]$. If H is maximal in G with respect to $H[p] = S$, then H is pure and dense in G.

PROOF. — Let H be maximal in G with respect to $H[p] = S$. Then H is neat in G, that is, $H \cap pG = pH$. We need to show that $H \cap p^nG = p^nH$ for all natural numbers n; our proof is by induction. Assume that $H \cap p^nG = p^nH$ and suppose that $p^{n+1}x \in H$. Since H is neat, there is an $h_0 \in H$ such that $p^{n+1}x = ph_0$. The element $p^n x - h_0$ is in $G[p]$. Since S is dense in $G[p]$, there is an $s \in S$ such that $p^n x - h_0 - s$ is in $p^n G$. By the induction hypothesis, there is an $h_1 \in H$ such that $p^n x = ph_0 + s$. Thus $p^{n+1} h_1 = ph_0 + p^{n+1} x$ and H is pure.

Since H is pure, any element of order p in G/H can be represented by an element of order p in G. Therefore, the density of $H[p] = S$ in $G[p]$ implies that each element of order p in G/H has infinite height. Hence G/H is divisible, that is, H is dense in G.

COROLLARY 1 (IRWIN and WALKER [5]). — Let N be a subgroup of G', the elements of infinite height in G. If H is maximal in G with respect to $H \cap N = o$, then H is pure in G.

One may generalize problem 4 in [2] by replacing the subgroup G' by an arbitrary fully invariant subgroup. The solution to the generalized problem is contained in the following corollary and a well known result of Szele.

COROLLARY 2. — Let F be a fully invariant subgroup of G and let A be a subgroup of G such that $A \cap F = o$. Then A is contained in a pure subgroup H of G such that $H \cap F = o$.

PROOF. — If $F \subseteq G'$, the conclusion follows from the preceding corollary. Assume that F is not contained in G'. Let $\sum B_n$ be the standard decomposition of a basic subgroup B of G into homogeneous groups B_n. Define $A_1 = G$ and $A_{n+1} = \{B_{n+1}, B_{n+2}, \ldots, p^n G\}$ for $n \geq 1$. Then $G = B_1 + B_2 + \ldots + B_n + A_{n+1}$. Since F is fully invariant with elements of finite height in G, $F[p] = A_m[p]$ where m is the smallest positive integer such that $F \cap B_m \neq o$.

It follows from [2] (theorem 22.2) that A_m is an absolute direct summand of G. Hence if H is maximal with respect to $H \cap F = o$, then H is maximal with respect to $H \cap A_m = o$ and is a direct summand of G; in particular, H is pure in G.
The following theorem, which is of independent interest, (eventually) implies that most groups have subgroups which are not imbedded in minimal pure subgroups.

Theorem 2. — Let L be a subgroup of G. If H is a minimal pure subgroup of G containing L, then $H = A + K$ where A is bounded and $K[p] = L[p]$.

Proof. — There is no pure subgroup of H properly between L and H. It follows from theorem 1 that every subsocle of H which contains $L[p]$ is closed in $H[p]$.

Define $S_n = L[p] \cap p^nH$ and let $S_n = Q_n + S_{n+1}$ for $n = 0, 1, 2, \ldots$. The height in H of each nonzero element of Q_n is exactly n. Moreover, if C_n is (zero or) a direct sum of cyclic groups or order p^n such that $C_n[p] = Q_{n-1}$, then $C = \sum C_n$ is pure in H. Extend C to a basic subgroup $B = A + C$ of H.

Suppose that there is an element x of order p in $A \cap L$. Since x is in A, it has finite height t in H. The closure (in H) of $C[p]$ contains $L[p]$. Thus $x = p^{t+1}h + c$ where $c \in C[p]$ and $h \in H$. This implies that $x - c$ has height greater than t in H and, consequently, in B since B is pure in H. This is impossible since $B = A + C$, so $A \cap L = \emptyset$.

Assume that A is unbounded. Then A has a proper basic subgroup A_i. Since $B = A + C$ is basic in H, $B_i = A_i + C$ is basic in H. Thus

$$A_i[p] + L[p] \subseteq B_i[p] = H[p].$$

Since this contradicts the fact that $A_i[p] + L[p]$ is a proper closed subsocle of H, we conclude that A is bounded.

Let $p^mA = \emptyset$. An argument similar to the one given above for the proof that $A \cap L = \emptyset$ shows that $A \cap (C, p^mH) = \emptyset$. Now we have that

$$H = \{ B, p^mH \} = \{ A + C, p^mH \} = A \cap (C, p^mH).$$

Define $K = \{ C, p^mH \}$. The purity of C implies that

$$K[p] = \{ C[p], p^mH[p] \}.$$

Proposition 1. — If each subgroup of G is contained in a minimal pure subgroup of G, then G has a bounded basic subgroup.
PROOF. — Suppose that $B = \sum B_n$ is a basic subgroup of G where $B_n \neq \emptyset$ for infinitely many n and is a homogeneous group of degree n. Choose a sequence $n(i)$ of positive integers such that $n(i+1) - n(i) \geq 2$ and such that $B_{n(i)} \neq \emptyset$. Define

$$t(i) = n(2i+1) - n(2i) - 1$$

and let

$$L = \sum_{i=1}^{\infty} \{ b_{n(2i)} + p^{t(i)} b_{n(2i+1)} \}$$

where $\{ b_{n(i)} \}$ is a nonzero direct summand of $B_{n(i)}$. Suppose that H is a minimal pure subgroup of G containing L. By theorem 2, $H = A + K$ where A is bounded and $K[p] = L[p]$.

Let $p^n A = \emptyset$. Then $p^n H[p] \subseteq L[p]$. Let $G = \{ b_{n(2i)} \} + \{ b_{n(2i+1)} \} + G_n$. Since $p^{n(2i+1)+1} b_{n(2i+1)}$ is in L, there is an element $h_0 = j b_{n(2i)} + b_{n(2i+1)} + g_o$ in H where j is an integer, $g_o \in G_o$, and

$$p^{n(2i+1)+1} h_0 = p^{n(2i+1)+1} b_{n(2i+1)}.$$

Now the element

$$h_i = (b_{n(2i)} + p^{t(i)} b_{n(2i+1)}) - p^{t(i)} h_0 = b_{n(2i)} - p^{t(i)} (j b_{n(2i)} + g_o)$$

is in H. Since $p^{n(2i)+1} h_i = p^{n(2i)+1} b_{n(2i)}$ and since $p^n H[p] \subseteq L[p]$, we conclude that L contains $p^{n(2i)+1} b_{n(2i)}$ if $i \geq m$. However, it is immediate from the definition of L that this is impossible, so L is not contained in a minimal pure subgroup of G.

PROPOSITION 2. — If G is a bounded group, each subgroup of G is contained in a minimal pure subgroup of G.

PROOF. — Our proof is by induction on n where $p^n G = \emptyset$. If $p G = \emptyset$, every subgroup is pure. Suppose that L is a subgroup of G and that $p^{n+1} G = \emptyset$. Since a homogeneous subgroup of G of degree $n + 1$ is an absolute direct summand, we may assume that $p^n G \leq L$.

Let

$$L = L_{n+1} + G_n, \quad p G \cap C_n = L_n + C_{n-1}, \quad \ldots \ldots \ldots \ldots, \quad p^n G \cap C_i = L_i,$$

where L_i is a homogeneous group of degree i with L_{n+1} chosen maximal in L and L_i chosen maximal in $p^{n+1-i} G \cap C_i$ for $i = n, n-1, \ldots, 1$. Observe that there are homogeneous subgroups B_i of G of degree $n + 1$.
such that $B_i \supseteq L_i$ and $B_i[p] = L_i[p]$. Define $B = \sum B_i$. Then $B[p] = p^n G \cap L = p^n G$.

Since B is an absolute direct summand of G, there are decompositions

$$|L, B| = K + B$$

and

$$G = H + B$$

such that $H \supseteq K$. Since $p^n G = B[p]$, $p^n H = 0$. By the induction hypothesis, K is contained in a minimal pure subgroup A of H. We prove that $A + B$ is a minimal pure subgroup of G containing L.

Suppose that S is a pure subgroup of $A + B$ containing L. We wish to show that $S = A + B$. Proceeding by induction, assume that $p^i A \subseteq S$ and that $p^{i+1} B \subseteq S$. From these two conditions it follows that $p^i B \subseteq S$, and it remains to show that $p^{i-1} A \subseteq S$. Routine considerations show that it suffices to prove that $p^{i-1} A[p] \subseteq S$.

Let $T = S \cap p^{i-1} A[p]$ and let $p^{i-1} A[p] = T + R$. Assume that $R \neq 0$. Choose a pure subgroup R^* of A such that $R^*[p] = R$. Observe that R^* is homogeneous of degree i. From the construction of B, it can be shown that $p^i A \cap K \subseteq \{L, p^i B\}$. From this fact it follows that $R^* \cap \{p^i A, K\} = 0$. Choose a subgroup $F \supseteq \{p^i A, K\}$ and maximal in A with respect to $F \cap R^* = 0$. Since A is minimal pure for K in H, F cannot be pure in A. Hence $R^* + F$ is a proper subgroup of A. Choose an element $a \in A$ such that $a \notin R^* + F$ and such that $pa \in R^* + F$. Letting $pa = r^* + f$ where $r^* \in R^*$ and $f \in F$, we obtain contradictory statements: r^* has height zero in R^*; and $p^{i-1} r^* = 0$.

We conclude that $R = 0$, that is, $p^{i-1} A[p] \subseteq S$.

Corollary 3. — Let L be a subgroup of G. If the heights (computed in G) of the elements of L are bounded, then L is contained in a minimal pure subgroup (direct summand) of G.

Proof. — There is a positive integer n such that $L \cap p^n G = 0$. The group $p^n G$ is a fully invariant subgroup of G. Apply corollary 2 and proposition 2.

Now consider the case where G is the sum of a divisible group D and a bounded group B, $G = D + B$. Let L be a subgroup of G. In order to show that L is contained in a minimal pure subgroup of G, we may assume that $D[p] \subseteq L$ since a divisible subgroup is an absolute direct summand. In this case, H is minimal pure for L if H/D is minimal pure for $|L, D|/D$ in G/D, a bounded group. This completes the proof of

Theorem 3. — Each subgroup of G is contained in a minimal pure subgroup of G if and only if G is the sum of a divisible group and a bounded group.
We now turn our attention to the question of the existence of minimal pure subgroups for subsocles. Theorem 2 shows that if a subsocle S is imbedded in a minimal pure subgroup in G, then S supports a pure subgroup, that is, there is a pure subgroup H of G such that $H[p] = S$. Thus the question of whether or not a subsocle is imbedded in a minimal pure subgroup is just the question of whether or not that subsocle supports a pure subgroup. It is well known that every subsocle of a bounded group supports a pure subgroup.

Proposition 3. — Let $S = \bigcup S_i$ be the union of an ascending sequence of subsocles S_i of G. If $S_i \cap p^i G = 0$ for $i = 1, 2, \ldots$, then S supports a pure subgroup. Indeed, S supports a direct summand of a basic subgroup.

Proof. — Since S_i is contained in a bounded direct summand of G, it supports a pure subgroup H_i of G. But $\{H_i, S_{i+1} \cap p^{i+1} G = 0\}$; hence $\{H_i, S_{i+1}\}$ is contained in a bounded direct summand B_{i+1} of G. Since H_i is bounded and pure in B_{i+1}, it is a direct summand of B_{i+1}; let $B_{i+1} = H_i + A_{i+1}$. Then

$$S_{i+1} = H_i[p] + (A_{i+1} \cap S_{i+1}).$$

But $A_{i+1} \cap S_{i+1}$ supports a pure subgroup C_{i+1} in A_{i+1} since A_{i+1} is bounded. Let $H_{i+1} = H_i + C_{i+1}$. The union H of the ascending sequence of pure subgroups H_i of G is a pure subgroup of G with $H[p] = S$. Kulikov’s criteria shows that H is a direct sum of cyclic groups (and therefore a direct summand of a basic subgroup of G).

Corollary 4. — If G is a direct sum of cyclic groups, then each subsocle S supports a pure subgroup.

Proof. — Let $G = \sum B_i$ where B_i is (zero or) a homogeneous group of degree i and let $S_i = (B_i + B_{i+1} + \ldots + B_j) \cap S$. The conditions of proposition 3 are satisfied.

Following established terminology, we say that G is a closed group if it is the primary part of a complete direct sum of cyclic groups [2].

Proposition 4. — Each subsocle of a closed group supports a pure subgroup.

Proof. — Let S be a subsocle of a closed group G. Choose S_i such that $S \cap p^i G = S_i + (p^{i+1} G \cap S)$ for $i = 0, 1, \ldots$. Let $T_0 = S$, $T_i = S_i + S_{i+1} + \ldots + S_{i-1}$ if $i \geq 1$, and let $T = \bigcup T_i$. By proposition 3, T supports a direct summand B_i of a basic subgroup B of G, $B = B_i + B$. Since G is a closed group, $G = B_i + B$. Since T is
dense in \(S \), \(S \subseteq T \). But \(\bar{T} = \overline{B_i[p]} = \overline{B_i} \). Thus \(S \) is a dense subsocle of \(B_i \), a direct summand of \(G \). The proof is completed by theorem 1.

Theorem 4. — If \(G = A + B \) where \(A \) is a direct sum of cyclic groups and \(B \) is a closed group, then each subsocle of \(G \) supports a pure subgroup.

Proof. — By theorem 1, it suffices to prove that each closed subsocle of \(G \) supports a pure subgroup. Let \(S \) be a closed subsocle of \(G \) and let \(S' = S \cap B \). Then \(S \) is a closed subsocle of \(B \). By proposition 4, \(S' \) supports a pure subgroup \(C \) of \(B \). Since \(S \) is closed, \(C \) is closed in \(B \) (and therefore is a closed group). Hence \(C \) is a direct summand of \(B \); let \(B = C + K \). Then \(S = S \cap (A + K) + S' \). Notice that \(S \cap K = \emptyset \).

Define \(S_i = (A_1 + A_2 + \ldots + A_i + K) \cap S \) where \(A = \sum A_i \) is the standard decomposition of \(A \). Then \(S \cap (A + K) = \bigcup S_i \) and \(S_i \cap p'(A + K) = \emptyset \). Thus by proposition 3, there is a pure subgroup of \(A + K \) with \(S \cap (A + K) \) as its socle, and the theorem is proved.

References.

(Manuscrit reçu en juin 1964.)

Paul Hill and Charles Megibben,
Department of Mathematics,
Auburn University,
Auburn, Alabama (États-Unis).